JPH0616582A - Production of aryl hydroxide - Google Patents

Production of aryl hydroxide

Info

Publication number
JPH0616582A
JPH0616582A JP5016178A JP1617893A JPH0616582A JP H0616582 A JPH0616582 A JP H0616582A JP 5016178 A JP5016178 A JP 5016178A JP 1617893 A JP1617893 A JP 1617893A JP H0616582 A JPH0616582 A JP H0616582A
Authority
JP
Japan
Prior art keywords
catalyst
chlorobenzene
hours
aryl
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5016178A
Other languages
Japanese (ja)
Other versions
JPH07110824B2 (en
Inventor
Hiroshi Ishida
浩 石田
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5016178A priority Critical patent/JPH07110824B2/en
Publication of JPH0616582A publication Critical patent/JPH0616582A/en
Publication of JPH07110824B2 publication Critical patent/JPH07110824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a phenolic compound useful as a raw material for various polymers in high yield. CONSTITUTION:An aryl hydroxide is produced by the vapor-phase hydrolysis of an aryl halide using a catalyst having the following characteristics. (1) The catalyst contains a metal of the group IB of the periodic table and (2) the catalyst is a crystalline aluminosilicate AZ-1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種ポリマー原料とし
て有用なフェノール類の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing phenols useful as various polymer raw materials.

【0002】[0002]

【従来の技術】アリールハロゲン化物を水の存在下、気
相において加水分解してアリール水酸化物に転化する方
法は、古くからフェノール合成に於けるラシヒ法の後段
反応として知られている。このアリールハロゲン化物の
加水分解の触媒としては、銅を含むリン酸カルシウムア
パタイト(米国特許第3148222号明細書、米国特
許第2988573号明細書)、銅を含むリン酸ジルコ
ニウム(特公昭51ー6108号公報)、希土類金属リ
ン酸塩及び銅を含んだ希土類金属リン酸塩(特開昭47
ー27936号公報)等が知られている。
2. Description of the Related Art A method of hydrolyzing an aryl halide in the gas phase in the presence of water to convert it into an aryl hydroxide has long been known as a post-reaction of the Raschig method in phenol synthesis. As a catalyst for the hydrolysis of the aryl halide, calcium phosphate apatite containing copper (US Pat. No. 3,148,222, US Pat. No. 2,988,573) and zirconium phosphate containing copper (Japanese Patent Publication No. 51-6108). , Rare earth metal phosphates and rare earth metal phosphates containing copper
No. 27936) is known.

【0003】これまでの触媒は、活性が低いため高転化
率を得るためには、500℃以上の高温で反応をさせる
か、叉は非常に低い空間速度で反応させる必要があっ
た。さらに、これらの触媒は、反応中の活性低下が著し
く、触媒の再生も困難であった。
Since the activity of conventional catalysts is low, it has been necessary to react at a high temperature of 500 ° C. or higher or at a very low space velocity in order to obtain a high conversion rate. Furthermore, the activity of these catalysts was significantly reduced during the reaction, and it was difficult to regenerate the catalysts.

【0004】[0004]

【発明が解決しようとする課題】本発明は、高活性でか
つ活性低下が少なく、再生の容易な触媒を用いるアリー
ル水酸化物の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing an aryl hydroxide which uses a catalyst which is highly active, has a small decrease in activity, and is easily regenerated.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意検討した結果、周期律表上のIB族の
金属を含有する結晶性アルミノシリケートAZ−1が高
活性かつ活性低下が少なく、触媒再生が容易であること
を見い出し、本発明を完成するに至った。すなわち、本
発明は以下のとおりである。 1.アリールハロゲン化物を水の存在下、気相において
加水分解してアリール水酸化物に転化する際に、触媒と
して周期律表IB族の金属を含有する結晶性アルミノシ
リケートAZ−1を用いることを特徴とするアリール水
酸化物の製造方法。 2.周期律表IB族の金属が、銅であることを特徴とす
る上記1に記載のアリール水酸化物の製造方法。 本発明に用いられる結晶性アルミノシリケートとは、S
i O4 とAlO4 とが酸素原子を介して交さ結合してい
る剛性の三次元構造を有する無機結晶体である。この中
のアルミニウム原子とケイ素原子の和と酸素原子との比
は、1:2であり、またアルミニウムを含有する四面体
の電子価は、結晶内に種々のカチオンを含有する事によ
って平衡が保たれている。この結晶性アルミノシリケー
トはこれまでに多くのものが知られているが、本発明に
用いられるのは結晶性アルミノシリケートAZ−1であ
る。このAZ−1とは、特開昭59−128210号公
報及び米国特許第3832449号明細書に記載されて
いる本研究者らが開発した新規な結晶性アルミノシリケ
ートである。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that crystalline aluminosilicate AZ-1 containing a metal of Group IB on the periodic table has high activity and activity. The inventors have found that the reduction is small and catalyst regeneration is easy, and completed the present invention. That is, the present invention is as follows. 1. A crystalline aluminosilicate AZ-1 containing a metal of Group IB of the periodic table is used as a catalyst when an aryl halide is hydrolyzed in the gas phase in the presence of water to be converted into an aryl hydroxide. And a method for producing an aryl hydroxide. 2. The method for producing an aryl hydroxide according to the above 1, wherein the metal of Group IB of the periodic table is copper. The crystalline aluminosilicate used in the present invention is S
It is an inorganic crystal body having a rigid three-dimensional structure in which i O 4 and AlO 4 are cross-bonded through oxygen atoms. The ratio of the sum of aluminum atoms and silicon atoms to oxygen atoms in this is 1: 2, and the electron valence of the tetrahedron containing aluminum is balanced by the inclusion of various cations in the crystal. Is dripping Although many crystalline aluminosilicates are known so far, the crystalline aluminosilicate AZ-1 is used in the present invention. This AZ-1 is a novel crystalline aluminosilicate developed by the present inventors, which is described in JP-A-59-128210 and US Pat. No. 3,832,449.

【0006】本発明に用いられる結晶性アルミノシリケ
ートAZ−1は、周期律表のIB族の金属を含有する必
要がある。周期律表上のIB族とは、銅、銀、金である
が、これらの中で好ましいのは銅、銀であり、特に好ま
しいのは銅である。結晶性アルミノシリケートAZ−1
中に含まれるこれらの金属の状態は、カチオン、酸化
物、ハロゲン化物等の塩、還元金属のいずれの状態でも
構わないが、好ましいのはカチオンの状態である。
The crystalline aluminosilicate AZ-1 used in the present invention must contain a metal of Group IB of the periodic table. Group IB on the periodic table is copper, silver and gold, of which copper and silver are preferable, and copper is particularly preferable. Crystalline aluminosilicate AZ-1
The state of these metals contained therein may be any of the states of cations, oxides, salts such as halides, and reduced metals, but the state of cations is preferred.

【0007】これらの金属の含有量は、特に制限はない
が、あまり少ないと活性が低く、多すぎると選択性が低
くなるため、通常は結晶性アルミノシリケートAZ−1
に対して0.005〜50wt%、好ましくは0.01
〜20wt%、さらに好ましくは0.1〜10wt%で
ある。結晶性アルミノシリケートAZ−1に、これらの
金属を含有させる方法としては、通常のイオン交換法、
含浸法等が用いられる。
The content of these metals is not particularly limited, but if it is too small, the activity is low, and if it is too large, the selectivity is low. Therefore, crystalline aluminosilicate AZ-1 is usually used.
To 0.005 to 50 wt%, preferably 0.01
˜20 wt%, and more preferably 0.1 to 10 wt%. As a method of incorporating these metals into the crystalline aluminosilicate AZ-1, a usual ion exchange method,
An impregnation method or the like is used.

【0008】本発明におけるアリールハロゲン化物と
は、例えばクロルベンゼン、ブロムベンゼン、ヨードベ
ンゼン、ジクロルベンゼン、ジブロムベンゼン、ジヨー
ドベンゼン、クロルトルエン、ブロムトルエン、ヨード
トルエン、クロルキシレン、ブロムキシレン、ヨードキ
シレン等が挙げられる。本発明における水とアリールハ
ロゲン化物の比は、通常水/アリールハロゲン化物(モ
ル比)で0.5〜100、好ましくは1〜50、さらに
好ましくは2〜20である。
The aryl halide in the present invention is, for example, chlorobenzene, bromobenzene, iodobenzene, dichlorobenzene, dibromobenzene, diiodobenzene, chlorotoluene, bromotoluene, iodotoluene, chlorxylene, bromoxylene, iodo. Xylene etc. are mentioned. The ratio of water to aryl halide in the present invention is usually water / aryl halide (molar ratio) of 0.5 to 100, preferably 1 to 50, more preferably 2 to 20.

【0009】本発明におけるアリール水酸化物とは、原
料がモノハロゲン化ベンゼンの場合は、対応するヒドロ
キシベンゼンであり、原料がジハロゲン化物の場合はモ
ノヒドロキシベンゼン及び/又はジヒドロキシベンゼン
である。本発明における反応温度は、通常250〜60
0℃、好ましくは300〜550℃、さらに好ましくは
350〜500℃である。
The aryl hydroxide in the present invention is a corresponding hydroxybenzene when the raw material is a monohalogenated benzene, and monohydroxybenzene and / or dihydroxybenzene when the raw material is a dihalide. The reaction temperature in the present invention is usually 250 to 60.
The temperature is 0 ° C, preferably 300 to 550 ° C, more preferably 350 to 500 ° C.

【0010】本発明における圧力は減圧、常圧、加圧い
ずれでも良い。
The pressure in the present invention may be any of reduced pressure, normal pressure and increased pressure.

【0011】[0011]

【実施例】以下、本発明を実施例を用いて説明する。な
お、以下の実施例、比較例における転化率、収率、選択
率は通常のガスクロマトグラフ法による分析値をもとに
求めた。
EXAMPLES The present invention will be described below with reference to examples. The conversion rate, yield, and selectivity in the following examples and comparative examples were determined based on the analysis values by a usual gas chromatograph method.

【0012】[0012]

【実施例1】特開昭59−128210号公報記載に従
って、ゼオライトAZ−1を下記の手順で合成した。
1,8ージアミノー4ーアミノメチルオクタン10g、
硫酸アルミニウム(Al2 (SO4 3 ・18H2 O)
0.5g、水酸化ナトリウム0.5gを水15gにとか
し、さらにシリカゾル(30%SiO2 )20gを加え
て均質な溶液を得た。この溶液にかき混ぜながら20%
硫酸を滴下してpH12に調整して均質なゲルを得た。
さらに、このゲルをミキサーに入れ1000rpmで1
0分間混合しゲル化を促進した。このゲルをテフロン製
試験管に仕込みステンレス製耐圧容器中で170℃、4
8時間静置して結晶化を行った。
Example 1 Zeolite AZ-1 was synthesized by the following procedure according to the description of JP-A-59-128210.
10 g of 1,8-diamino-4-aminomethyloctane,
Aluminum sulfate (Al 2 (SO 4) 3 · 18H 2 O)
0.5 g and 0.5 g of sodium hydroxide were dissolved in 15 g of water, and 20 g of silica sol (30% SiO 2 ) was further added to obtain a homogeneous solution. 20% while stirring in this solution
Sulfuric acid was added dropwise to adjust the pH to 12 to obtain a homogeneous gel.
Furthermore, this gel is put in a mixer, and it is 1 at 1000 rpm.
Mix for 0 minutes to promote gelation. This gel was placed in a Teflon test tube and placed in a stainless steel pressure vessel at 170 ° C for 4
Crystallization was carried out by standing still for 8 hours.

【0013】得られた生成物を濾過、洗浄後120℃で
4時間乾燥、550℃で4時間空気中で焼成した。この
生成物はX線回折分析よりAZ−1と同定された。又、
ケイ光X線分析より求めたSi O2 /Al2 3 (モル
比)は120であった。このAZ−1を10wt%Cu
Cl2 ・2H2 O水溶液に浸漬した後、蒸発乾固し、さ
らに450℃で3時間空気中で焼成して、Cu担持AZ
−1を調製した。この触媒のケイ光X線で測定したCu
含有率は1.5wt%であった。この触媒を用い、下記
反応条件でクロルベンゼンの加水分解反応を行った。 〔反応条件〕 水/クロルベンゼン(モル比)=3.
0、WHSV(クロルベンゼン基準)=0.8hr-1
反応温度=460℃、常圧。反応開始から3〜4時間後
の結果はクロルベンゼン転化率=16%、フェノール選
択率=97%、ベンゼン選択率=3%であった。
The obtained product was filtered, washed, dried at 120 ° C. for 4 hours, and calcined in air at 550 ° C. for 4 hours. This product was identified as AZ-1 by X-ray diffraction analysis. or,
The SiO 2 / Al 2 O 3 (molar ratio) determined by fluorescent X-ray analysis was 120. 10 wt% Cu of this AZ-1
After immersing in Cl 2 · 2H 2 O aqueous solution, evaporate to dryness, and further calcination in air at 450 ° C for 3 hours, Cu supporting AZ
-1 was prepared. Cu measured by fluorescent X-ray of this catalyst
The content rate was 1.5 wt%. Using this catalyst, chlorobenzene was hydrolyzed under the following reaction conditions. [Reaction conditions] Water / chlorobenzene (molar ratio) = 3.
0, WHSV (based on chlorobenzene) = 0.8 hr -1 ,
Reaction temperature = 460 ° C., normal pressure. The results after 3 to 4 hours from the start of the reaction were chlorobenzene conversion rate = 16%, phenol selectivity = 97%, and benzene selectivity = 3%.

【0014】[0014]

【比較例1】NaーY型ゼオライト(リンデ・デビジョ
ン社製SK−40、Si O2 /Al 2 3 (モル比)=
4.6)を15wt%CuCl2 ・2H2 O水溶液中で
1日イオン交換を行った。濾過、洗浄後120℃で4時
間乾燥したのち、450℃で3時間焼成してCu−Y型
ゼオライトを得た。ケイ光X線分析により測定したCu
の含有率は1.5wt%であった。この触媒を用いて下
記反応条件でクロルベンゼンの加水分解反応を行った。 〔反応条件〕 水/クロルベンゼン(モル比)=3.
0、WHSV(クロルベンゼン基準)=3.0hr-1
反応温度=450℃、常圧。反応開始から2〜3時間の
結果は、クロルベンゼン転化率=1.2%、フェノール
選択率=99%であった。
[Comparative Example 1] Na-Y type zeolite (Linde Devijo
SK-40, SiO2/ Al 2O3(Molar ratio) =
4.6) 15 wt% CuCl2・ 2H2In O water solution
Ion exchange was performed for 1 day. After filtration and washing, 120 ° C at 4:00
After being dried for a while, it is baked at 450 ° C for 3 hours to form Cu-Y type
A zeolite was obtained. Cu measured by fluorescent X-ray analysis
Was 1.5 wt%. With this catalyst
The hydrolysis reaction of chlorobenzene was performed under the above reaction conditions. [Reaction conditions] Water / chlorobenzene (molar ratio) = 3.
0, WHSV (based on chlorobenzene) = 3.0 hr-1,
Reaction temperature = 450 ° C., normal pressure. 2-3 hours from the start of the reaction
The results are: chlorobenzene conversion = 1.2%, phenol
The selectivity was 99%.

【0015】[0015]

【比較例2】H−モルデナイト(東洋曹達(株)製Si
2 /Al2 3 (モル比)=10)を20wt%Cu
Cl2 ・2H2 O水溶液で1日イオン交換して、濾過、
洗浄後、120℃で4時間乾燥、450℃で3時間空気
中で焼成してCuーモルデナイトを得た。ケイ光X線分
析より求めたCu含有量は1.0wt%であった。この
触媒を用い、下記の反応条件でクロルベンゼンの加水分
解反応を行った。 〔反応条件〕 水/クロルベンゼン(モル比)=4.
0、WHSV(クロルベンゼン基準)=1.0hrー1
反応温度=450℃、常圧。反応開始から3〜4時間後
の結果は、クロルベンゼン転化率=2.1%、フェノー
ル選択率=99%であった。
[Comparative Example 2] H-mordenite (Si produced by Toyo Soda Co., Ltd.
O 2 / Al 2 O 3 (molar ratio) = 10) 20 wt% Cu
Ion exchange with Cl 2 · 2H 2 O aqueous solution for 1 day, filtration,
After washing, it was dried at 120 ° C. for 4 hours and calcined in air at 450 ° C. for 3 hours to obtain Cu-mordenite. The Cu content determined by fluorescent X-ray analysis was 1.0 wt%. Using this catalyst, hydrolysis reaction of chlorobenzene was performed under the following reaction conditions. [Reaction conditions] Water / chlorobenzene (molar ratio) = 4.
0, WHSV (based on chlorobenzene) = 1.0 hr -1 ,
Reaction temperature = 450 ° C., normal pressure. The results after 3 to 4 hours from the start of the reaction were chlorobenzene conversion rate = 2.1% and phenol selectivity = 99%.

【0016】[0016]

【比較例3】特開昭47−27936号公報の記載に従
い、銅含有LaPO4 を調製した。即ち、La(N
3 3 ・6H2 O=28.8gを水200ccに溶か
した溶液に、(NH4 2 HPO4 =17.6gを水1
00ccに溶かした溶液を激しく撹拌しながら加える。
その後、アンモニア水でPH=6.0に調整して、濾
過、洗浄した後、120℃で24時間乾燥、500℃で
16時間空気中で焼成して白色のLaPO4 粉末を得
た。このLaPO4 =10gをCu(NO3 2 ・3H
2 Oの0.2wt%水溶液20cc中に浸漬して、蒸発
乾固した後、450℃で5時間空気中で焼成した。この
Cu含有LaPO4 中のCu含有率は0.05wt%で
あった。このCu含有LaPO4 を触媒に用いて、下記
の反応条件でクロルベンゼンの加水分解反応を行った。 〔反応条件〕 水/クロルベンゼン(モル比)=3.
0、WHSV(クロルベンゼン基準)=0.8hr-1
反応温度=460℃、常圧。
[Comparative Example 3] As described in JP-A-47-27936.
Copper containing LaPOFourWas prepared. That is, La (N
O3)3・ 6H2O = 28.8 g dissolved in 200 cc of water
To the solution (NHFour)2HPOFour= 17.6 g water 1
Add the solution in 00 cc with vigorous stirring.
After that, adjust the pH to 6.0 with aqueous ammonia and filter.
After washing and cleaning, dry at 120 ℃ for 24 hours, at 500 ℃
White LaPO after firing in air for 16 hoursFourGot powder
It was This LaPOFour= 10 g of Cu (NO3)2・ 3H
2Evaporate by immersing in 20cc of 0.2wt% aqueous solution of O
After drying to dryness, it was baked in air at 450 ° C. for 5 hours. this
Cu-containing LaPOFourCu content in 0.05 wt%
there were. This Cu-containing LaPOFourUsing as a catalyst,
The hydrolysis reaction of chlorobenzene was carried out under the reaction conditions of. [Reaction conditions] Water / chlorobenzene (molar ratio) = 3.
0, WHSV (chlorobenzene standard) = 0.8 hr-1,
Reaction temperature = 460 ° C., normal pressure.

【0017】反応開始から2〜3時間後の成績は、クロ
ルベンゼン転化率=9.2%、フェノール選択率=9
6.0%、ベンゼン選択率=4.0%であった。この結
果と実施例1とを比較すると、この触媒の活性が低いこ
とが判る。
2-3 hours after the start of the reaction, the chlorobenzene conversion rate was 9.2% and the phenol selectivity was 9
It was 6.0% and the benzene selectivity = 4.0%. Comparison of this result with Example 1 shows that the activity of this catalyst is low.

【0018】[0018]

【比較例4】特公昭51ー6108号公報の記載に従っ
て、銅を含むリン酸ジルコニウムを調製した。即ち、Z
rOCl2 ・8H2 O=24gを水100gに溶かし、
さらにCuCl2 ・2H2 O=0.6gを溶かした。こ
の溶液をNaOH=8.0gと85%H3 PO4 =1
4.8gを水100gに溶かした溶液に加え44時間室
温で撹拌を続けた。得られたスラリーを濾過、洗浄した
後、110℃で4時間乾燥、400℃で3時間空気中で
焼成を行い銅含有リン酸ジルコニウムを得た。
[Comparative Example 4] Zirconium phosphate containing copper was prepared according to the description in JP-B-51-6108. That is, Z
rOCl 2 · 8H 2 O = 24 g was dissolved in 100 g of water,
Further, CuCl 2 .2H 2 O = 0.6 g was melted. This solution was added with NaOH = 8.0 g and 85% H 3 PO 4 = 1.
4.8g was added to the solution which melt | dissolved in 100g of water, and stirring was continued at room temperature for 44 hours. The obtained slurry was filtered, washed, dried at 110 ° C. for 4 hours, and calcined in air at 400 ° C. for 3 hours to obtain copper-containing zirconium phosphate.

【0019】この銅含有リン酸ジルコニウムを触媒に用
い、比較例3と同じ条件でクロルベンゼンの加水分解反
応を行った。反応開始から2〜3時間後の成績は、クロ
ルベンゼン転化率=7.0%、フェノール選択率=9
7.0%、ベンゼン選択率=3.0%であった。この結
果と実施例とを比較すると、この触媒の活性が低いこと
が判る。
Using this copper-containing zirconium phosphate as a catalyst, a hydrolysis reaction of chlorobenzene was carried out under the same conditions as in Comparative Example 3. 2 to 3 hours after the start of the reaction, the chlorobenzene conversion rate was 7.0% and the phenol selectivity was 9%.
It was 7.0% and benzene selectivity = 3.0%. Comparing this result with the example shows that the activity of this catalyst is low.

【0020】[0020]

【発明の効果】本発明における触媒は、従来の触媒に比
べて活性が高く、かつ活性低下が小さく触媒再生が容易
である。この事は工業的に行う上で非常に有利となる。
EFFECT OF THE INVENTION The catalyst of the present invention has a higher activity than that of the conventional catalyst and has a small decrease in activity, which facilitates catalyst regeneration. This is very advantageous for industrial use.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アリールハロゲン化物を水の存在下、気
相において加水分解してアリール水酸化物に転化する際
に、触媒として周期律表IB族の金属を含有する結晶性
アルミノシリケートAZ−1を用いることを特徴とする
アリール水酸化物の製造方法。
1. A crystalline aluminosilicate AZ-1 containing a metal of Group IB of the periodic table as a catalyst when an aryl halide is hydrolyzed in the gas phase in the presence of water to be converted into an aryl hydroxide. A method for producing an aryl hydroxide, comprising:
【請求項2】 周期律表IB族の金属が、銅であること
を特徴とする請求項1記載のアリール水酸化物の製造方
法。
2. The method for producing an aryl hydroxide according to claim 1, wherein the metal of Group IB of the periodic table is copper.
JP5016178A 1993-02-03 1993-02-03 Phenol manufacturing method Expired - Lifetime JPH07110824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5016178A JPH07110824B2 (en) 1993-02-03 1993-02-03 Phenol manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5016178A JPH07110824B2 (en) 1993-02-03 1993-02-03 Phenol manufacturing method

Publications (2)

Publication Number Publication Date
JPH0616582A true JPH0616582A (en) 1994-01-25
JPH07110824B2 JPH07110824B2 (en) 1995-11-29

Family

ID=11909261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5016178A Expired - Lifetime JPH07110824B2 (en) 1993-02-03 1993-02-03 Phenol manufacturing method

Country Status (1)

Country Link
JP (1) JPH07110824B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192330A (en) * 1986-02-20 1987-08-22 Asahi Chem Ind Co Ltd Production of aryl hydroxide
JPH047039A (en) * 1990-04-23 1992-01-10 Res Assoc Util Of Light Oil Production of catalyst
JPH04117338A (en) * 1990-09-06 1992-04-17 Res Assoc Util Of Light Oil Production of aromatic hydroxide
JPH04117339A (en) * 1990-09-06 1992-04-17 Res Assoc Util Of Light Oil Production of aromatic hydroxide
JPH04334333A (en) * 1991-05-10 1992-11-20 Res Assoc Util Of Light Oil Production of phenols

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192330A (en) * 1986-02-20 1987-08-22 Asahi Chem Ind Co Ltd Production of aryl hydroxide
JPH047039A (en) * 1990-04-23 1992-01-10 Res Assoc Util Of Light Oil Production of catalyst
JPH04117338A (en) * 1990-09-06 1992-04-17 Res Assoc Util Of Light Oil Production of aromatic hydroxide
JPH04117339A (en) * 1990-09-06 1992-04-17 Res Assoc Util Of Light Oil Production of aromatic hydroxide
JPH04334333A (en) * 1991-05-10 1992-11-20 Res Assoc Util Of Light Oil Production of phenols

Also Published As

Publication number Publication date
JPH07110824B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
JPH0248530B2 (en)
JPH05270806A (en) Production of hydrogen peroxide
JPH0616582A (en) Production of aryl hydroxide
JPH069464A (en) Production of aryl hydroxide compound
JP3592418B2 (en) Glutardialdehyde production method
JPH0735350B2 (en) Method for producing aryl hydroxide
JPH0735351B2 (en) Manufacturing method of aryl hydroxide
JPS62192330A (en) Production of aryl hydroxide
JP2534871B2 (en) Method for synthesizing zeolite ZSM-5
JP2662649B2 (en) Dehydration reaction method using ZSM-5
US5215736A (en) Mordenite type zeolite and its preparation process
JP2000302735A (en) Production of methylamines
JPH03206060A (en) Production of phenols
JP2737317B2 (en) Method for producing phenols
JPH0576933B2 (en)
JPH0437053B2 (en)
JP3760530B2 (en) Aromatic halide isomerization catalyst and aromatic halide isomerization method
JPS61221141A (en) Production of cyclic alcohol
JP3547181B2 (en) Method for disproportionation of trimethylamine
JPS60104030A (en) Production of cycloalkanol
JPH0359048B2 (en)
JPH04103545A (en) Production of 1,3,5-trichlorobenzene
JPH04117339A (en) Production of aromatic hydroxide
JPH04334333A (en) Production of phenols
JPS62240635A (en) Production of aryl hydroxide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960814