JPH06164231A - Antenna device - Google Patents

Antenna device

Info

Publication number
JPH06164231A
JPH06164231A JP30710392A JP30710392A JPH06164231A JP H06164231 A JPH06164231 A JP H06164231A JP 30710392 A JP30710392 A JP 30710392A JP 30710392 A JP30710392 A JP 30710392A JP H06164231 A JPH06164231 A JP H06164231A
Authority
JP
Japan
Prior art keywords
wave
mirror
parabolic mirror
satellite
parabolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30710392A
Other languages
Japanese (ja)
Inventor
Senshiyu Ueno
船首 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30710392A priority Critical patent/JPH06164231A/en
Publication of JPH06164231A publication Critical patent/JPH06164231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE:To provide an antenna device which can be driven with no deterioration of the antenna performance even with a communication equipment included in the main body of a satellite. CONSTITUTION:A horn radiated wave is converted into the parallel waves by a 1st paraboloidal mirror 16 in the main body 11 of a satellite and sent to a 2nd paraboloidal mirror 21 excluded out of the main body 11. The parallel waves are converted into the converged waves by the mirror 21 and sent to a 3rd paraboloidal mirror 22 which shares the focal point of the mirror 21. The converged waves are converted into the parallel waves by the mirror 22 and sent to a plane mirror 23. Then these parallel waves are reflected in an optional direction. An antenna consisting of the mirrors 21, 22 and 23 are turned integrally around the reflected wave axis of the mirror 16 by a 1st driver. Meanwhile the antenna is also turned integrally around an axis which passes through the focal point shared by both mirrors 16 and 21 by a 2nd driver, and is vertical to the reflected wave axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば衛星搭載用駆
動アンテナに利用できるアンテナ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna device that can be used as a satellite-mounted drive antenna, for example.

【0002】[0002]

【従来の技術】例えば、図3に示すような低軌道高度衛
星Aが観測したデータを静止軌道に設置されたデータ中
継衛星Bを経由して地上局Cへ送る場合に、低軌道高度
衛星Aに搭載される駆動アンテナには、直交する2軸方
向に、1方向は360°、他の1方向は±10°程度の
駆動機能が必要となる。従来、これを実現するために、
図4に示すアンテナ装置が使用されている。
2. Description of the Related Art For example, when data observed by a low earth orbit altitude satellite A as shown in FIG. 3 is sent to a ground station C via a data relay satellite B installed in a geosynchronous orbit, a low earth orbit altitude satellite A The driving antenna mounted on the vehicle is required to have a driving function of 360 ° in one direction and ± 10 ° in the other one direction in the directions of two orthogonal axes. Conventionally, to achieve this,
The antenna device shown in FIG. 4 is used.

【0003】このアンテナ装置では、人工衛星本体1か
ら伸びたブーム2が2軸ジンバル3に接続され、このジ
ンバル3がアンテナ4やTWT(進行波管パワーアンプ
による送信機等)5、RX(受信機等)6、DIP(送
受切換器)7等の通信装置を搭載している電子機器搭載
プラットフォーム8全体を回転させる方法をとってい
る。
In this antenna device, a boom 2 extending from an artificial satellite body 1 is connected to a biaxial gimbal 3, and the gimbal 3 has an antenna 4, a TWT (transmitter using a traveling wave tube power amplifier) 5, RX (reception). Device 6), DIP (transmission / reception switching device) 7 and other communication devices are mounted on the electronic device mounting platform 8.

【0004】ここで、衛星通信に使用する周波数帯はマ
イクロ波以上であるから、通信装置の配線に導波管を使
用する。このため、アンテナ4から直接人工衛星本体1
へ配管するとプラットホーム8の回転駆動が不可能とな
る。そこで、低周波であるIF周波数への変換を通信装
置内部で行い、衛星本体1との接続は駆動しても変形可
能なフレキシブル同軸ケーブルで行っている。図5に駆
動した状態を示す。
Since the frequency band used for satellite communication is microwave or higher, a waveguide is used for the wiring of the communication device. For this reason, the artificial satellite body 1 directly from the antenna 4
If it is piped to, the rotation drive of the platform 8 becomes impossible. Therefore, conversion to the IF frequency, which is a low frequency, is performed inside the communication device, and connection with the satellite body 1 is performed by a flexible coaxial cable that can be deformed even when driven. FIG. 5 shows the driven state.

【0005】しかしながら、上記のような方法では、通
信装置を衛星本体の外側に搭載する必要があり、電子機
器搭載プラットホームに温度制御機能が要求される。通
信装置の周囲温度は一般に−20〜+50℃の範囲に入
れる必要がある。
However, in the above method, it is necessary to mount the communication device on the outside of the satellite main body, and the electronic device mounting platform is required to have a temperature control function. The ambient temperature of the communication device generally needs to be in the range of -20 to + 50 ° C.

【0006】一方、通信装置の中にはTWTパワーアン
プ等の高発熱機器がある。したがって、電子機器搭載プ
ラットホームの熱設計は、放熱面の確保とヒータ制御と
いう2つの課題があり、これらが機器の設計を困難なも
のにしている。
On the other hand, communication devices include high heat generating devices such as TWT power amplifiers. Therefore, the thermal design of the electronic device mounting platform has two problems of securing a heat radiation surface and controlling the heater, which make the design of the device difficult.

【0007】また、ロケット打ち上げ時の機械環境も衛
星本体内部のそれとは異なり、厳しくなるため、通信装
置の保護のための構造設計も困難なものにしている。こ
れらの困難さがアンテナ全体の重量増加等を招いてい
る。
Further, the mechanical environment at the time of launching a rocket is different from that in the interior of the satellite body, and it becomes difficult to design the structure for protecting the communication device. These difficulties cause an increase in weight of the entire antenna.

【0008】[0008]

【発明が解決しようとする課題】以上述べたように、従
来の衛星搭載用駆動アンテナに利用されるアンテナ装置
では、その構造上、通信装置を衛星本体の外側に配置し
なければならず、電子機器搭載用プラットフォームに温
度制御機能が要求され、特に放熱面の確保とヒータ制御
を同時に実現しなければならない。また、通信装置を衛
星本体の外側に配置した場合には、打ち上げ時の保護の
ため比較的強度な構造が必要であり、これが重量増大の
原因ともなっている。
As described above, in the antenna device used for the conventional satellite-mounted drive antenna, the communication device must be arranged outside the satellite body because of its structure. A temperature control function is required for the equipment mounting platform, and in particular, it is necessary to secure the heat radiation surface and control the heater at the same time. Further, when the communication device is arranged outside the satellite body, a relatively strong structure is required for protection at the time of launch, which also causes an increase in weight.

【0009】この発明は上記の課題を解決するためにな
されたもので、通信装置を衛星本体内部に配置した状態
でもアンテナ性能を劣化させることなく駆動可能で、こ
れによって通信装置の熱的かつ構造的設計を容易とする
アンテナ装置を提供することを目的とする。
The present invention has been made to solve the above problems, and can be driven without deteriorating the antenna performance even when the communication device is arranged inside the satellite body. It is an object of the present invention to provide an antenna device that facilitates dynamic design.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
にこの発明は、衛星本体内に配置され、通信波を放射す
るホーンと、前記衛星本体内に配置され、前記ホーンの
放射波を平行波に変換して前記衛星本体の外方向に反射
する第1の放物面鏡と、前記衛星本体外に配置され、前
記第1の放物面鏡からの平行ビームを焦束波に変換して
入射波とは異なる方向に反射する第2の放物面鏡と、前
記衛星本体外で前記第2の放物面鏡の焦点と同じ位置に
焦点がくるように配置され、前記第2の放物面鏡からの
焦束波を平行波に変換し入射波とは異なる方向に反射す
る第3の放物面鏡と、前記衛星本体外に配置され、前記
第3の放物面鏡からの平行波を任意の方向に反射する平
面鏡と、前記第1の放物面鏡の反射波軸回りに前記第
2、第3の放物面鏡及び平面鏡を一体的に回転駆動する
第1の駆動装置と、前記第1、第2の放物面鏡が共有す
る焦点を通りかつ前記反射波軸とは垂直な軸回りに前記
第2、第3の放物面鏡及び平面鏡を一体的に回転駆動す
る第2の駆動装置とを具備して構成される。
To achieve the above object, the present invention is directed to a horn arranged in a satellite body for emitting a communication wave, and a horn arranged in the satellite body for parallelizing a radiated wave of the horn. A first parabolic mirror which converts the wave into a wave and reflects in an outward direction of the satellite body; and a parallel beam which is arranged outside the satellite body and which converts the parallel beam from the first parabolic mirror into a focused wave. And a second parabolic mirror that reflects in a direction different from the incident wave, and the second parabolic mirror is arranged outside the satellite body so that the focal point is at the same position as the focal point of the second parabolic mirror. A third parabolic mirror that converts the focused wave from the parabolic mirror into a parallel wave and reflects it in a direction different from the incident wave; and a third parabolic mirror that is arranged outside the satellite body. Plane mirror that reflects the parallel wave in the arbitrary direction, and the second and third parabolic mirrors around the reflection wave axis of the first parabolic mirror. And a first driving device that integrally rotates the plane mirror and the first and second parabolic mirrors, and the second and second parabolic mirrors pass through a common axis and are perpendicular to the reflection wave axis. The parabolic mirror 3 and the plane mirror 3 of FIG.

【0011】[0011]

【作用】上記構成によるアンテナ装置は、衛星本体内で
ホーンからの放射波を第1の放物面鏡で平行波に変換し
て衛星本体の外方向に反射させ、衛星本体外で第1の放
物面鏡からの平行ビームを第2の放物面鏡で焦束波に変
換して他方向に反射させ、さらに第2の放物面鏡の焦点
と同じ位置に焦点がくるように配置された第3の放物面
鏡で第2の放物面鏡からの焦束波を平行波に変換して他
方向に反射させ、この第3の放物面鏡からの平行波を平
面鏡で任意の方向に反射させる。ここで、第1の駆動装
置により、上記第1の放物面鏡の反射波軸回りに第2、
第3の放物面鏡及び平面鏡からなるアンテナ系を一体的
に回転駆動する。また、第2の駆動装置により、第1、
第2の放物面鏡が共有する焦点を通りかつ前記反射波軸
とは垂直な軸回りに第2、第3の放物面鏡及び平面鏡を
一体的に回転駆動する。
In the antenna device having the above-mentioned structure, the radiation wave from the horn is converted into a parallel wave by the first parabolic mirror in the satellite body and reflected in the outward direction of the satellite body, so that the first wave is generated outside the satellite body. The parallel beam from the parabolic mirror is converted into a focused wave by the second parabolic mirror, reflected in the other direction, and arranged so that the focal point is at the same position as the focal point of the second parabolic mirror. The focused parabolic wave from the second parabolic mirror is converted into a parallel wave by the third parabolic mirror and reflected in the other direction, and the parallel wave from the third parabolic mirror is reflected by a plane mirror. Reflect in any direction. Here, by the first driving device, the second parabolic mirror about the reflection wave axis of the first parabolic mirror,
An antenna system composed of a third parabolic mirror and a plane mirror is integrally rotated. In addition, by the second drive device,
The second and third parabolic mirrors and the plane mirror are integrally driven to rotate about an axis that passes through the focal point shared by the second parabolic mirror and is perpendicular to the reflected wave axis.

【0012】[0012]

【実施例】以下、図面を参照してこの発明の一実施例を
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0013】図1はこの発明に係るアンテナ装置の構成
を示すもので、11は衛星本体である。この衛星本体1
1内には通信装置であるTWT12、RX13、DIP
14が設置されており、これらは衛星本体11内の熱的
環境下、構造的環境下に置かれる。
FIG. 1 shows the configuration of an antenna device according to the present invention, and 11 is a satellite body. This satellite body 1
Communication devices TWT12, RX13, DIP
14 are installed, and these are placed under the thermal environment and the structural environment inside the satellite body 11.

【0014】衛星本体11内には、通信装置からの通信
信号を受けて通信波を放射するホーン15と、このホー
ン15の放射波を平行波に変換して衛星本体11の外方
向(図では本体側面に対して垂直方向の場合を示してい
る)に反射する第1の放物面鏡16が配置される。
In the satellite body 11, a horn 15 which receives a communication signal from a communication device and radiates a communication wave, and a radiation wave of the horn 15 is converted into a parallel wave to the outside of the satellite body 11 (in the figure, A first parabolic mirror 16 is provided which reflects (in the direction perpendicular to the body side).

【0015】衛星本体11の側面には第1の放物面鏡1
6の反射波路の中心軸Yを軸とする円筒状のブーム17
が設けられる。その先端部には前記中心軸Yを回転軸と
する第1のジンバル装置18が設けられる。この第1の
ジンバル装置18上にはポール19が立てられ、その先
端にはY軸とは垂直なX軸回りに回動する第2のジンバ
ル装置20が設けられる。
A first parabolic mirror 1 is provided on the side surface of the satellite body 11.
Cylindrical boom 17 having the central axis Y of the reflection waveguide 6 as the axis
Is provided. A first gimbal device 18 having the central axis Y as a rotation axis is provided at the tip portion thereof. A pole 19 is erected on the first gimbal device 18, and a second gimbal device 20 that rotates around an X axis perpendicular to the Y axis is provided at the tip of the pole 19.

【0016】この第2のジンバル装置20には、駆動ア
ンテナとして、第2、第3の放物面鏡21,22及び平
面鏡23が一体的に配置される。第2の放物面鏡21は
Y軸上に配置され、かつX軸上に焦点Fを持ち、第1の
放物面鏡16からの平行波を受けて焦束波に変換する。
第3の放物面鏡22は上記第2の放物面鏡21と焦点F
を共有するように配置され、第2の放物面鏡16からの
焦束波を受けて平行波に変換する。平面鏡23は第3の
放物面鏡22からの平行波を受けて任意の方向に反射す
る。上記構成において、以下図2を参照してその動作を
説明する。
In the second gimbal device 20, second and third parabolic mirrors 21 and 22 and a plane mirror 23 are integrally arranged as a drive antenna. The second parabolic mirror 21 is arranged on the Y axis, has a focal point F on the X axis, receives the parallel wave from the first parabolic mirror 16, and converts it into a focused wave.
The third parabolic mirror 22 has a focus F with the second parabolic mirror 21.
Are arranged so as to be shared, and receive the focussing wave from the second parabolic mirror 16 and convert it into a parallel wave. The plane mirror 23 receives the parallel wave from the third parabolic mirror 22 and reflects it in an arbitrary direction. The operation of the above configuration will be described below with reference to FIG.

【0017】まず、ホーン15からの放射波は第1の放
物面鏡16に照射され、ここで平行波に変換される。こ
の平行波は平面波であり、ブーム17内を通り、第2の
放物面鏡21で反射され、球面波となって焦点Fに収束
される。この焦点Fは第2の放物面鏡21の焦点である
が、また対向して設置された第3の放物面鏡22の焦点
でもある。焦点Fを通過した球面波は第3の放物面鏡2
2により平行波、つまり平面波に変換され、さらに平面
鏡23により所望方向へ反射される。
First, the radiation wave from the horn 15 is applied to the first parabolic mirror 16 and converted into a parallel wave here. The parallel wave is a plane wave, passes through the boom 17, is reflected by the second parabolic mirror 21, becomes a spherical wave, and is converged on the focal point F. This focal point F is the focal point of the second parabolic mirror 21, but it is also the focal point of the third parabolic mirror 22 that is installed oppositely. The spherical wave passing through the focal point F is reflected by the third parabolic mirror 2
It is converted into a parallel wave, that is, a plane wave by 2 and is further reflected in a desired direction by the plane mirror 23.

【0018】ここで、第1のジンバル装置18を駆動す
ることで、駆動アンテナ全体をY軸回りに360°回転
させることができる。また、第2のジンバル装置20を
駆動することで、焦点Fを通るX軸回りに駆動アンテナ
全体を回動することができる。この回動角度は30°程
度は確保できる。このとき、第1の放物面鏡16は動か
ない。第2のジンバル装置20により駆動アンテナが回
動したときの様子を図2に示す。
By driving the first gimbal device 18, the entire driving antenna can be rotated 360 ° about the Y axis. Further, by driving the second gimbal device 20, the entire drive antenna can be rotated around the X axis passing through the focus F. This rotation angle can be secured at about 30 °. At this time, the first parabolic mirror 16 does not move. FIG. 2 shows how the drive antenna is rotated by the second gimbal device 20.

【0019】図2からも明らかなように、上記構成によ
るアンテナ装置は、Y軸方向の回転でもX軸方向の回転
でも、アンテナ系の相対的設定がくずれないため、アン
テナ性能の劣化は基本的に生じない。また、焦束ビーム
給電により衛星本体11間の伝送を行うため、ビーム半
径が波長よりも十分に大きければ、同軸ケーブルよりも
給電損失を小さくすることができる。
As is clear from FIG. 2, in the antenna device having the above-described structure, the relative setting of the antenna system does not collapse during rotation in the Y-axis direction or rotation in the X-axis direction, and therefore the antenna performance is basically deteriorated. Does not occur in Further, since the transmission between the satellite bodies 11 is performed by the focused beam power feeding, if the beam radius is sufficiently larger than the wavelength, the power feeding loss can be made smaller than that of the coaxial cable.

【0020】さらに、最も大きな効果として、通信装置
を衛星本体11内に設置でき、駆動アンテナ側は熱的、
構造的問題の小さいジンバル装置18,20のみを搭載
するようにしているので、特別な温度制御を必要としな
い。尚、この発明は上記実施例に限定されるものではな
く、この発明の要旨を逸脱しない範囲で種々変形しても
同様に実施可能であることはいうまでもない。
Further, as the greatest effect, the communication device can be installed in the satellite main body 11, and the driving antenna side is thermally
Since only the gimbal devices 18 and 20 having a small structural problem are mounted, no special temperature control is required. It is needless to say that the present invention is not limited to the above-described embodiments and can be similarly implemented even if various modifications are made without departing from the gist of the present invention.

【0021】[0021]

【発明の効果】以上のようにこの発明によれば、通信装
置を衛星本体内部に配置した状態でもアンテナ性能を劣
化させることなく駆動可能で、これによって通信装置の
熱的かつ構造的設計を容易とするアンテナ装置を提供す
ることができる。
As described above, according to the present invention, even when the communication device is arranged inside the satellite body, it can be driven without deteriorating the antenna performance, thereby facilitating thermal and structural design of the communication device. It is possible to provide the antenna device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係るアンテナ装置の一実施例を示す
構成図。
FIG. 1 is a configuration diagram showing an embodiment of an antenna device according to the present invention.

【図2】同実施例の駆動アンテナ系をX軸回りに回動し
た様子を示す構成図。
FIG. 2 is a configuration diagram showing a state in which the drive antenna system of the embodiment is rotated around the X axis.

【図3】現在の宇宙通信の実態を説明するための図。FIG. 3 is a diagram for explaining the current state of space communication.

【図4】従来の衛星搭載用駆動アンテナに用いられるア
ンテナ装置を示す構成図。
FIG. 4 is a configuration diagram showing an antenna device used for a conventional satellite-mounted drive antenna.

【図5】図4のアンテナ装置を回転駆動した様子を示す
構成図。
5 is a configuration diagram showing a state in which the antenna device of FIG. 4 is rotationally driven.

【符号の説明】[Explanation of symbols]

A…低軌道高度衛星、B…静止衛星、C…地球局、1…
人工衛星本体、2…ブーム、3…2軸ジンバル、4…ア
ンテナ、5…TWT、6…RX、7…DIP、8…電子
機器搭載プラットフォーム、11…衛星本体、12…T
WT、13…RX、14…DIP、15…ホーン、16
…第1の放物面鏡、17…ブーム、18…第1のジンバ
ル装置、19…ポール、20…第2のジンバル装置、2
1…第2の放物面鏡、22…第2の放物面鏡、23…平
面鏡、F…焦点。
A ... Low Earth Orbit Advanced Satellite, B ... Geostationary Satellite, C ... Earth Station, 1 ...
Artificial satellite body, 2 ... Boom, 3 ... 2-axis gimbal, 4 ... Antenna, 5 ... TWT, 6 ... RX, 7 ... DIP, 8 ... Electronic device mounting platform, 11 ... Satellite body, 12 ... T
WT, 13 ... RX, 14 ... DIP, 15 ... Horn, 16
... first parabolic mirror, 17 ... boom, 18 ... first gimbal device, 19 ... pole, 20 ... second gimbal device, 2
1 ... 2nd parabolic mirror, 22 ... 2nd parabolic mirror, 23 ... plane mirror, F ... focus.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】衛星本体内に配置され、通信波を放射する
ホーンと、前記衛星本体内に配置され、前記ホーンの放
射波を平行波に変換して前記衛星本体の外方向に反射す
る第1の放物面鏡と、前記衛星本体外に配置され、前記
第1の放物面鏡からの平行ビームを焦束波に変換して入
射波とは異なる方向に反射する第2の放物面鏡と、前記
衛星本体外で前記第2の放物面鏡の焦点と同じ位置に焦
点がくるように配置され、前記第2の放物面鏡からの焦
束波を平行波に変換し入射波とは異なる方向に反射する
第3の放物面鏡と、前記衛星本体外に配置され、前記第
3の放物面鏡からの平行波を任意の方向に反射する平面
鏡と、前記第1の放物面鏡の反射波軸回りに前記第2、
第3の放物面鏡及び平面鏡を一体的に回転駆動する第1
の駆動装置と、前記第1、第2の放物面鏡が共有する焦
点を通りかつ前記反射波軸とは垂直な軸回りに前記第
2、第3の放物面鏡及び平面鏡を一体的に回転駆動する
第2の駆動装置とを具備するアンテナ装置。
1. A horn arranged in the satellite body for radiating a communication wave; and a horn arranged in the satellite body for converting a radiated wave of the horn into a parallel wave and reflecting the wave outward of the satellite body. No. 1 parabolic mirror and a second parabolic arranged outside the satellite body for converting a parallel beam from the first parabolic mirror into a focused wave and reflecting it in a direction different from the incident wave. The plane mirror and the satellite are arranged so as to have a focal point at the same position as the focal point of the second parabolic mirror outside the satellite main body, and convert a focusing wave from the second parabolic mirror into a parallel wave. A third parabolic mirror that reflects in a direction different from the incident wave; a flat mirror that is arranged outside the satellite body and that reflects parallel waves from the third parabolic mirror in an arbitrary direction; The second, around the reflection wave axis of the parabolic mirror of 1,
A first parabolic mirror and a plane mirror are integrally driven to rotate.
Drive unit and the second and third parabolic mirrors and the plane mirror are integrated around an axis passing through a focal point shared by the first and second parabolic mirrors and perpendicular to the reflected wave axis. An antenna device comprising: a second drive device that is rotationally driven.
JP30710392A 1992-11-17 1992-11-17 Antenna device Pending JPH06164231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30710392A JPH06164231A (en) 1992-11-17 1992-11-17 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30710392A JPH06164231A (en) 1992-11-17 1992-11-17 Antenna device

Publications (1)

Publication Number Publication Date
JPH06164231A true JPH06164231A (en) 1994-06-10

Family

ID=17965070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30710392A Pending JPH06164231A (en) 1992-11-17 1992-11-17 Antenna device

Country Status (1)

Country Link
JP (1) JPH06164231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040320A (en) * 2000-07-26 2002-02-06 Toshiba Corp Reflection mirror driving device
JP2006261994A (en) * 2005-03-16 2006-09-28 Toshiba Corp Antenna device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040320A (en) * 2000-07-26 2002-02-06 Toshiba Corp Reflection mirror driving device
JP4689798B2 (en) * 2000-07-26 2011-05-25 Nec東芝スペースシステム株式会社 Reflector driving device
JP2006261994A (en) * 2005-03-16 2006-09-28 Toshiba Corp Antenna device

Similar Documents

Publication Publication Date Title
US7786945B2 (en) Beam waveguide including Mizuguchi condition reflector sets
US10680310B2 (en) Balloon reflector antenna
JP3122147B2 (en) Geostationary earth observation satellite
US4305555A (en) Solar energy system with relay satellite
JPH11186827A (en) Antenna system for low orbit satellite communication
US6342865B1 (en) Side-fed offset cassegrain antenna with main reflector gimbal
US11319092B2 (en) Space vehicle, launcher and stack of space vehicles
TW405279B (en) Antenna for communicating with low earth orbit satellite
JP2002151943A (en) Divergent dome lens for microwave, and antenna including the lens
JPH06164231A (en) Antenna device
EP1028549B1 (en) Optical beam director for satellite applications
JP2602026B2 (en) Large scanning antenna for use especially at very high frequencies supported on a satellite having a fixed main reflector and feeder, and a satellite structure equipped with such an antenna
US20030234746A1 (en) Sub-reflector shaping in an unfurlable reflector antenna system
US6243047B1 (en) Single mirror dual axis beam waveguide antenna system
JP2004266929A (en) Solar energy collection/transmission system
Baister et al. The SOUT optical intersatellite communication terminal
WO2021090361A1 (en) Spacecraft
RU2206158C2 (en) Reflector antenna assembly
JP2000128100A (en) Space navigational body and mobile communication method with the same
JP2001144529A (en) Method for directing antenna beam to non-geostationary satellite
SAHA Salient design features of Insat-1 space segment system
JP2006261994A (en) Antenna device
Varley et al. EHF satcom terminal antennas
JPH03123101A (en) Antenna equipment on board satellite
JPH01188002A (en) Antenna