JPH0680691A - Production of cysteine-containing peptide - Google Patents

Production of cysteine-containing peptide

Info

Publication number
JPH0680691A
JPH0680691A JP4257617A JP25761792A JPH0680691A JP H0680691 A JPH0680691 A JP H0680691A JP 4257617 A JP4257617 A JP 4257617A JP 25761792 A JP25761792 A JP 25761792A JP H0680691 A JPH0680691 A JP H0680691A
Authority
JP
Japan
Prior art keywords
protected
peptide
cysteine
group
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4257617A
Other languages
Japanese (ja)
Inventor
Yuko Ishii
優子 石井
Toshio Watanabe
敏夫 渡辺
Masaaki Ueki
正彬 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKYO KAGAKU KK
Original Assignee
SANKYO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKYO KAGAKU KK filed Critical SANKYO KAGAKU KK
Priority to JP4257617A priority Critical patent/JPH0680691A/en
Publication of JPH0680691A publication Critical patent/JPH0680691A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To simply produce the subject peptide in high purity by subjecting a cysteine-containing peptide and a 3-nitro-2-pyridylsulfenyl group-protected cysteine-containing protected peptide to formation of a S-S bond, to formation of a peptide bond, and subsequently to removal of the protecting group. CONSTITUTION:A free SH group-having cysteine-containing protected peptide of formula I (X is amino-protecting group; A, B are various protected amino acid residues, protected peptide; (n), (m) are 0, 1) and a 3-nitro-2-pyridylsulfenyl group-protected cysteine-containing protected peptide are subjected to the formation of a S-S bond and subsequently to the formation of a peptide bond to produce a cysteine-containing protected peptide of formula III, which is subjected to a removal of the protecting group by a conventional method to provide the cysteine-containing peptide of formula IV (A', B', C', D' are the respective groups wherein the protecting groups are removed from A, B, C, D, respectively).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シスチン含有ペプチド
の合成方法に関し、更に詳しくは、生理活性発現及び活
性の増大に大きな効果が期待されるシスチン含有ペプチ
ドを、特定の位置にS−S結合を形成でき、高純度でか
つ簡便に合成する方法を提供するものである。
TECHNICAL FIELD The present invention relates to a method for synthesizing a cystine-containing peptide, more specifically, a cystine-containing peptide, which is expected to have a large effect on the expression of physiological activity and an increase in activity, is bonded to a specific position with an SS bond. The present invention provides a method for synthesizing a compound, which has a high purity and can be easily synthesized.

【0002】[0002]

【従来の技術】従来、シスチン含有ペプチドの合成方法
として、固相法または液相法により、保護されたシステ
イン残基を含む保護ペプチドシーケンスを合成し、全保
護基を一旦脱離後、遊離のSH基を持つペプチドを得、
空気酸化法あるいはヨウ素酸化法を用いてジスルフィド
結合を形成させる方法が知られている。ここで空気酸化
法はS−S結合の形成に長時間を必要とするほか、水性
溶媒に難溶なペプチドに対しては使用できないという問
題点がある。また、ヨウ素酸化法は反応時にチロシン、
ヒスチジンおよびトリプトファンではヨウ素酸化が起こ
ることが知られており、副反応を抑えるために反応溶媒
の選択が重要である。また、ペプチドの有機溶媒への溶
解性という点からもこれらの方法は適用上の制約が多
い。最近、これらの問題点を解決すべくジスルフィド結
合を化学的に形成させる方法として、タリウム(III)ト
リフルオロアセテート法〔J.Chem.Soc.,C
hem.Commun.,163(1987)記載〕、
S−保護システインスルホキシド法〔J.Chem.S
oc.,Chem.Commun.,1676(198
7)記載〕、およびシリルクロライド−スルホキシド法
〔J.Chem.Soc.,Chem.Commu
n.,167(1991)記載〕が脱保護と同時にジス
ルフィド結合を形成させる反応として報告されている。
又、システインのチオール基の保護基として3−ニトロ
−2−ピリジルスルフェニル基(Npys基)を用い、
遊離のSH基と反応させることにより、容易に分子間ジ
スルフィド結合を形成できることが報告されている〔C
hem.Lett.,921(1982)記載〕。
2. Description of the Related Art Conventionally, as a method for synthesizing a cystine-containing peptide, a protected peptide sequence containing a protected cysteine residue is synthesized by a solid phase method or a liquid phase method. To obtain a peptide with an SH group,
A method of forming a disulfide bond using an air oxidation method or an iodine oxidation method is known. Here, the air oxidation method has a problem that it takes a long time to form an S—S bond and cannot be used for a peptide that is poorly soluble in an aqueous solvent. In addition, the iodine oxidation method uses tyrosine during the reaction,
It is known that histidine and tryptophan cause iodine oxidation, and it is important to select a reaction solvent in order to suppress side reactions. In addition, these methods also have many restrictions in terms of their solubility in organic solvents. Recently, as a method for chemically forming a disulfide bond in order to solve these problems, the thallium (III) trifluoroacetate method [J. Chem. Soc. , C
hem. Commun. , 163 (1987)],
S-protected cysteine sulfoxide method [J. Chem. S
oc. Chem. Commun. , 1676 (198
7) description], and the silyl chloride-sulfoxide method [J. Chem. Soc. Chem. Commu
n. , 167 (1991)] is reported as a reaction for forming a disulfide bond at the same time as deprotection.
Further, a 3-nitro-2-pyridylsulfenyl group (Npys group) is used as a protecting group for the thiol group of cysteine,
It has been reported that an intermolecular disulfide bond can be easily formed by reacting with a free SH group [C
hem. Lett. , 921 (1982)].

【0003】[0003]

【発明が解決しようとする課題】しかし、これらシスチ
ン含有ペプチドの合成方法は、まず規定の保護ペプチド
シーケンスを合成したのちに、S−S結合を形成させる
方法であり、しかも保護ペプチドシーケンスを合成した
あとのS−S結合形成方法のみの改善であり、保護ペプ
チドシーケンスの収率、純度の向上や分子間ジスルフィ
ド結合の副生を抑制する解決策にはなっていない。従っ
て、これら従来の合成方法では、保護ペプチドシーケン
スの収率、純度を満足なレベルまで高めることが困難で
あり、その上、S−S結合形成の反応条件の設定が難し
く、分子間S−S結合の形成を抑制できないので、この
工程における更なる収率、純度の低下を避けられない問
題があった。
However, the method of synthesizing these cystine-containing peptides is a method of first synthesizing a prescribed protected peptide sequence and then forming an S--S bond, and further synthesizing the protected peptide sequence. This is an improvement only in the subsequent S-S bond formation method, and is not a solution for improving the yield and purity of the protected peptide sequence or suppressing the by-product of intermolecular disulfide bond. Therefore, in these conventional synthetic methods, it is difficult to increase the yield and purity of the protected peptide sequence to a satisfactory level, and it is also difficult to set the reaction conditions for S—S bond formation, resulting in intermolecular S—S. Since the bond formation cannot be suppressed, there is a problem that further reduction in yield and purity in this step cannot be avoided.

【0004】[0004]

【課題を解決するための手段】本発明者らは、通常のペ
プチド合成に使用する縮合剤を用い、SH基をNpys
基で保護したシステインまたはシステイン含有保護ペプ
チドと遊離のSH基を有するシステインまたはシステイ
ン含有保護ペプチドを用いて反応させると一段反応で、
S−S結合形成反応とペプチド結合形成反応が進行し、
特定の位置にS−S結合を形成し、高純度のシスチン含
有保護ペプチドが得られることを見出し、さらに詳細な
検討を加えた結果、本発明を完成させるに到った。
Means for Solving the Problems The present inventors have used a condensing agent used for ordinary peptide synthesis to convert the SH group to Npys.
When a cysteine or a cysteine-containing protected peptide protected with a group is reacted with a cysteine or a cysteine-containing protected peptide having a free SH group, a one-step reaction,
The S—S bond forming reaction and the peptide bond forming reaction proceed,
It was found that a highly purified cystine-containing protected peptide can be obtained by forming an S—S bond at a specific position, and as a result of further detailed studies, the present invention has been completed.

【0005】すなわち、本発明をさらに詳細に説明する
と、下記一般式(II)または(V)で示されるシステイ
ン含有保護ペプチドの例えばジメチルホルムアミド(D
MF)溶液に、下記一般式(III)または(VI)で示され
るシステイン含有保護ペプチドを加え、まずS−S結合
を形成させ、さらにペプチド縮合剤、例えばジフェニル
ホスホリルアジド(DPPA)/トリエチルアミン(T
EA)を加えて反応させ、一段反応で下記一般式(IV)
で示されるシスチン含有保護ペプチドを得、さらにアミ
ノ保護基(X)、カルボキシル保護基(Y)、及び各種
アミノ酸の側鎖保護基を常法で脱離することにより、下
記一般式(I)で示されるシスチン含有ペプチドを合成
する方法である。本発明において、Xは通常のペプチド
合成に用いられるアミノ保護基であり、Yはカルボキシ
ル保護基である。また、A、B、C及びDは各種保護ア
ミノ酸残基または保護ペプチドである。
More specifically, the present invention will be described in more detail. For example, a cysteine-containing protected peptide represented by the following general formula (II) or (V), such as dimethylformamide (D
To the MF) solution, a cysteine-containing protected peptide represented by the following general formula (III) or (VI) is added to first form an S-S bond, and a peptide condensing agent such as diphenylphosphoryl azide (DPPA) / triethylamine (T
EA) is added and the reaction is carried out.
A cystine-containing protected peptide represented by the formula (1) is obtained, and the amino protecting group (X), the carboxyl protecting group (Y), and the side chain protecting group of various amino acids are eliminated by a conventional method to give A method for synthesizing the indicated cystine-containing peptide. In the present invention, X is an amino-protecting group used in ordinary peptide synthesis, and Y is a carboxyl-protecting group. A, B, C and D are various protected amino acid residues or protected peptides.

【0006】[0006]

【化3】 [Chemical 3]

【0007】[0007]

【化4】 [Chemical 4]

【0008】〔式(II)中、Xはアミノ保護基、A及び
Bは各種保護アミノ酸残基または保護ペプチド、n及び
mは各々0または1の整数を示す。式(III) 中、C及び
Dは各種保護アミノ酸残基または保護ペプチド、Yはカ
ルボキシル保護基、p及びqは各々0または1の整数を
示す。式(IV)中、X、Y、A、B、C、D、n、m、
p及びqはいづれも上記と同様の意味を有する。式
(I)中、A’、B’、C’及びD’は無保護あるいは
部分的に保護されている各種アミノ酸残基またはペプチ
ドを示し、n、m、p及びqは上記と同様の意味を有す
る。式(V)中、X、A、B、n及びmは上記と同様の
意味を有する。式(VI)中、Y、C、D、p及びqは上
記と同様の意味を有する。Cysは、システイン残基を
示す。〕
[In the formula (II), X represents an amino protecting group, A and B represent various protected amino acid residues or protected peptides, and n and m each represent an integer of 0 or 1. In formula (III), C and D represent various protected amino acid residues or protected peptides, Y represents a carboxyl protecting group, and p and q each represent an integer of 0 or 1. In the formula (IV), X, Y, A, B, C, D, n, m,
Both p and q have the same meanings as above. In formula (I), A ', B', C'and D'represent various unprotected or partially protected amino acid residues or peptides, and n, m, p and q have the same meanings as above. Have. In the formula (V), X, A, B, n and m have the same meanings as described above. In formula (VI), Y, C, D, p and q have the same meanings as described above. Cys indicates a cysteine residue. ]

【0009】本発明のシスチン含有ペプチド製造方法の
一例として、1位と4位にシステインを含有するテトラ
ペプチドの合成方法について以下に述べる。テトラペプ
チドの合成方法のうち、ペプチド鎖を遂時延長し、1位
のシステインのカルボキシル基と2位のアミノ酸のアミ
ノ基とで縮合反応を行なう1+3縮合法と、2位のアミ
ノ酸のカルボキシル基と3位のアミノ酸のアミノ基とで
縮合反応を行なう2+2縮合法について、それらの合成
スキームを図1と図2に示す。
As an example of the method for producing a cystine-containing peptide of the present invention, a method for synthesizing a tetrapeptide containing cysteine at the 1-position and 4-position will be described below. Of the tetrapeptide synthesis methods, the peptide chain is temporarily extended, and the 1 + 3 condensation method in which the carboxyl group of the cysteine at the 1-position and the amino group of the amino acid at the 2-position are subjected to a condensation reaction, and the carboxyl group of the amino acid at the 2-position The synthetic schemes of the 2 + 2 condensation method in which the condensation reaction is carried out with the amino group of the amino acid at the 3-position are shown in FIGS. 1 and 2.

【0010】まず、1+3縮合法(図1)におけるBo
c−A−B−Cys(Npys)−OBzl(Boc
は、t−ブトキシカルボニル基、Bzlは、ベンジル基
を表し,A及びBは前記と同様の意味を表す)の合成法
として、段階的な縮合にはジメチルホスフィノチオイル
クロライド(Mpt−Cl)を用いる混合酸無水物法
を、脱Boc化にはトリフルオロ酢酸(TFA)を用
い、また、Npys基はメトキシベンジル(MBzl)
基をはじめとするチオール保護基と交換が可能であるこ
とから、Boc−A−B−Cys(MBzl)−OBz
lにNpys−Clを反応させて合成した。TFA・H
−A−B−Cys(Npys)−OBzlは、Boc−
A−B−Cys(Npys)−OBzlをアニソール、
2−メルカプトエタノール、ジメチルスルフィド系でT
FAと処理することにより合成することができる。図1
中、MA(Mpt−Cl)はジメチルホスフィノチオイ
ルクロライドの混合酸無水物を表し、TFA・MeSM
eはトリフルオロ酢酸ジメチルスルフィドを表す。1+
3縮合法(図1)による一般式(IV)で示される化合物
は、Boc−Cys−OHとTFA・H−A−B−Cy
s(Npys)−OBzlを反応させることにより得ら
れる。縮合剤としては通常のペプチド合成に用いられる
縮合剤ジシクロヘキシルカルボジイミド(DCC)、又
は水溶性カルボジイミド(WSC)と1−ヒドロキシベ
ンゾトリアゾール(HOBt)あるいはN−ヒドロキシ
スクシンイミド(ONSu)の組み合せや混合酸無水物
を経由するリン酸系縮合剤ジフェニルホスホリルアジド
(DPPA)またはジメチルホスフィノチオイルアジド
(MPTA)と塩基の組合せが使用できる。MPTA法
に用いる塩基としては、トリエチルアミン(TEA)ま
たはN−メチルモルホリン(NMM)などを用いること
ができる。WSC/HOBt系では、反応は通常氷冷
下、1〜3時間攪拌後、室温でさらに1〜30時間反応
させる。MPTA法では、通常氷冷下24時間処理する
ことにより反応が完結する。
First, Bo in the 1 + 3 condensation method (FIG. 1)
c-A-B-Cys (Npys) -OBzl (Boc
Is a t-butoxycarbonyl group, Bzl is a benzyl group, and A and B have the same meanings as described above. For stepwise condensation, dimethylphosphinothioyl chloride (Mpt-Cl) is used. Using a mixed acid anhydride method, trifluoroacetic acid (TFA) was used for de-Boc, and the Npys group was methoxybenzyl (MBzl).
Since it can be exchanged with a thiol protecting group including a group, Boc-AB-Cys (MBzl) -OBz
It was synthesized by reacting 1 with Npys-Cl. TFA / H
-AB-Cys (Npys) -OBzl is Boc-
A-B-Cys (Npys) -OBzl is anisole,
2-mercaptoethanol, dimethyl sulfide based T
It can be synthesized by treating with FA. Figure 1
In the above, MA (Mpt-Cl) represents a mixed acid anhydride of dimethylphosphinothioyl chloride, and TFA / MeSM.
e represents trifluoroacetic acid dimethyl sulfide. 1+
Compounds represented by the general formula (IV) according to the 3 condensation method (FIG. 1) are Boc-Cys-OH and TFA.H-A-B-Cy.
It is obtained by reacting s (Npys) -OBzl. As the condensing agent, a condensing agent commonly used in peptide synthesis such as dicyclohexylcarbodiimide (DCC), or a combination of water-soluble carbodiimide (WSC) and 1-hydroxybenzotriazole (HOBt) or N-hydroxysuccinimide (ONSu), or a mixed acid anhydride is used. A combination of a phosphoric acid-based condensing agent diphenylphosphoryl azide (DPPA) or dimethylphosphinothioyl azide (MPTA) and a base can be used. As the base used in the MPTA method, triethylamine (TEA) or N-methylmorpholine (NMM) can be used. In the WSC / HOBt system, the reaction is usually stirred under ice cooling for 1 to 3 hours, and then allowed to react at room temperature for 1 to 30 hours. In the MPTA method, the reaction is usually completed by treatment for 24 hours under ice cooling.

【0011】2+2縮合法(図2)におけるTFA・H
−B−Cys(Npys)−OBzlの合成は、Boc
−アミノ酸と、TFA・H−Cys(Npys)−OB
zlを、Mpt−Clを用いる混合酸無水物法により行
うことができる。2+2縮合法(図2)におけるBoc
−Cys−A−OHの合成は、Boc−Cys(Npy
s)−OHとアミノ酸ベンジルエステルをMpt−Cl
を用いる混合酸無水物法により得られるBoc−Cys
(Npys)−A−OBzlを水、あるいは2−メルカ
プトエタノール存在下、トリ−n−ブチルホスフィン
(n−Bu3 P)と氷冷下、1時間処理することにより
Npys基を除去し、これを単離することなしにメタノ
ール−水系で水酸化ナトリウムと通常室温、1〜10時
間反応させることによってBzl基を除去する方法で行
うことができる。縮合剤としては通常のペプチド合成に
用いられる縮合剤DCCまたはWSCとHOBtあるい
はONSuの組み合せや混合酸無水物を経由するリン酸
系縮合剤DPPAまたはMPTAと塩基の組み合せを使
用することができる。2+2縮合法(図2)による一般
式(IV)で示される化合物は、Boc−Cys−A−O
HとTFA・H−B−Cys(Npys)−OBzlを
反応させることによって得られる。縮合剤としては1+
3縮合法で用いられる縮合剤はすべて使用することがで
きる。WSC/HOBt系では、反応は通常氷冷下、1
〜3時間攪拌後、室温でさらに1〜30時間反応させ
る。MPTA法では、通常氷冷下、24時間処理するこ
とによって反応が完結する。縮合剤としてMPTAを用
いて塩基にトリエチルアミンを用いた時に収率が最も良
い。
TFA · H in the 2 + 2 condensation method (FIG. 2)
The synthesis of -B-Cys (Npys) -OBzl is Boc
-Amino acid and TFA.H-Cys (Npys) -OB
Zl can be performed by the mixed anhydride method with Mpt-Cl. Boc in 2 + 2 condensation method (Fig. 2)
The synthesis of -Cys-A-OH is carried out using Boc-Cys (Npy
s) -OH and amino acid benzyl ester with Mpt-Cl
Boc-Cys obtained by the mixed acid anhydride method using
(Npys) -A-OBzl was treated with tri-n-butylphosphine (n-Bu 3 P) in the presence of water or 2-mercaptoethanol under ice cooling for 1 hour to remove the Npys group. It can be carried out by a method of removing the Bzl group by reacting with sodium hydroxide in a methanol-water system at room temperature for 1 to 10 hours without isolation. As the condensing agent, a combination of a condensing agent DCC or WSC and HOBt or ONSu used in ordinary peptide synthesis, or a phosphoric acid-based condensing agent DPPA or MPTA via a mixed acid anhydride and a base can be used. The compound represented by the general formula (IV) according to the 2 + 2 condensation method (FIG. 2) is Boc-Cys-A-O.
It is obtained by reacting H with TFA.H-B-Cys (Npys) -OBzl. 1+ as a condensing agent
All condensing agents used in the 3 condensation method can be used. In the WSC / HOBt system, the reaction is usually under ice cooling, 1
After stirring for ~ 3 hours, the reaction is continued at room temperature for 1-30 hours. In the MPTA method, the reaction is usually completed by treatment under ice cooling for 24 hours. The best yield is obtained when MPTA is used as the condensing agent and triethylamine is used as the base.

【0012】このようにして得られたシスチン含有保護
ペプチド(IV)のアミノ保護基(X)、カルボキシル保
護基(Y)および各種アミノ酸の側鎖保護基を常法によ
り脱離することによって、特定の位置にS−S結合を形
成させ、目的とする一般式(I)で示されるシスチン含
有ペプチド(I)を高純度で得ることができる。
The amino-protecting group (X), carboxyl-protecting group (Y) and side chain-protecting groups of various amino acids of the cystine-containing protected peptide (IV) thus obtained are identified by a conventional method to identify The desired cystine-containing peptide (I) represented by the general formula (I) can be obtained in high purity by forming an S—S bond at the position.

【0013】[0013]

【発明の効果】従来のシスチン含有ペプチドの合成方法
では、保護ペプチドシーケンスの収率、純度を満足なレ
ベルまで高めることが困難であり、その上、S−S結合
形成の反応条件の設定が難しく、分子間S−S結合の形
成を抑制できないので、この工程における更なる収率、
純度の低下を避けられない問題があった。これに対し、
本発明はまずジスルフィド結合を形成させ、次いでペプ
チド結合をしかも一段反応で形成させる方法のため、従
来では不可能であったフラグメント縮合法を活用し、特
定の位置にS−S結合を形成させ、シスチン含有ペプチ
ドを簡便に、高純度で合成することができる新規にして
効率的な、かつフラグメント選択幅の広い製造方法であ
る。
According to the conventional method for synthesizing a cystine-containing peptide, it is difficult to increase the yield and purity of the protected peptide sequence to a satisfactory level, and moreover, it is difficult to set the reaction conditions for SS bond formation. , It is not possible to suppress the formation of intermolecular S—S bonds, so further yield in this step,
There was a problem of inevitable deterioration of purity. In contrast,
Since the present invention first forms a disulfide bond and then a peptide bond in a single-step reaction, the fragment condensation method, which has been impossible in the past, is utilized to form an S—S bond at a specific position. It is a novel and efficient production method capable of synthesizing a cystine-containing peptide with high purity in a simple manner and with a wide range of fragment selection.

【0014】[0014]

【実施例】以下、本発明をさらに詳しく説明するために
実施例を示すが、これは本発明を限定するものではな
い。 〔実施例1〕:合成例1 Boc−Cys(Npys)−OH 37.5mg
(0.1ミリモル)とHCl・H−Cys−OCH3
7.2mg(0.1ミリモル)をDMF1mlに溶解
し、氷冷下にNMM0.011ml加え、室温で2時間
反応し、さらに、DMF19ml、Mpt−N3 27
mg、NMM0.011mlを加えて、氷冷下、24時
間反応させた。反応液を濃縮し、残渣に酢酸エチルを加
え、有機層を精製水で洗浄し濃縮後、HPLC分取によ
り、下記目的物 18.1mgを得た。(収率53.9
%) TLC:Rf=0.6(クロロホルム:メタノール=2
0:1) MS(FAB): m/z 337(M+H)+
EXAMPLES Examples will be shown below for illustrating the present invention in more detail, but they do not limit the present invention. [Example 1]: Synthesis example 1 Boc-Cys (Npys) -OH 37.5 mg
(0.1 mmol) and HCl.H-Cys-OCH 3 1
7.2 mg (0.1 mmol) was dissolved in 1 ml of DMF, 0.011 ml of NMM was added under ice cooling, and the mixture was reacted at room temperature for 2 hours, and further, 19 ml of DMF and 27 Mpt-N 3 27.
mg and 0.011 ml of NMM were added, and the mixture was reacted for 24 hours under ice cooling. The reaction solution was concentrated, ethyl acetate was added to the residue, the organic layer was washed with purified water, concentrated, and then collected by HPLC to obtain 18.1 mg of the following target product. (Yield 53.9
%) TLC: Rf = 0.6 (chloroform: methanol = 2)
0: 1) MS (FAB): m / z 337 (M + H) +

【0015】[0015]

【化5】 [Chemical 5]

【0016】〔実施例2〕:合成例2(1+3縮合法) Boc−Gly−Phe−Cys(Npys)−OBz
l 67.0mg(0.1ミリモル)を塩化メチレン
0.39mlに溶解し、氷冷下TFA 0.39mlを
添加して室温で30分間反応し濃縮後、DMF 1ml
に溶解した。この溶液を氷冷攪拌下にTEA 0.01
4ml、Boc−Cys−OH 22.1mg(0.1
ミリモル)を加え、室温で2時間反応し、さらにDMF
19ml、Mpt−N3 27.0mg、TEA 0.
014mlを氷冷下加えて24時間反応させた。反応溶
液を濃縮し残渣に酢酸エチルを加え、有機層を精製水で
洗浄し濃縮後、HPLC分取を行い、下記目的物46.
2mgを得た。(収率74.9%) HPLC含量:99.4% MS(FAB):m/z 617 (M+H)+
Example 2 Synthesis Example 2 (1 + 3 Condensation Method) Boc-Gly-Phe-Cys (Npys) -OBz
67.0 mg (0.1 mmol) of 1 was dissolved in 0.39 ml of methylene chloride, 0.39 ml of TFA was added under ice cooling, the mixture was reacted at room temperature for 30 minutes, concentrated, and then 1 ml of DMF.
Dissolved in. This solution was mixed with TEA 0.01 while stirring with ice cooling.
4 ml, Boc-Cys-OH 22.1 mg (0.1
Mmol), and reacted at room temperature for 2 hours.
19ml, Mpt-N 3 27.0mg, TEA 0.
014 ml was added under ice cooling and reacted for 24 hours. The reaction solution was concentrated, ethyl acetate was added to the residue, the organic layer was washed with purified water, concentrated, and then subjected to HPLC fractionation.
2 mg was obtained. (Yield 74.9%) HPLC content: 99.4% MS (FAB): m / z 617 (M + H) +

【0017】[0017]

【化6】 [Chemical 6]

【0018】〔実施例3〜6〕:合成例3〜6 合成例2におけるグリシン及びフェニルアラニンを下記
表1のA及びBに変えたほかは、合成例2と同様に表1
に示す化合物を得た。
[Examples 3 to 6]: Synthetic Examples 3 to 6 Table 1 is the same as Synthetic Example 2 except that glycine and phenylalanine in Synthetic Example 2 are replaced with A and B in Table 1 below.
The compound shown in was obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】〔実施例7〜11〕:合成例7〜11 実施例2と同様な方法で縮合剤として、Mpt−N3
TEAのかわりに、HOBt 20.3mg、WSC・
HCl 23.0mg、TEA 0.017mlを氷冷
下加えて3時間、室温21時間反応させて、下記表2に
示す化合物を得た。
[Examples 7 to 11]: Synthesis Examples 7 to 11 Mpt-N 3 , as a condensing agent, was prepared in the same manner as in Example 2.
Instead of TEA, HOBt 20.3mg, WSC ・
HCl 23.0 mg and TEA 0.017 ml were added under ice cooling and reacted for 3 hours and room temperature for 21 hours to obtain the compounds shown in Table 2 below.

【0021】[0021]

【表2】 [Table 2]

【0022】〔実施例12〕:合成例12(2+2縮合
法) Boc−Phe−Cys(Npys)−OBzl 6
1.3mg(0.1ミリモル)を塩化メチレン0.39
mlに溶解し、氷冷下TFA 0.39mlを添加し3
0分間攪拌後、室温で30分間反応し濃縮後、DMF
1mlに溶解した。この溶液を氷冷攪拌下にTEA
0.014ml、Boc−Cys−Gly−OH 2
7.8mg(0.1ミリモル)を加え、室温で2時間反
応し、さらにDMF 19ml、Mpt−N3 27.0
mg、TEA 0.014mlを氷冷下加えて24時間
反応させた。反応溶液を濃縮し残渣に酢酸エチルを加
え、有機層を精製水で洗浄し濃縮後、HPLC分取を行
い、下記目的物50.4mgを得た。(収率81.8
%) HPLC含量:99.6% MS(FAB):m/z 617 (M+H)+
Example 12: Synthesis example 12 (2 + 2 condensation method) Boc-Phe-Cys (Npys) -OBzl 6
1.3 mg (0.1 mmol) of methylene chloride 0.39
Dissolve in 3 ml, add 0.39 ml of TFA under ice cooling, and add 3
After stirring for 0 minutes, react at room temperature for 30 minutes, concentrate, and then DMF
Dissolved in 1 ml. This solution was stirred under ice-cooling with TEA.
0.014 ml, Boc-Cys-Gly-OH 2
7.8 mg (0.1 mmol) was added, and the mixture was reacted at room temperature for 2 hours, further DMF 19 ml, Mpt-N 3 27.0.
mg and TEA 0.014 ml were added under ice-cooling and reacted for 24 hours. The reaction solution was concentrated, ethyl acetate was added to the residue, the organic layer was washed with purified water, concentrated, and then subjected to HPLC fractionation to obtain 50.4 mg of the target product below. (Yield 81.8
%) HPLC content: 99.6% MS (FAB): m / z 617 (M + H) +

【0023】[0023]

【化7】 [Chemical 7]

【0024】〔実施例13〜16〕:合成例13〜16 合成例12におけるグリシン及びフェニルアラニンを、
下記表3のA及びBに代えたほかは、合成例12と同様
にして下記表3に示す化合物を得た。
Examples 13 to 16: Synthesis Examples 13 to 16 Glycine and phenylalanine in Synthesis Example 12 were replaced by
Compounds shown in Table 3 below were obtained in the same manner as in Synthesis Example 12 except that A and B in Table 3 below were substituted.

【0025】[0025]

【表3】 [Table 3]

【0026】〔実施例17〜21〕:合成例17〜21 実施例12と同様な方法で縮合剤として、Mpt−
3 、TEAのかわりに、HOBt 20.3mg、W
SC・HCl 23.0mg、TEA 0.017ml
を氷冷下加えて3時間、室温21時間反応させて、下記
表4に示す化合物を得た。
[Examples 17 to 21]: Synthesis Examples 17 to 21 Mpt- was used as a condensing agent in the same manner as in Example 12.
Instead of N 3 and TEA, HOBt 20.3mg, W
SC ・ HCl 23.0mg, TEA 0.017ml
Was added under ice cooling and reacted for 3 hours and room temperature for 21 hours to obtain the compounds shown in Table 4 below.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【図面の簡単な説明】[Brief description of drawings]

【図1】1+3縮合法の合成スキームである。FIG. 1 is a synthetic scheme of the 1 + 3 condensation method.

【図2】2+2縮合法の合成スキームである。FIG. 2 is a synthetic scheme of the 2 + 2 condensation method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(II)で示されるシステイン
含有保護ペプチドと、下記一般式(III) で示される3−
ニトロ−2−ピリジルスルフェニル基で保護されたシス
テイン含有保護ペプチドとから、まずS−S結合を、次
いでペプチド結合を形成させて下記一般式(IV)で示さ
れるシスチン含有保護ペプチドを得、これを常法で脱保
護することを特徴とする下記一般式(I)で示されるシ
スチン含有ペプチドの製造方法。 【化1】 〔式(II)中、Xはアミノ保護基、A及びBは各種保護
アミノ酸残基または保護ペプチド、n及びmは各々0ま
たは1の整数を示す。式(III) 中、C及びDは各種保護
アミノ酸残基または保護ペプチド、Yはカルボキシル保
護基、p及びqは各々0または1の整数を示し、Npy
sは3−ニトロ−2−ピリジルスルフェニル基を示す。
式(IV)中、X、Y、A、B、C、D、n、m、p及び
qはいづれも前記の意味を有する。式(I)中、A’、
B’、C’及びD’は無保護あるいは部分的に保護され
た各種アミノ酸残基またはペプチドを示し、n、m、p
及びqは前記の意味を有する。Cysはシステイン残基
を示す。〕
1. A cysteine-containing protected peptide represented by the following general formula (II) and a 3-cysteine represented by the following general formula (III):
From the cysteine-containing protected peptide protected with a nitro-2-pyridylsulfenyl group, first, an S—S bond and then a peptide bond are formed to obtain a cystine-containing protected peptide represented by the following general formula (IV). The method for producing a cystine-containing peptide represented by the following general formula (I), which comprises deprotecting [Chemical 1] [In the formula (II), X represents an amino protecting group, A and B represent various protected amino acid residues or protected peptides, and n and m each represent an integer of 0 or 1. In formula (III), C and D are various protected amino acid residues or protected peptides, Y is a carboxyl protecting group, p and q each represent an integer of 0 or 1, and Npy
s represents a 3-nitro-2-pyridylsulfenyl group.
In the formula (IV), X, Y, A, B, C, D, n, m, p and q all have the above meanings. In the formula (I), A ′,
B ', C'and D'represent various unprotected or partially protected amino acid residues or peptides, n, m, p
And q have the meanings given above. Cys represents a cysteine residue. ]
【請求項2】 一般式(II)が下記一般式(V)で示さ
れる、3−ニトロ−2−ピリジルスルフェニル基で保護
されたシステイン含有保護ペプチドであり、一般式(II
I)が下記一般式(VI)で示されるシステイン含有保護
ペプチドであることを特徴とする請求項1記載の一般式
(I)で示されるシスチン含有ペプチドの製造方法。 【化2】 〔式(V)中、Xはアミノ保護基,A及びBは各種保護
アミノ酸残基または保護ペプチド、n及びmは各々0ま
たは1の整数を示し、Npysは3−ニトロ−2−ピリ
ジルスルフェニル基を示す。式(VI)中、C及びDは各
種保護アミノ酸残基または保護ペプチド、Yはカルボキ
シル保護基、p及びqは各々0または1の整数を示す。
Cysはシステイン残基を示す。〕
2. A cysteine-containing protected peptide protected by a 3-nitro-2-pyridylsulfenyl group, represented by the following general formula (V):
The method for producing a cystine-containing peptide represented by the general formula (I) according to claim 1, wherein I) is a cysteine-containing protected peptide represented by the following general formula (VI). [Chemical 2] [In the formula (V), X is an amino protecting group, A and B are various protected amino acid residues or protected peptides, n and m are each an integer of 0 or 1, and Npys is 3-nitro-2-pyridylsulfenyl. Indicates a group. In formula (VI), C and D represent various protected amino acid residues or protected peptides, Y represents a carboxyl protecting group, and p and q each represent an integer of 0 or 1.
Cys represents a cysteine residue. ]
JP4257617A 1992-09-02 1992-09-02 Production of cysteine-containing peptide Pending JPH0680691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4257617A JPH0680691A (en) 1992-09-02 1992-09-02 Production of cysteine-containing peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4257617A JPH0680691A (en) 1992-09-02 1992-09-02 Production of cysteine-containing peptide

Publications (1)

Publication Number Publication Date
JPH0680691A true JPH0680691A (en) 1994-03-22

Family

ID=17308749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4257617A Pending JPH0680691A (en) 1992-09-02 1992-09-02 Production of cysteine-containing peptide

Country Status (1)

Country Link
JP (1) JPH0680691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951283A (en) * 1997-07-17 1999-09-14 Kabushiki Kaisha Shinkawa Substrate transporting device
US10829512B2 (en) 2016-05-20 2020-11-10 Tokyo University Of Pharmacy & Life Sciences Selective disulfidation reagent using nitrogen-containing compound and method for producing disulfide-containing compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951283A (en) * 1997-07-17 1999-09-14 Kabushiki Kaisha Shinkawa Substrate transporting device
US10829512B2 (en) 2016-05-20 2020-11-10 Tokyo University Of Pharmacy & Life Sciences Selective disulfidation reagent using nitrogen-containing compound and method for producing disulfide-containing compound

Similar Documents

Publication Publication Date Title
Shao et al. Unprotected peptides as building blocks for the synthesis of peptide dendrimers with oxime, hydrazone, and thiazolidine linkages
JP2513775B2 (en) Support for solid-phase peptide synthesis
US8546530B2 (en) Process for the manufacture of persilylated peptides
CN108779150B (en) Preparation method of degarelix and intermediate thereof
WO2005087794A1 (en) Process for octreotide synthesis
JPS611700A (en) Manufacture of pentapeptide active to immunological system and intermediate therefor
JPS58146538A (en) Manufacture of n-monoacylated diem-diamino derivative
JPS6317839B2 (en)
JPS5973574A (en) Cyclic dipeptide
JP5445456B2 (en) Method for removing dibenzofulvene
JPH04226954A (en) New coupling agent for peptide synthesis
EP1196429B1 (en) Process for the deprotection of protected thiols
FR2557114A1 (en) NOVEL DERIVATIVES OF GONADOLIBERIN, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAME
JPH0680691A (en) Production of cysteine-containing peptide
JPH08311095A (en) Synthesizing method for peptide
KR100203548B1 (en) Process for the production of peptides by solid phase synthesis
JP4272529B2 (en) Intermediate for synthesis of LHRH antagonist, method for producing the same, and method for producing LHRH antagonist
JP2002539137A (en) Method for preparing cyclo (Asp-DPhe-NMeVal-Arg-Gly)
US4444682A (en) Method of sulfation
JPH11130796A (en) Production of peptide derivative, intermediate to produce peptide derivative, and production of the intermediate
JPH07316193A (en) Peptide derivative and use thereof
JP2748897B2 (en) Novel arginine derivative and method for producing peptide using the same
JPH06256385A (en) Method for synthesizing cyclic peptide
JPH06336496A (en) Cyclic hexapeptide, its production and production of cyclic peptide
JPS5927858A (en) Preparation of polypeptide