JPH0616403B2 - High-resolution non-interferometric image observation method - Google Patents

High-resolution non-interferometric image observation method

Info

Publication number
JPH0616403B2
JPH0616403B2 JP58102604A JP10260483A JPH0616403B2 JP H0616403 B2 JPH0616403 B2 JP H0616403B2 JP 58102604 A JP58102604 A JP 58102604A JP 10260483 A JP10260483 A JP 10260483A JP H0616403 B2 JPH0616403 B2 JP H0616403B2
Authority
JP
Japan
Prior art keywords
electron microscope
transfer function
image
observing
resolution non
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58102604A
Other languages
Japanese (ja)
Other versions
JPS59228350A (en
Inventor
博司 柿林
輝穂 下津
文男 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58102604A priority Critical patent/JPH0616403B2/en
Publication of JPS59228350A publication Critical patent/JPS59228350A/en
Publication of JPH0616403B2 publication Critical patent/JPH0616403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/263Contrast, resolution or power of penetration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電子顕微鏡の高分解能観察法に係り、特にレ
プリカ試料や生物切片試料などの軽元素非晶支持膜上に
おける金属粒子と分散状態や形状を観察する場合に好適
な、高分解能非干渉像の観察法に関する。
TECHNICAL FIELD The present invention relates to a high resolution observation method of an electron microscope, and particularly to metal particles and a dispersion state on a light element amorphous supporting film such as a replica sample or a biological section sample. The present invention relates to a method for observing a high-resolution non-interference image suitable for observing a shape.

〔発明の背景〕 一般の透過形電子顕微鏡には、電子線が対物レンズの中
心を通過するように調整するための付属機構として、レ
ンズ励磁電流に擬似3角波を重畳して変動を与える回路
が備えられている(例えば、1975年、共立出版株式
会社発行、安達公一ほか共著、[電子顕微鏡利用の基
礎]第66頁、c.欄参照)が、目的が異なるため変動
量が大き過ぎて像に対する収差の影響が大きいことおよ
び擬似3角波では効果的に位相差コントラストを低減さ
せることができないことなの欠点があるため、高分解能
の非干渉像を得ることは不可能である。
BACKGROUND OF THE INVENTION In a general transmission electron microscope, a circuit that superimposes a quasi-triangular wave on a lens exciting current to give a variation is provided as an accessory mechanism for adjusting an electron beam to pass through the center of an objective lens. Is provided (for example, in 1975, published by Kyoritsu Shuppan Co., Ltd., co-authored by Koichi Adachi and others, see [Basics of Using Electron Microscope], page 66, column c.), But the amount of fluctuation is too large for different purposes However, it is impossible to obtain a high-resolution non-interference image because of the drawbacks that the influence of aberration on the image is large and the phase difference contrast cannot be effectively reduced by the pseudo triangular wave.

〔発明の目的〕[Object of the Invention]

本発明の目的は、電子顕微鏡によつて高分解能像を観察
する場合に、微細構造の判定に悪影響を及ぼす位相差コ
ントラストを取り除き、散乱コントラストのみから成る
高分解能非干渉像の観察法を提供すること、さらには、
位相差コントラスト強度と周波数を適当にコントローラ
することによつて、目的に合致した像を得ようとするも
のである。
An object of the present invention is to provide a method for observing a high-resolution non-interfering image composed of only scattering contrast by removing phase contrast which adversely affects fine structure determination when observing a high-resolution image with an electron microscope. And even
By properly controlling the phase difference contrast intensity and the frequency, an image that matches the purpose is obtained.

〔発明の概要〕[Outline of Invention]

電子顕微鏡像における位相差コントラストは、主に対物
レンズの伝達関数に起因しており、この関数がピークを
示す特定の周波数に対応する周期構造が強調されて現わ
れる。位相差コントラストを低減させるためには、伝達
関数の振幅を全周期に渡つて減小させれば良い。
The phase difference contrast in the electron microscope image is mainly caused by the transfer function of the objective lens, and the periodic structure corresponding to a specific frequency at which this function has a peak appears emphasized. In order to reduce the phase difference contrast, the amplitude of the transfer function may be reduced over the entire period.

本発明では、伝達関数の1つの変数である焦点外れ量
を、レンズ励磁電流を微変動させることによつて変化さ
せ、種々の焦点外れ量における伝達関数を加え合わせる
ことによつて伝達関数を平滑化する。第1図(a)に示し
たT(ΔF)を、観察を行なつている時の焦点外れ量Δ
Fに対応する伝達関数とすれば、これの逆位相の関係に
ある様な、焦点外れ量ΔF+ΔFfにおける伝達関数
T(ΔF+Δf)(第1図(b))を加え合わせると、
第1図(c)に示すT(ΔF)+T(ΔF+Δf)なる
振幅の減少した伝達関数が得られる。この際に、位相差
コントラストとして問題となるのは数Å以上の大きな周
期構造であるから、それらの振幅を約20%以下に低減
させる様な伝達関数を用いる。また、1つの伝達関数を
加え合わたのみでは全ての振幅を減衰させるとはできな
いので、各周期における振幅を各々減衰させる複数個の
伝達関数を用いる。
In the present invention, the defocus amount, which is one variable of the transfer function, is changed by slightly changing the lens exciting current, and the transfer function is smoothed by adding the transfer functions at various defocus amounts. Turn into. Defocus amount Δ when observing T (ΔF) shown in FIG. 1 (a)
Assuming that the transfer function corresponds to F, when the transfer function T (ΔF + Δf 1 ) (FIG. 1 (b)) in the defocus amount ΔF + ΔFf 1 which has the relationship of the opposite phase is added,
A transfer function with a reduced amplitude of T (ΔF) + T (ΔF + Δf 1 ) shown in FIG. 1 (c) is obtained. At this time, since a phase difference contrast has a problem in a large periodic structure of several Å or more, a transfer function that reduces the amplitude of the periodic structure to about 20% or less is used. Further, since it is not possible to attenuate all the amplitudes by adding only one transfer function, a plurality of transfer functions that respectively attenuate the amplitudes in each cycle are used.

以上の様な各伝達関数に対応する焦点外れ量は(ΔF+
Δf),(ΔF+Δf),(ΔF+Δf)…と書
くことができる。Δf,Δf,Δf…の焦点変動
は、それらに比例した量の励磁電流の微変動を、ΔFを
与える励磁電流にパルスとして重畳して得る。
The defocus amount corresponding to each transfer function as described above is (ΔF +
It can be written as Δf 1 ), (ΔF + Δf 2 ), (ΔF + Δf 3 ) .... The focus fluctuations of Δf 1 , Δf 2 , Δf 3 ... Are obtained by superimposing a minute fluctuation of the exciting current in an amount proportional thereto as a pulse on the exciting current giving ΔF.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を、第2図および第3図により説
明する。焦点外れ量ΔFの焦点条件である対物レンズ励
磁電流に、第2図のごとき焦点距離の微変動Δfを与え
る様なパルスを重畳したとき、対物レンズの伝達関数は
パルスを重畳しない場合の伝達関数(1)式に対して(2)式
の様に書ける。例えばΔF=0Å,Δf=1000
Å,Δf=2500Å,Δf=−500Å,Δf
=−2000Åとした時には、第3図に示す様に、(1)
式に対する伝達関数(a)は(b)の様に変化し、特定の周波
数に対して表われていたピークすなわち位相差コントラ
ストは、全周波数に渡つて低減する。励磁電流の微変動
に対する位相差コントラストの消失の度合は、焦点外れ
量ΔFおよび重畳するパルスの波形を適当に選ぶことに
よつて、更に効果的なものとすることができる。
Embodiments of the present invention will be described below with reference to FIGS. 2 and 3. When a pulse that gives a slight variation Δf of the focal length as shown in FIG. 2 is superimposed on the objective lens exciting current, which is the focus condition of the defocus amount ΔF, the transfer function of the objective lens is the transfer function when the pulse is not superimposed. Expression (2) can be written for expression (1). For example, ΔF = 0Å, Δf 1 = 1000
Å, Δf 2 = 2500Å, Δf 3 = −500Å, Δf 4
== − 2000Å, as shown in Fig. 3, (1)
The transfer function (a) with respect to the equation changes as shown in (b), and the peak, that is, the phase difference contrast that appears for a specific frequency decreases over all frequencies. The degree of disappearance of the phase difference contrast with respect to the minute fluctuation of the exciting current can be made more effective by appropriately selecting the defocus amount ΔF and the waveform of the pulse to be superimposed.

λ:電子線の波長 C:球面収差係数 α:電子線の散乱角 〔発明の効果〕 本発明によれば、透過形電子顕微鏡によつて高分解能観
察をする場合に、非干渉または部分的干渉である像とし
て観察することができ、従来非晶質支持膜上の金属粒子
などの微細構造を判定する際に大きな障害となつていた
位相差コントラストを目的に応じて適当に低減させて、
微細構造を正確に解析することができる。また、本発明
は、従来形の電子顕微鏡にパルス状の変調電流に重畳す
る電気回路を付加するだけで、比較的容易にかつ安価な
コストで装置を構成することができる。
λ: Wavelength of electron beam C s : Spherical aberration coefficient α: Scattering angle of electron beam [Effect of the Invention] According to the present invention, when high-resolution observation is performed by a transmission electron microscope, non-interference or partial It can be observed as an image that is an interference, by appropriately reducing the phase difference contrast, which has been a major obstacle in determining the fine structure of metal particles on an amorphous support film, according to the purpose.
The fine structure can be analyzed accurately. Further, according to the present invention, the device can be configured relatively easily and at a low cost simply by adding an electric circuit for superimposing a pulsed modulation current to the conventional electron microscope.

【図面の簡単な説明】[Brief description of drawings]

第1図は、焦点外れ量の異なる伝達関数を加え合せて振
幅を低減させることを説明するための説明図、第2図は
対物レンズ励磁電流に微変動を与えるパルス波形図、第
3図は、対物レンズの伝達関数を示す図である。
FIG. 1 is an explanatory diagram for explaining how to reduce the amplitude by adding transfer functions having different defocus amounts, FIG. 2 is a pulse waveform diagram which gives a slight fluctuation to the objective lens exciting current, and FIG. 3 is FIG. 4 is a diagram showing a transfer function of an objective lens.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−139458(JP,A) 安達、石原、小野、田辺、四本 共著 「電子顕微鏡利用の基礎」共立出版(昭51 −8−1),P.347−352 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-54-139458 (JP, A) Adachi, Ishihara, Ono, Tanabe, Shimoto Co-authored "Basics of Using Electron Microscope" Kyoritsu Publishing (Sho 51-8-1) ), P. 347-352

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】磁界型対物レンズを使用した透過形電子顕
微鏡を用いて試料の透過電子顕微鏡像を観察するに際し
て、上記レンズの励磁電流に、焦点外れ量が直線状に変
化する部分を有するパルス状の焦点外れ量変化を与える
ように変調電流を重畳させて、得られる透過電子顕微鏡
像における位相差コントラストを低減させてなることを
特徴とする高分解能非干渉像の観察法。
1. When observing a transmission electron microscope image of a sample by using a transmission electron microscope using a magnetic field type objective lens, a pulse having a portion where the defocus amount linearly changes in the exciting current of the lens. A method for observing a high-resolution non-interferometric image, which comprises superimposing a modulation current so as to give a change in the amount of defocus, and reducing the phase contrast in the obtained transmission electron microscope image.
JP58102604A 1983-06-10 1983-06-10 High-resolution non-interferometric image observation method Expired - Lifetime JPH0616403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102604A JPH0616403B2 (en) 1983-06-10 1983-06-10 High-resolution non-interferometric image observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102604A JPH0616403B2 (en) 1983-06-10 1983-06-10 High-resolution non-interferometric image observation method

Publications (2)

Publication Number Publication Date
JPS59228350A JPS59228350A (en) 1984-12-21
JPH0616403B2 true JPH0616403B2 (en) 1994-03-02

Family

ID=14331836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102604A Expired - Lifetime JPH0616403B2 (en) 1983-06-10 1983-06-10 High-resolution non-interferometric image observation method

Country Status (1)

Country Link
JP (1) JPH0616403B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7804038A (en) * 1978-04-17 1979-10-19 Philips Nv ELECTRONIC MICROSKOP.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安達、石原、小野、田辺、四本共著「電子顕微鏡利用の基礎」共立出版(昭51−8−1),P.347−352

Also Published As

Publication number Publication date
JPS59228350A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
EP0378237B1 (en) Reflection electron holography apparatus
US8115806B2 (en) Image forming method and microscope device
US20050168808A1 (en) Methods for implement microscopy and microscopic measurement as well as microscope and apparatus for implementing them
JP2946466B2 (en) Microscopy method and apparatus
Hegedus Annular pupil arrays
EP0101474A1 (en) Apparatus and method for measuring the refraction
US4744660A (en) Apparatus for measuring difference in shallow level
DE3029716A1 (en) METHOD AND DEVICE FOR THE AUTOMATIC MAINTENANCE OF ADJUSTMENT OF THE COVER AND THE RELATIVE PHASE POSITION OF LIGHT BEAMS IN AN OPTICAL INTERFEROMETER USED FOR ULTRASONIC RECEPTION
EP0353495A2 (en) Arrangement for obtaining an optical image contrast
DE19748503B4 (en) Projection exposure apparatus and projection exposure method
US4472023A (en) High resolution image forming optical system
WO2003095996A1 (en) Dual spot phase-sensitive detection
EP0776457B1 (en) Method and interference microscope for imaging an object, with the aim of achieving a resolution beyond the diffraction limit
Wilson et al. Difference confocal scanning microscopy
JP4582762B2 (en) Microscope observation method and microscope for using the same
JPH0616403B2 (en) High-resolution non-interferometric image observation method
Aime et al. Measurements of stellar speckle interferometry lens-atmosphere modulation transfer function
JPH01158578A (en) Object point successive scanner
DE2710795A1 (en) METHOD AND DEVICE FOR MEASURING THE DISPLACEMENT OR VIBRATIONS OF A SURFACE
JP3217097B2 (en) High resolution microscope
DE2413690A1 (en) OPTICAL DIFFACTOMETER
JP4370636B2 (en) Phase difference observation device
SU684647A1 (en) Phase filter for optical correction of electron microscopic image
JP2004184447A (en) Optical address spatial light modulator and microscope system using the same
JP2003131138A (en) Image forming optical device