JPH06163934A - Semiconductor acceleration sensor and fabrication thereof - Google Patents

Semiconductor acceleration sensor and fabrication thereof

Info

Publication number
JPH06163934A
JPH06163934A JP4305709A JP30570992A JPH06163934A JP H06163934 A JPH06163934 A JP H06163934A JP 4305709 A JP4305709 A JP 4305709A JP 30570992 A JP30570992 A JP 30570992A JP H06163934 A JPH06163934 A JP H06163934A
Authority
JP
Japan
Prior art keywords
movable electrode
acceleration sensor
fixed electrodes
silicon substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4305709A
Other languages
Japanese (ja)
Inventor
Yoshinori Otsuka
義則 大塚
Yukihiro Takeuchi
竹内  幸裕
Toshimasa Yamamoto
山本  敏雅
Kazuhiko Kano
加納  一彦
Shigeyuki Akita
成行 秋田
Tadashi Hattori
服部  正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4305709A priority Critical patent/JPH06163934A/en
Publication of JPH06163934A publication Critical patent/JPH06163934A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE:To provide a semiconductor acceleration sensor, and fabrication thereof, in which capacitances between a movable electrode and a pair of fixed electrodes can be equalized with reduced number of substrates. CONSTITUTION:A dielectric film is formed on the main surface o a P-type silicon substrate and a beam type movable electrode is formed thereon. Impurities are then diffused into the substrate while self-aligning with the movable electrode to form fixed electrodes on the opposite sides of the movable electrode and then the dielectric film underneath the fixed electrodes is removed by etching. The semiconductor acceleration sensor comprising the P-type silicon substrate 1, the movable electrode 4 of beam structure arranged above the substrate 1 through a predetermined gap, and the fixed electrodes 8, 9 formed of an impurity diffused layer on the opposite sides of the movable electrode 4 while being self-aligned therewith detects acceleration based on the variation (increase/ decrease) of capacitances between the movable electrode 4 and two fixed electrodes 8, 9 caused by displacement of the movable electrode 4 due to acceleration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体加速度センサ
に係り、特に、自動車の車体制御、エンジン制御、エア
バック制御等に好適な半導体加速度センサ及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor acceleration sensor, and more particularly to a semiconductor acceleration sensor suitable for vehicle body control, engine control, airbag control and the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術】自動車用の加速度センサに要求される性
能としては、比較的低レベルの加速度(0〜±1G)を
低レベルの周波数(0〜100Hz)で精度よく検出す
ることが挙げられる。尚、ここで1Gは加速度の単位
で、9.8m/sec2 を表す。
2. Description of the Related Art Performance required for an acceleration sensor for an automobile is to detect a relatively low level acceleration (0 to ± 1 G) at a low level frequency (0 to 100 Hz) with high accuracy. Here, 1 G is a unit of acceleration and represents 9.8 m / sec 2 .

【0003】ところで、このような加速度センサとして
は、従来から圧電効果を利用した圧電式、差動トランス
を利用した磁気式、あるいは半導体式でシリコンの微細
加工技術を駆使した半導体歪ゲージ式や静電容量式等が
広く知られている。この中でも低加速度レベル、低周波
数レベルを精度よく検出でき、安価で大量生産に向く方
式としては、半導体式が最も有望と考えられている。特
に、静電容量式は歪みゲージ式に比較して、検出感度が
大きく温度特性も良好であるという特徴を有している。
By the way, as such an acceleration sensor, conventionally, a piezoelectric type utilizing a piezoelectric effect, a magnetic type utilizing a differential transformer, or a semiconductor type such as a semiconductor strain gauge type utilizing a fine processing technology of silicon or a static type is used. The capacitance type and the like are widely known. Among these, the semiconductor method is considered to be the most promising as a method that can detect the low acceleration level and the low frequency level with high accuracy and is inexpensive and suitable for mass production. In particular, the capacitance type has a feature that the detection sensitivity is large and the temperature characteristic is good as compared with the strain gauge type.

【0004】このような静電容量型加速度センサの従来
例として特開平2−134570号公報に開示されてい
るものを図16に示す。図16において静電容量型加速
度センサの検出部は3枚のシリコン基板71,72,7
3を絶縁膜である熱酸化膜74を介して直接張り合わ
せ、接合したものである。シリコン基板71には、エッ
チング加工により、接合前にシリコンビーム(梁状部)
75と可動電極76が予め形成されている。さらに、シ
リコン基板72,73にも接合前に予めポリシリコンに
よる固定電極77,78が形成されている。重りの機能
を有する可動電極76はシリコンビーム75によって支
持されており、これに作用する図の上下方向の加速度の
大きさに応じて、可動電極76と固定電極77,78と
の間の空隙の寸法が変化する。即ち、検出部に作用する
加速度に応じて空隙部の静電容量が変化し、この変化を
ボンディングパッド79を介して、外部の電子回路に取
り出すことで加速度を検出しようとするものである。
FIG. 16 shows a conventional example of such a capacitance type acceleration sensor disclosed in Japanese Patent Application Laid-Open No. 2-134570. In FIG. 16, the detection portion of the capacitance type acceleration sensor is composed of three silicon substrates 71, 72, 7
3 is directly bonded and joined through the thermal oxide film 74 which is an insulating film. A silicon beam (beam-shaped portion) is formed on the silicon substrate 71 by etching before joining.
75 and the movable electrode 76 are formed in advance. Further, fixed electrodes 77 and 78 made of polysilicon are formed in advance on the silicon substrates 72 and 73 before bonding. The movable electrode 76 having the function of a weight is supported by the silicon beam 75, and the gap between the movable electrode 76 and the fixed electrodes 77 and 78 is determined depending on the magnitude of the vertical acceleration acting on the silicon beam 75. The dimensions change. That is, the capacitance of the void changes according to the acceleration acting on the detection unit, and the change is taken out to the external electronic circuit via the bonding pad 79 to detect the acceleration.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな構成の静電容量型加速度センサにおいては、シリコ
ン基板自身を加工してビームを形成するために生じる高
度な加工技術の要求や製造コストの増大を招いていた。
However, in the electrostatic capacitance type acceleration sensor having such a structure, there is a demand for advanced processing technology and an increase in manufacturing cost that are generated for processing the silicon substrate itself to form a beam. Was invited.

【0006】つまり、可動電極を形成するシリコン基板
1枚と固定電極を形成するシリコン基板二枚の合計3枚
のシリコン基板が必要であり、低コスト化が困難であっ
た。さらに、熱酸化膜を介してシリコン基板同士を接合
しなければならないため、プロセス上の熱的制約を受け
るだけでなく、可動電極76と固定電極77,78の位
置決め精度が劣るという問題点もあった。
That is, a total of three silicon substrates, that is, one silicon substrate for forming the movable electrode and two silicon substrates for forming the fixed electrode are required, which makes it difficult to reduce the cost. Further, since the silicon substrates must be bonded to each other via the thermal oxide film, there is a problem that not only the thermal restrictions in the process are imposed but also the positioning accuracy of the movable electrode 76 and the fixed electrodes 77 and 78 is deteriorated. It was

【0007】そこで、この発明の目的は、より少ない基
板数で、かつ、一対の固定電極と可動電極との間の二つ
の静電容量を容易に等しくできる半導体加速度センサと
その製造方法を提供することにある。
Therefore, an object of the present invention is to provide a semiconductor acceleration sensor with a smaller number of substrates and capable of easily equalizing two electrostatic capacitances between a pair of a fixed electrode and a movable electrode, and a manufacturing method thereof. Especially.

【0008】[0008]

【課題を解決するための手段】第1の発明は、半導体基
板と、前記半導体基板の上方に所定の間隔を隔てて配置
された梁構造の可動電極と、前記半導体基板における前
記可動電極の両側に可動電極に対し自己整合的に形成さ
れた不純物拡散層よりなる固定電極とを備え、加速度の
作用に伴う前記可動電極の変位によって生じる前記可動
電極と前記二つの固定電極の間の二つの静電容量の変化
で加速度を検出するようにした半導体加速度センサをそ
の要旨とする。
According to a first aspect of the present invention, a semiconductor substrate, a movable electrode having a beam structure which is arranged above the semiconductor substrate with a predetermined space therebetween, and both sides of the movable electrode in the semiconductor substrate. A fixed electrode composed of an impurity diffusion layer formed in self-alignment with the movable electrode, and two static electrodes between the movable electrode and the two fixed electrodes caused by displacement of the movable electrode due to the action of acceleration. The gist of the invention is a semiconductor acceleration sensor that detects acceleration based on a change in capacitance.

【0009】第2の発明は、 半導体基板の主表面に犠
牲層を形成する第1工程と、前記犠牲層上に梁形状の可
動電極を形成する第2工程と、前記可動電極に対し自己
整合的に半導体基板に不純物を拡散して可動電極の両側
において固定電極を形成する第3工程と、前記可動電極
の変位に伴う前記可動電極と前記二つの固定電極間の二
つの静電気容量の変化を検出できるように、前記可動電
極の下の前記犠牲層をエッチング除去する第4工程とを
備えた半導体加速度センサの製造方法をその要旨とする
ものである。
According to a second aspect of the invention, a first step of forming a sacrificial layer on a main surface of a semiconductor substrate, a second step of forming a beam-shaped movable electrode on the sacrificial layer, and a self-alignment with the movable electrode. A third step of diffusing impurities into a semiconductor substrate to form fixed electrodes on both sides of the movable electrode; and a change in two electrostatic capacitances between the movable electrode and the two fixed electrodes due to displacement of the movable electrode. A gist is a method of manufacturing a semiconductor acceleration sensor, which comprises a fourth step of etching and removing the sacrificial layer under the movable electrode so as to be detected.

【0010】[0010]

【作用】第1の発明において、加速度が作用すると、可
動電極が変位し可動電極と二つの固定電極の間の二つの
静電容量が変化する。この静電容量の変化により加速度
が検出される。
In the first aspect of the invention, when the acceleration acts, the movable electrode is displaced and the two capacitances between the movable electrode and the two fixed electrodes are changed. Acceleration is detected by the change in the capacitance.

【0011】第2の発明において、第1工程により半導
体基板の主表面に犠牲層が形成され、第2工程により犠
牲層上に梁形状の可動電極が形成される。そして、第3
工程により可動電極に対し自己整合的に半導体基板に不
純物が拡散され可動電極の両側において固定電極が形成
される。さらに、第4工程により可動電極の下の犠牲層
がエッチング除去され、可動電極の変位に伴う可動電極
と二つの固定電極間の二つの静電気容量の変化が検出可
能となる。その結果、第1の発明の半導体加速度センサ
が製造される。
In the second invention, the sacrificial layer is formed on the main surface of the semiconductor substrate in the first step, and the beam-shaped movable electrode is formed on the sacrificial layer in the second step. And the third
By the process, impurities are diffused in the semiconductor substrate in a self-aligning manner with respect to the movable electrode, and fixed electrodes are formed on both sides of the movable electrode. Further, in the fourth step, the sacrificial layer under the movable electrode is removed by etching, and it becomes possible to detect the change in the two electrostatic capacitances between the movable electrode and the two fixed electrodes due to the displacement of the movable electrode. As a result, the semiconductor acceleration sensor of the first invention is manufactured.

【0012】[0012]

【実施例】【Example】

(第1実施例)以下、この発明を具体化した一実施例を
図面に従って説明する。
(First Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は、半導体加速度センサの平面図を示
す。又、図2には図1のA−A断面を示し、図3には図
1のB−B断面を示す。P型シリコン基板1上には絶縁
膜2が形成され、絶縁膜2はSiO2 、Si3 4等よ
りなる。又、P型シリコン基板1上には、絶縁膜2の無
い長方形状の領域、即ち、空隙部3が形成されている
(図1参照)。絶縁膜2の上には、空隙部3を架設する
ように両持ち梁構造の可動電極4が配置されている。こ
の可動電極4は棒状のポリシリコンよりなる。このよう
に、絶縁膜2によりP型シリコン基板1と可動電極4と
が絶縁されている。
FIG. 1 shows a plan view of a semiconductor acceleration sensor. Further, FIG. 2 shows an AA cross section of FIG. 1, and FIG. 3 shows a BB cross section of FIG. An insulating film 2 is formed on the P-type silicon substrate 1, and the insulating film 2 is made of SiO 2 , Si 3 N 4, or the like. Further, a rectangular region without the insulating film 2, that is, a void portion 3 is formed on the P-type silicon substrate 1 (see FIG. 1). On the insulating film 2, a movable electrode 4 having a double-supported beam structure is arranged so as to bridge the void 3. The movable electrode 4 is made of rod-shaped polysilicon. Thus, the insulating film 2 insulates the P-type silicon substrate 1 and the movable electrode 4 from each other.

【0014】尚、可動電極4の下部における絶縁膜2の
空隙部3は、犠牲層としてエッチングされることにより
形成されたものである。この犠牲層エッチングの際に
は、エッチング液として、可動電極4がエッチングされ
ず、犠牲層である絶縁層2がエッチングされるエッチン
グ液が使用される。
The void portion 3 of the insulating film 2 below the movable electrode 4 is formed by etching as a sacrificial layer. During the sacrifice layer etching, an etching solution that does not etch the movable electrode 4 but etches the insulating layer 2 that is the sacrifice layer is used as the etching solution.

【0015】又、絶縁膜2上には層間絶縁膜5が配置さ
れ、その上にはコンタクトホール7を介して可動電極4
と電気的接続するためのアルミ配線6が配置されてい
る。図3において、P型シリコン基板1には不純物拡散
層からなる固定電極8,9が形成され、この固定電極
8,9はP型シリコン基板1にイオン注入等によりN型
不純物を導入することによって形成されたものである。
An interlayer insulating film 5 is arranged on the insulating film 2, and a movable electrode 4 is formed on the interlayer insulating film 5 via a contact hole 7.
Aluminum wiring 6 for electrically connecting with is arranged. In FIG. 3, fixed electrodes 8 and 9 made of an impurity diffusion layer are formed on the P-type silicon substrate 1. The fixed electrodes 8 and 9 are formed by introducing N-type impurities into the P-type silicon substrate 1 by ion implantation or the like. It was formed.

【0016】尚、可動電極(両持ち梁)4はポリシリコ
ンの他にも、タングステン等の耐熱金属を用いてもよ
い。又、図1に示すように、P型シリコン基板1には不
純物拡散層からなる配線10,11が形成され、配線1
0,11はP型シリコン基板1にイオン注入等によりN
型不純物を導入することによって形成されたものであ
る。そして、固定電極8と配線10とは電気的に接続さ
れるとともに固定電極9と配線11とは電気的に接続さ
れている。
The movable electrode (double-supported beam) 4 may be made of refractory metal such as tungsten instead of polysilicon. Further, as shown in FIG. 1, wirings 10 and 11 made of an impurity diffusion layer are formed on the P-type silicon substrate 1, and the wiring 1
0 and 11 are N by the ion implantation etc. to the P type silicon substrate 1.
It is formed by introducing a type impurity. The fixed electrode 8 and the wiring 10 are electrically connected, and the fixed electrode 9 and the wiring 11 are electrically connected.

【0017】さらに、配線10はコンタクトホール12
を介してアルミ配線13と電気的に接続されている。
又、配線11はコンタクトホール14を介してアルミ配
線15と電気的に接続されている。そして、アルミ配線
13,15及び6は外部の電子回路と接続されている。
Further, the wiring 10 has a contact hole 12
It is electrically connected to the aluminum wiring 13 via.
Further, the wiring 11 is electrically connected to the aluminum wiring 15 through the contact hole 14. The aluminum wirings 13, 15 and 6 are connected to an external electronic circuit.

【0018】次に、このような半導体加速度センサの製
造工程を図4〜図12にを用いて説明する。まず、図4
に示すように、P型シリコン基板16を用意し、固定電
極の配線部分となるN型拡散層17をフォトリソ工程を
経てイオン注入等により形成する。そして、図5に示す
ように、P型シリコン基板16上に、その一部が犠牲層
となる絶縁膜18を成膜するとともに、その上にポリシ
リコン19を成膜する。
Next, a manufacturing process of such a semiconductor acceleration sensor will be described with reference to FIGS. First, FIG.
As shown in FIG. 5, a P-type silicon substrate 16 is prepared, and an N-type diffusion layer 17 which will be a wiring portion of a fixed electrode is formed by ion implantation or the like through a photolithography process. Then, as shown in FIG. 5, on the P-type silicon substrate 16, an insulating film 18 of which a part serves as a sacrifice layer is formed, and a polysilicon 19 is formed thereon.

【0019】さらに、図6に示すように、ポリシリコン
19を両持ち梁形状の可動電極20となるようにフォト
リソ工程を経て加工する。引き続き、図7に示すよう
に、N型拡散層からなる固定電極を形成するために、フ
ォトリソ工程を経て絶縁層18に開口部21を可動電極
20に対して自己整合的に形成する。
Further, as shown in FIG. 6, the polysilicon 19 is processed through a photolithography process so as to form a movable electrode 20 having a doubly supported beam shape. Subsequently, as shown in FIG. 7, in order to form a fixed electrode made of an N-type diffusion layer, an opening 21 is formed in the insulating layer 18 in a self-aligned manner with respect to the movable electrode 20 through a photolithography process.

【0020】そして、図8に示すように、絶縁層18の
開口部21に可動電極20に対して自己整合的にイオン
注入等によって不純物を導入し、N型拡散層からなる固
定電極22,23を形成する。さらに、図9に示すよう
に、P型シリコン基板16上に可動電極20とアルミ配
線を電気的に絶縁するための層間絶縁膜24を成膜す
る。
Then, as shown in FIG. 8, impurities are introduced into the opening 21 of the insulating layer 18 by self-aligned ion implantation or the like with respect to the movable electrode 20, and the fixed electrodes 22 and 23 made of N type diffusion layers. To form. Further, as shown in FIG. 9, an interlayer insulating film 24 for electrically insulating the movable electrode 20 and the aluminum wiring is formed on the P-type silicon substrate 16.

【0021】次に、図10に示すように、層間絶縁膜2
4に固定電極22,23とアルミ配線を電気的に接続す
るためのコンタクトホール25をフォトリソ工程を経て
加工する。そして、図11に示すように、電極材料であ
るアルミニウムを成膜して、フォトリソ工程を経てアル
ミ配線26を形成する。
Next, as shown in FIG. 10, the interlayer insulating film 2
A contact hole 25 for electrically connecting the fixed electrodes 22 and 23 to the aluminum wiring is processed in 4 through a photolithography process. Then, as shown in FIG. 11, aluminum which is an electrode material is formed into a film, and an aluminum wiring 26 is formed through a photolithography process.

【0022】引き続き、図12に示すように、最後に層
間絶縁膜24の一部と絶縁層18の一部である犠牲層を
エッチングする。その結果、半導体加速度センサの作製
工程が終了する。
Then, as shown in FIG. 12, finally, a part of the interlayer insulating film 24 and a part of the insulating layer 18 are etched. As a result, the manufacturing process of the semiconductor acceleration sensor is completed.

【0023】次に、半導体加速度センサの作動を図3を
用いて説明する。可動電極(両持ち梁)4と固定電極8
は静電容量C1を形成する。さらに、可動電極4と固定
電極9は静電容量C2を形成する。
Next, the operation of the semiconductor acceleration sensor will be described with reference to FIG. Movable electrode (double-supported beam) 4 and fixed electrode 8
Forms a capacitance C1. Further, the movable electrode 4 and the fixed electrode 9 form a capacitance C2.

【0024】そして、本加速度センサが加速度を受け
て、図中に示すX方向に可動電極4が変位した場合に
は、静電容量C1は減少し、静電容量C2は逆に増大す
る。一方、本加速度センサが加速度を受けて、図中に示
すZ方向に可動電極4が変位した場合には、静電容量C
1と静電容量C2は同時に減少する。このように本加速
度センサは2個の静電容量の増減で2次元の加速度を検
出することができる。
When the present acceleration sensor receives acceleration and the movable electrode 4 is displaced in the X direction shown in the figure, the electrostatic capacitance C1 decreases and the electrostatic capacitance C2 increases conversely. On the other hand, when the movable electrode 4 is displaced in the Z direction shown in the figure due to the acceleration of this acceleration sensor, the capacitance C
1 and the capacitance C2 decrease at the same time. As described above, this acceleration sensor can detect a two-dimensional acceleration by increasing / decreasing the two electrostatic capacitances.

【0025】このように本実施例では、P型シリコン基
板16(半導体基板)の主表面に絶縁膜18(犠牲層)
を形成し(第1工程)、絶縁膜18(犠牲層)上に梁形
状の可動電極20を形成し(第2工程)、可動電極20
に対し自己整合的にP型シリコン基板16(半導体基
板)に不純物を拡散して可動電極20の両側において固
定電極22,23を形成し(第3工程)、固定電極2
2,23の下の絶縁膜18(犠牲層)をエッチング除去
した(第4工程)。
As described above, in this embodiment, the insulating film 18 (sacrificial layer) is formed on the main surface of the P-type silicon substrate 16 (semiconductor substrate).
Is formed (first step), the beam-shaped movable electrode 20 is formed on the insulating film 18 (sacrificial layer) (second step), and the movable electrode 20 is formed.
On the other hand, the fixed electrodes 22 and 23 are formed on both sides of the movable electrode 20 by diffusing impurities into the P-type silicon substrate 16 (semiconductor substrate) in a self-aligned manner (third step).
The insulating film 18 (sacrificial layer) under the layers 2 and 23 was removed by etching (fourth step).

【0026】その結果、図1〜図3に示すように、P型
シリコン基板1(半導体基板)と、P型シリコン基板1
(半導体基板)の上方に所定の間隔を隔てて配置された
梁構造の可動電極4と、P型シリコン基板1(半導体基
板)における可動電極4の両側に可動電極4に対し自己
整合的に形成された不純物拡散層よりなる固定電極8,
9とを備え、加速度の作用に伴う可動電極4の変位によ
って生じる可動電極4と二つの固定電極8,9の間の二
つの静電容量の変化(増減)で加速度を検出するように
した。
As a result, as shown in FIGS. 1 to 3, a P-type silicon substrate 1 (semiconductor substrate) and a P-type silicon substrate 1 are used.
A movable electrode 4 having a beam structure, which is arranged above the (semiconductor substrate) with a predetermined gap, and formed on both sides of the movable electrode 4 in the P-type silicon substrate 1 (semiconductor substrate) in a self-aligned manner with respect to the movable electrode 4. Fixed electrode 8 consisting of a doped impurity diffusion layer,
9 is provided, and the acceleration is detected by the change (increase / decrease) in the two capacitances between the movable electrode 4 and the two fixed electrodes 8 and 9 caused by the displacement of the movable electrode 4 due to the action of the acceleration.

【0027】このように、梁(ビーム)を形成する材料
としてシリコン基板を使用せず、シリコン基板上に成膜
した薄膜、例えば高精度に不純物をドープしたポリシリ
コン(あるいは耐熱性の金属のような材料)を使用し
た。よって、可動電極を形成するための梁の厚さのばら
つきを低減させることができる。一般的に片持ち梁や両
持ち梁に一点荷重が加わった場合、その変位は梁の厚さ
の3乗とビームの幅の1乗に反比例する。このためビー
ムの厚さの加工は、梁の幅の加工に比較して非常に精度
が要求される。本実施例では梁の厚さを従来のようにエ
ッチングで制御するものでなく、薄膜の堆積膜厚で制御
するものであり、その方法による膜厚制御性がエッチン
グによる方法に比較して著しく良好なため、可動電極に
加速度が印加された時の可動電極の変位の値の制御性を
著しく向上させることができる。
As described above, a silicon substrate is not used as a material for forming a beam, but a thin film formed on the silicon substrate, for example, polysilicon doped with impurities with high precision (or heat resistant metal Material) was used. Therefore, it is possible to reduce the variation in the thickness of the beam for forming the movable electrode. Generally, when a one-point load is applied to a cantilever beam or a double-supported beam, the displacement is inversely proportional to the cube of the beam thickness and the beam width to the first power. Therefore, the processing of the thickness of the beam requires much higher accuracy than the processing of the width of the beam. In this embodiment, the thickness of the beam is not controlled by etching as in the past, but is controlled by the thickness of the deposited thin film, and the film thickness controllability by this method is significantly better than that by etching. Therefore, the controllability of the displacement value of the movable electrode when acceleration is applied to the movable electrode can be significantly improved.

【0028】又、梁を形成するために、予め犠牲層を成
膜した後に梁の材料を成膜し、梁の形状を形成した後に
犠牲層をエッチングで除去した。ここで、一般的に犠牲
層とは可動部を形成するために、最終的に除去消失させ
ることを目的として予め形成する薄膜層のことをいう。
よって、固定電極と可動電極の間の空隙のばらつきを低
減させることが可能となる。一般的に平行平板のコンデ
ンサの静電容量は、空隙の大きさに反比例する。本実施
例は空隙の大きさを犠牲層の膜厚で制御するものであ
り、その方法による膜厚制御性が良好なため、固定電極
と可動電極の間の静電容量の値の制御性を著しく向上さ
せることができる。
In order to form the beam, a sacrificial layer was formed in advance, a beam material was formed, the beam shape was formed, and then the sacrificial layer was removed by etching. Here, the sacrificial layer generally refers to a thin film layer formed in advance for the purpose of finally removing and eliminating the sacrificial layer to form the movable portion.
Therefore, it is possible to reduce the variation in the gap between the fixed electrode and the movable electrode. Generally, the capacitance of a parallel plate capacitor is inversely proportional to the size of the air gap. In this example, the size of the void is controlled by the film thickness of the sacrificial layer. Since the film thickness controllability by this method is good, the controllability of the capacitance value between the fixed electrode and the movable electrode can be improved. It can be significantly improved.

【0029】さらに、可動電極を形成するビームに対し
て垂直方向に相対するシリコン基板に1対の固定電極を
設け、一つの可動電極と二つの固定電極の間に生じる二
つの静電容量を形成した。よって、二つの静電容量の増
減から梁の水平および垂直それぞれの方向の加速度を検
出することが可能となる。即ち、二つの静電容量が同相
で変化した場合には、梁は垂直方向に変位し、逆に二つ
の静電容量が逆相で変化した場合には、梁は水平方向に
変位したものとして加速度を検出することができる。こ
のことは一つの加速度検出構成で2次元の検出方向をも
つことを可能とするものである。
Further, a pair of fixed electrodes is provided on a silicon substrate facing in the direction perpendicular to the beam forming the movable electrode, and two electrostatic capacitances formed between one movable electrode and two fixed electrodes are formed. did. Therefore, it is possible to detect the acceleration in the horizontal and vertical directions of the beam from the increase and decrease of the two capacitances. That is, if the two capacitances change in the same phase, the beam is displaced in the vertical direction, and if the two capacitances change in the opposite phase, the beam is displaced in the horizontal direction. Acceleration can be detected. This makes it possible to have a two-dimensional detection direction with one acceleration detection configuration.

【0030】さらには、二つの固定電極は可動電極とな
る梁の形状を形成した後に自己整合的に形成する拡散層
で構成した。このような方法は可動電極となる梁の形状
を形成し、シリコン基板上で固定電極となる部分の上の
犠牲層を窓開けした後、固定電極となる部分にイオン注
入で不純物を導入することで容易に達成される。よっ
て、加速度が全く印加されていない時、あるいは水平方
向に加速度が印加されていない時の固定電極と可動電極
の間の二つの静電容量を容易に一致させることができ
る。このことは僅かな静電容量の変化を検出する電子回
路の設計を著しく容易にし、例えばオフセットの調整回
路等の補償回路を不要にすることを可能にするものであ
る。 (第2実施例)次に、第2実施例を第1実施例との相違
点を中心に説明する。
Further, the two fixed electrodes are composed of a diffusion layer which is formed in a self-aligning manner after forming the shape of a beam to be a movable electrode. In such a method, a beam shape to be a movable electrode is formed, a sacrifice layer above a portion to be a fixed electrode on a silicon substrate is opened, and then an impurity is introduced into the portion to be a fixed electrode by ion implantation. Easily achieved with. Therefore, it is possible to easily match the two capacitances between the fixed electrode and the movable electrode when no acceleration is applied or when acceleration is not applied in the horizontal direction. This remarkably facilitates the design of an electronic circuit that detects a slight change in capacitance, and makes it possible to eliminate a compensation circuit such as an offset adjustment circuit. (Second Embodiment) Next, the second embodiment will be described focusing on the differences from the first embodiment.

【0031】図1に示す第1実施例では、1本の両持ち
梁が弾性体としての機能と重りとしての機能を有してい
る。これに対し、図13に示す第2実施例では弾性体と
しての機能を有する4本の梁部27と、重りとしての機
能を有する3本の質量部28とで、ポリシリコンよりな
る可動電極29を形成している。質量部28の下部のP
型シリコン基板30にはその両側にN型拡散層よりなる
固定電極31,32が可動電極29の質量部28に対し
て自己整合的に形成されている。
In the first embodiment shown in FIG. 1, one double-supported beam has a function as an elastic body and a function as a weight. On the other hand, in the second embodiment shown in FIG. 13, a movable electrode 29 made of polysilicon is composed of four beam portions 27 having a function as an elastic body and three mass portions 28 having a function as a weight. Is formed. P at the bottom of the mass part 28
Fixed electrodes 31, 32 made of N-type diffusion layers are formed on both sides of the type silicon substrate 30 in a self-aligned manner with respect to the mass portion 28 of the movable electrode 29.

【0032】それぞれの固定電極31,32は配線用の
拡散層33,34と接続されており、コンタクトホール
35,36を介してアルミ配線37,38と接続されて
いる。可動電極29はコンタクトホール39を介してア
ルミ配線40と接続されている。空隙部41は図示され
ていない絶縁膜のうち犠牲層としてエッチングされる領
域であり、犠牲層エッチングを行うことで、可動電極2
9は4ヶ所の固定端42で固定され、質量部28が可動
構造となる。
The fixed electrodes 31 and 32 are connected to wiring diffusion layers 33 and 34, and are connected to aluminum wirings 37 and 38 through contact holes 35 and 36. The movable electrode 29 is connected to the aluminum wiring 40 through the contact hole 39. The void portion 41 is a region of the insulating film (not shown) that is etched as a sacrificial layer. By performing the sacrificial layer etching, the movable electrode 2 is formed.
9 is fixed at four fixed ends 42, and the mass portion 28 has a movable structure.

【0033】本実施例では質量部28が両端固定となる
ため、犠牲層エッチング後の可動電極29の反りが抑制
できるという効果がある。 (第3実施例)次に、第3実施例を第1実施例との相違
点を中心に説明する。
In this embodiment, since the mass portion 28 is fixed at both ends, there is an effect that the warp of the movable electrode 29 after the sacrifice layer etching can be suppressed. (Third Embodiment) Next, the third embodiment will be described focusing on the differences from the first embodiment.

【0034】図14において、弾性体としての機能を揺
する2本の梁部43と重りとしての機能を有する2本の
質量部44とでポリシリコンよりなる可動電極45が形
成されている。尚、この場合には梁部43も同時に重り
としての機能も合わせ持つ。この実施例でも同様に、質
量部44の下部のP型シリコン基板46にはその両側の
N型拡散層よりなる固定電極47,48が可動電極45
の質量部44に対して自己整合的に形成されている。
In FIG. 14, the movable electrode 45 made of polysilicon is formed by the two beam portions 43 that oscillate the function of the elastic body and the two mass portions 44 that have the function of the weight. In this case, the beam portion 43 also has a function as a weight at the same time. In this embodiment as well, the fixed electrodes 47 and 48 made of N type diffusion layers on both sides of the P type silicon substrate 46 below the mass portion 44 are similarly movable electrodes 45.
Is formed in a self-aligned manner with respect to the mass portion 44 of

【0035】それぞれの拡散層47,48は配線用の拡
散層49,50と接続されており、コンタクトホール5
1,52を介してアルミ配線53,54と接続されてい
る。可動電極45はコンタクトホール55を介してアル
ミ配線56と接続されている。
The respective diffusion layers 47 and 48 are connected to wiring diffusion layers 49 and 50, and the contact holes 5 are formed.
It is connected to aluminum wirings 53 and 54 via 1, 52. The movable electrode 45 is connected to the aluminum wiring 56 through the contact hole 55.

【0036】空隙部57は図示されていない絶縁膜のう
ち犠牲層としてエッチングされる領域であり、犠牲層エ
ッチングを行なうことで、可動電極45は2ヶ所の固定
端58で固定され、質量部44が可動構造となる。本実
施例では質量部44が片端固定となるが、犠牲層エッチ
ング後の可動電極45の横方向の大きさが第2実施例に
比較して小さくできる。 (第4実施例)次に、第4実施例を第1実施例との相違
点を中心に説明する。
The void 57 is a region of the insulating film (not shown) that is etched as a sacrificial layer. By performing the sacrificial layer etching, the movable electrode 45 is fixed at the two fixed ends 58, and the mass part 44 is formed. Becomes a movable structure. Although the mass portion 44 is fixed at one end in this embodiment, the lateral size of the movable electrode 45 after the sacrifice layer etching can be made smaller than that in the second embodiment. (Fourth Embodiment) Next, the fourth embodiment will be described focusing on the differences from the first embodiment.

【0037】図7に示すように、本実施例では3次元の
加速度を検出する3次元静電容量型半導体加速度センサ
としている。シリコン基板59上には、第1実施例の静
電容量型半導体加速度センサが2つ直交する方向に延設
された状態で配置されている。
As shown in FIG. 7, in this embodiment, a three-dimensional capacitance type semiconductor acceleration sensor for detecting three-dimensional acceleration is used. On the silicon substrate 59, the electrostatic capacity type semiconductor acceleration sensor of the first embodiment is arranged in a state of being extended in two orthogonal directions.

【0038】つまり、第1のセンサ部60は、その梁の
長手方向が図中のY方向になるようにシリコン基板59
上に配置され、第2のセンサ部61は、その梁の長手方
向が図中のX方向になるようにシリコン基板59上に配
置されている。即ち、シリコン基板59上には可動電極
62,63が配置されるとともに、シリコン基板59に
は固定電極64,65,66,67が形成されている。
その他の絶縁膜、アルミ配線、コンタクトホール等は省
略されている。
In other words, the first sensor section 60 has the silicon substrate 59 so that the longitudinal direction of the beam thereof becomes the Y direction in the figure.
The second sensor section 61 is arranged on the silicon substrate 59 so that the longitudinal direction of the beam thereof is the X direction in the drawing. That is, the movable electrodes 62 and 63 are arranged on the silicon substrate 59, and the fixed electrodes 64, 65, 66 and 67 are formed on the silicon substrate 59.
Other insulating films, aluminum wiring, contact holes, etc. are omitted.

【0039】前述したように第1のセンサ部60(半導
体加速度センサ)は、可動電極62と固定電極64,6
5の間の静電容量C1,C2の増減で、X方向とZ方向
の加速度を検出することができる。さらに、第2のセン
サ部61(半導体加速度センサ)は、可動電極63と固
定電極66,67の間の静電容量C3,C4の増減で、
Y方向とZ方向の加速度を検出することができる。
As described above, the first sensor section 60 (semiconductor acceleration sensor) includes the movable electrode 62 and the fixed electrodes 64, 6.
Accelerations in the X and Z directions can be detected by increasing / decreasing the electrostatic capacitances C1 and C2 between 5. Furthermore, the second sensor unit 61 (semiconductor acceleration sensor) increases or decreases the electrostatic capacitances C3 and C4 between the movable electrode 63 and the fixed electrodes 66 and 67,
Accelerations in the Y and Z directions can be detected.

【0040】従って、このように半導体加速度センサを
同一シリコン基板上に互いに直交するように2個設置す
ることで3次元の加速度センサを実現できる。従来の加
速度センサはその検出方向がシリコン基板の垂直方向の
一方向に限定され、3次元の検出方向を有する3次元加
速度センサを構成するには、個別の加速度センサを3個
それぞれ軸方向が互いに直交する3方向、X,Y,Z方
向に配設しなければならず、センサ全体の形状が大きく
なり製造コストも増大してしまっていた。しかし、本実
施例では容易に3次元の加速度の検出が行える。
Therefore, a three-dimensional acceleration sensor can be realized by installing two semiconductor acceleration sensors on the same silicon substrate so as to be orthogonal to each other. The conventional acceleration sensor has a detection direction limited to one direction perpendicular to the silicon substrate, and in order to construct a three-dimensional acceleration sensor having a three-dimensional detection direction, three individual acceleration sensors have their respective axial directions mutually. Since it has to be arranged in three directions orthogonal to each other, that is, in the X, Y, and Z directions, the overall shape of the sensor is increased and the manufacturing cost is increased. However, in this embodiment, three-dimensional acceleration can be easily detected.

【0041】このように本実施例では、加速度センサを
同一シリコン基板上にそれぞれ90度回転させて2個配
設するようにした。よって、一つのシリコンチップ上で
3次元の加速度の検出が可能となる。
As described above, in this embodiment, two acceleration sensors are arranged on the same silicon substrate by rotating them by 90 degrees. Therefore, it is possible to detect three-dimensional acceleration on one silicon chip.

【0042】尚、この発明は上記各実施例に限定される
ものではなく、例えば、前記各実施例では半導体加速度
センサはP型基板について説明してきたが、N型基板で
は拡散層の不純物をP型にすればよい。
The present invention is not limited to the above-described embodiments. For example, although the semiconductor acceleration sensor has been described as a P-type substrate in each of the above-mentioned embodiments, the N-type substrate does not have impurities of P in the diffusion layer. Just make it into a mold.

【0043】又、図13に示す第2実施例では、可動電
極の一部となる質量部28は3本で説明したが、検出す
る静電容量の値を大きくする場合にはさらにその本数を
大きくすればよい。図14に示す第3実施例でも同様で
ある。
Further, in the second embodiment shown in FIG. 13, three mass parts 28 which are a part of the movable electrode have been described. However, when the value of the electrostatic capacitance to be detected is increased, the number of the mass parts 28 is further increased. Just make it bigger. The same applies to the third embodiment shown in FIG.

【0044】[0044]

【発明の効果】以上詳述したようにこの発明によれば、
より少ない基板数で、かつ、一対の固定電極と可動電極
との間の二つの静電容量を容易に等しくできる優れた効
果を発揮する。
As described above in detail, according to the present invention,
An excellent effect that the two capacitances between the pair of fixed electrodes and the movable electrodes can be easily equalized with a smaller number of substrates is exerted.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の半導体加速度センサの平面図であ
る。
FIG. 1 is a plan view of a semiconductor acceleration sensor according to a first embodiment.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B断面図である。FIG. 3 is a sectional view taken along line BB of FIG.

【図4】半導体加速度センサの製造工程を示す断面図で
ある。
FIG. 4 is a cross-sectional view showing the manufacturing process of the semiconductor acceleration sensor.

【図5】半導体加速度センサの製造工程を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing the manufacturing process of the semiconductor acceleration sensor.

【図6】半導体加速度センサの製造工程を示す断面図で
ある。
FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor acceleration sensor.

【図7】半導体加速度センサの製造工程を示す断面図で
ある。
FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor acceleration sensor.

【図8】半導体加速度センサの製造工程を示す断面図で
ある。
FIG. 8 is a cross-sectional view showing the manufacturing process of the semiconductor acceleration sensor.

【図9】半導体加速度センサの製造工程を示す断面図で
ある。
FIG. 9 is a cross-sectional view showing the manufacturing process of the semiconductor acceleration sensor.

【図10】半導体加速度センサの製造工程を示す断面図
である。
FIG. 10 is a cross-sectional view showing the manufacturing process of the semiconductor acceleration sensor.

【図11】半導体加速度センサの製造工程を示す断面図
である。
FIG. 11 is a cross-sectional view showing the manufacturing process of the semiconductor acceleration sensor.

【図12】半導体加速度センサの製造工程を示す断面図
である。
FIG. 12 is a cross-sectional view showing the manufacturing process of the semiconductor acceleration sensor.

【図13】第2実施例の半導体加速度センサの平面図で
ある。
FIG. 13 is a plan view of a semiconductor acceleration sensor according to a second embodiment.

【図14】第3実施例の半導体加速度センサの平面図で
ある。
FIG. 14 is a plan view of a semiconductor acceleration sensor according to a third embodiment.

【図15】第4実施例の半導体加速度センサの斜視図で
ある。
FIG. 15 is a perspective view of a semiconductor acceleration sensor according to a fourth embodiment.

【図16】従来技術による半導体加速度センサを示す断
面図である。
FIG. 16 is a sectional view showing a semiconductor acceleration sensor according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 半導体基板としてのP型シリコン基板 4 可動電極 8 固定電極 9 固定電極 16 半導体基板としてのP型シリコン基板 18 犠牲層としての絶縁膜 20 可動電極 22 固定電極 23 固定電極 1 P-type silicon substrate as a semiconductor substrate 4 Movable electrode 8 Fixed electrode 9 Fixed electrode 16 P-type silicon substrate as a semiconductor substrate 18 Insulating film as a sacrificial layer 20 Movable electrode 22 Fixed electrode 23 Fixed electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加納 一彦 愛知県刈谷市昭和町1丁目1番地 日本電 装 株式会社内 (72)発明者 秋田 成行 愛知県刈谷市昭和町1丁目1番地 日本電 装 株式会社内 (72)発明者 服部 正 愛知県刈谷市昭和町1丁目1番地 日本電 装 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Kano 1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd. (72) Inventor Shigeyuki Akita 1-1-1, Showa-cho, Kariya city, Aichi Nidec Incorporated (72) Inventor Masaru Hattori 1-1-1, Showa-cho, Kariya, Aichi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、 前記半導体基板の上方に所定の間隔を隔てて配置された
梁構造の可動電極と、 前記半導体基板における前記可動電極の両側に可動電極
に対し自己整合的に形成された不純物拡散層よりなる固
定電極とを備え、加速度の作用に伴う前記可動電極の変
位によって生じる前記可動電極と前記二つの固定電極の
間の二つの静電容量の変化で加速度を検出するようにし
たことを特徴とする半導体加速度センサ。
1. A semiconductor substrate, a movable electrode having a beam structure arranged above the semiconductor substrate at a predetermined distance, and formed on both sides of the movable electrode in the semiconductor substrate in a self-aligned manner with respect to the movable electrode. And a fixed electrode formed of an impurity diffusion layer, the acceleration being detected by a change in two capacitances between the movable electrode and the two fixed electrodes caused by displacement of the movable electrode due to the action of acceleration. A semiconductor acceleration sensor characterized in that
【請求項2】 半導体基板の主表面に犠牲層を形成する
第1工程と、 前記犠牲層上に梁形状の可動電極を形成する第2工程
と、 前記可動電極に対し自己整合的に半導体基板に不純物を
拡散して可動電極の両側において固定電極を形成する第
3工程と、 前記可動電極の変位に伴う前記可動電極と前記二つの固
定電極間の二つの静電気容量の変化を検出できるよう
に、前記可動電極の下の前記犠牲層をエッチング除去す
る第4工程とを備えたことを特徴とする半導体加速度セ
ンサの製造方法。
2. A first step of forming a sacrificial layer on the main surface of the semiconductor substrate, a second step of forming a beam-shaped movable electrode on the sacrificial layer, and a semiconductor substrate self-aligned with the movable electrode. A third step of diffusing impurities to form fixed electrodes on both sides of the movable electrode, and detecting changes in two electrostatic capacitances between the movable electrode and the two fixed electrodes due to displacement of the movable electrode. And a fourth step of etching away the sacrificial layer below the movable electrode.
JP4305709A 1992-11-16 1992-11-16 Semiconductor acceleration sensor and fabrication thereof Pending JPH06163934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4305709A JPH06163934A (en) 1992-11-16 1992-11-16 Semiconductor acceleration sensor and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4305709A JPH06163934A (en) 1992-11-16 1992-11-16 Semiconductor acceleration sensor and fabrication thereof

Publications (1)

Publication Number Publication Date
JPH06163934A true JPH06163934A (en) 1994-06-10

Family

ID=17948418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4305709A Pending JPH06163934A (en) 1992-11-16 1992-11-16 Semiconductor acceleration sensor and fabrication thereof

Country Status (1)

Country Link
JP (1) JPH06163934A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292409A (en) * 1996-04-26 1997-11-11 Hitachi Ltd Accelerometer
US5922212A (en) * 1995-06-08 1999-07-13 Nippondenso Co., Ltd Semiconductor sensor having suspended thin-film structure and method for fabricating thin-film structure body
JP2001133479A (en) * 2000-09-21 2001-05-18 Mitsubishi Electric Corp Inertia force sensor and method of manufacturing the same
US6303976B1 (en) * 1998-08-19 2001-10-16 The United States Of America As Represented By The Secretary Of Commerce Power sensor
JP2008039664A (en) * 2006-08-09 2008-02-21 Hitachi Metals Ltd Multirange acceleration sensor
JP2018158394A (en) * 2017-03-22 2018-10-11 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Fine element and manufacturing method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922212A (en) * 1995-06-08 1999-07-13 Nippondenso Co., Ltd Semiconductor sensor having suspended thin-film structure and method for fabricating thin-film structure body
JPH09292409A (en) * 1996-04-26 1997-11-11 Hitachi Ltd Accelerometer
US6303976B1 (en) * 1998-08-19 2001-10-16 The United States Of America As Represented By The Secretary Of Commerce Power sensor
JP2001133479A (en) * 2000-09-21 2001-05-18 Mitsubishi Electric Corp Inertia force sensor and method of manufacturing the same
JP2008039664A (en) * 2006-08-09 2008-02-21 Hitachi Metals Ltd Multirange acceleration sensor
JP2018158394A (en) * 2017-03-22 2018-10-11 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Fine element and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP3941694B2 (en) Acceleration sensor
JP3367113B2 (en) Acceleration sensor
US7393714B2 (en) Method of manufacturing external force detection sensor
JP3457037B2 (en) Integrated accelerometer
JP3307328B2 (en) Semiconductor dynamic quantity sensor
US5987989A (en) Semiconductor physical quantity sensor
US5587343A (en) Semiconductor sensor method
JPH06302832A (en) Acceleration sensor
JPH0654327B2 (en) Unidirectional accelerometer and method of making same
JPH0479420B2 (en)
JPH08220134A (en) Detection element of twist-beam type accelerometer
JP3985214B2 (en) Semiconductor acceleration sensor
JPH06163934A (en) Semiconductor acceleration sensor and fabrication thereof
JP2001004658A (en) Dual-shaft semiconductor acceleration sensor and manufacture thereof
US7838320B2 (en) Semiconductor physical quantity sensor and method for manufacturing the same
JP4174853B2 (en) Manufacturing method of semiconductor dynamic quantity sensor and manufacturing method of semiconductor pressure sensor
JP3633555B2 (en) Semiconductor dynamic quantity sensor
JPH11201984A (en) Semiconductor dynamic quantity sensor and manufacture therefor
US5824565A (en) Method of fabricating a sensor
JPH06196722A (en) Semiconductor accelerometer and manufacture thereof
JP4134384B2 (en) Manufacturing method of semiconductor dynamic quantity sensor
JP4569167B2 (en) Manufacturing method of external force detection sensor
JP4175309B2 (en) Semiconductor dynamic quantity sensor
JPH06196721A (en) Semiconductor accelerometer and manufacture thereof
JP5401820B2 (en) Sensor