JPH06163607A - Method for die bonding semiconductor element - Google Patents

Method for die bonding semiconductor element

Info

Publication number
JPH06163607A
JPH06163607A JP33532792A JP33532792A JPH06163607A JP H06163607 A JPH06163607 A JP H06163607A JP 33532792 A JP33532792 A JP 33532792A JP 33532792 A JP33532792 A JP 33532792A JP H06163607 A JPH06163607 A JP H06163607A
Authority
JP
Japan
Prior art keywords
die
heat sink
electrode
semiconductor
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33532792A
Other languages
Japanese (ja)
Inventor
Hideo Tetsu
英男 鐵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP33532792A priority Critical patent/JPH06163607A/en
Publication of JPH06163607A publication Critical patent/JPH06163607A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/83141Guiding structures both on and outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Abstract

PURPOSE:To form a wax material layer that does not destruct a semiconductor element at die-bonding and is good in heat radiation by enabling obtaining a wax material of constant thickness so as to prevent forming of an electrical short circuit, at a DH joint part, caused by creeping up of the wax material to a side surface of the semiconductor element. CONSTITUTION:In a die-bonding method where a semiconductor laser element 10, having an electrode 4 formed at a protruding part of a p-type clad layer 5 on a die-banding surface side, is, attached to a heat sink 1 with a wax material 2 in between, a process is included, wherein a spacer 3 is assigned an a die-bonding surface of the heat sink 1, and a groove, whose depth is greater than the height of the protruding part of p-type clad layer 5 added with the electrode 4, and its width is greater than the diameter of the electrode 4 but smaller than the element width of the semiconductor laser element 10, is attached to the spacer 3, and then the groove is filled with the wax material 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子のダイボン
ド方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a die bonding method for semiconductor devices.

【0002】[0002]

【従来の技術】以下、添付図面を参照して、従来の技術
を説明する。図2は、従来の半導体レ−ザ素子のダイボ
ンド方法の一例を説明するための製造工程図である。図
2において、10は半導体レ−ザ素子であり、4は下部
電極を、5はp型クラッド層を、6は活性層を、7はn
型クラッド層を、8は上部電極を、それぞれ示す。ま
た、1はヒ−トシンクを、9はろう材を、それぞれ示
す。
2. Description of the Related Art A conventional technique will be described below with reference to the accompanying drawings. FIG. 2 is a manufacturing process diagram for explaining an example of a conventional die bonding method for a semiconductor laser device. In FIG. 2, 10 is a semiconductor laser device, 4 is a lower electrode, 5 is a p-type cladding layer, 6 is an active layer, and 7 is n.
The mold clad layer and the upper electrode 8 are respectively shown. Further, 1 indicates a heat sink, and 9 indicates a brazing material.

【0003】まず、従来の半導体レ−ザ素子のダイボン
ド方法を、図2の製造工程図に従って説明する。図2
(A)には、ダイボンド直前の半導体レ−ザ素子10と
ろう材9及びヒ−トシンク1を示す。上部電極8の形成
されたn型クラッド層7と下部電極4の形成されたp型
クラッド層5とこの2つのクラッド層間に配置された活
性層6とから構成されたDH接合部をもつ半導体レ−ザ
素子10が、ヒ−トシンク1上に形成されたろう材9上
に配置されている。半導体レ−ザ素子10の形状は、横
400μm、奥行き400μm、高さ150μmであ
る。p型クラッド層5は、その中央部が突き出してお
り、その付きだし高さは、2μmであり、その突き出し
部の幅は20μmである。上部電極8及び下部電極4
は、Au系合金膜より構成されており、その厚さは1μ
mである。
First, a conventional die-bonding method for a semiconductor laser device will be described with reference to the manufacturing process diagram of FIG. Figure 2
1A shows the semiconductor laser element 10, the brazing material 9 and the heat sink 1 immediately before die bonding. A semiconductor laser having a DH junction composed of an n-type clad layer 7 having an upper electrode 8 formed therein, a p-type clad layer 5 having a lower electrode 4 formed therein, and an active layer 6 disposed between the two clad layers. The element 10 is arranged on the brazing material 9 formed on the heat sink 1. The shape of the semiconductor laser device 10 is 400 μm in width, 400 μm in depth, and 150 μm in height. The p-type clad layer 5 has a projecting central portion, a protrusion height of 2 μm, and a projecting portion width of 20 μm. Upper electrode 8 and lower electrode 4
Is composed of an Au-based alloy film, and its thickness is 1 μm.
m.

【0004】ヒ−トシンク1上には、Inからなるろう
材9が、蒸着法によって形成されている。その形状は、
横400μm、奥行き400μm、高さ5μmである。
次に、ヒ−トシンク9は200℃まで加熱される。半導
体レ−ザ素子10の上部電極8にヒ−トシンク1に向か
う一定の加圧力が印加される。加熱されたろう材9は、
軟化変形し、下部電極4と接合する。以上のように、半
導体レ−ザ素子10のダイボンドが行われる。この後、
ヒ−トシンクは冷却されて、後処理されて、半導体レ−
ザ装置になる。図2(B)には、ヒ−トシンク1にダイ
ボンドされた半導体レ−ザ素子10を示す。
A brazing material 9 made of In is formed on the heat sink 1 by a vapor deposition method. Its shape is
The width is 400 μm, the depth is 400 μm, and the height is 5 μm.
Next, the heat sink 9 is heated to 200 ° C. A constant pressing force toward the heat sink 1 is applied to the upper electrode 8 of the semiconductor laser device 10. The heated brazing filler metal 9
It is softened and deformed and joined to the lower electrode 4. As described above, the die bonding of the semiconductor laser device 10 is performed. After this,
The heat sink is cooled, post-processed and the semiconductor laser is
It becomes the device. FIG. 2B shows the semiconductor laser device 10 die-bonded to the heat sink 1.

【0005】次に、半導体レ−ザ装置の各部の機能を説
明する。p型クラッド層5と活性層6及びn型クラッド
層7とからなるDH接合部は、レ−ザ光放出部になる。
すなわち、p型クラッド層5に接続された上部電極4
と、n型クラッド層7に接続された下部電極8との間に
電圧を印加すると、DH接合部はレ−ザ発光する。レ−
ザ発光は、DH接合部を含む面に垂直方向に、DH接合
部より半導体レ−ザ装置の外部へ放射される。下部電極
4は、ろう材9を通してヒ−トシンク1に電気的に接続
されている。又、ろう材9は、半導体レ−ザ素子10を
ヒ−トシンク1に機械的に固定する機能を持つ。さら
に、ろう材9はレ−ザ発光によりDH接合部に発生した
熱をヒ−トシンク1に放散させる機能も持つ。
Next, the function of each part of the semiconductor laser device will be described. The DH junction consisting of the p-type cladding layer 5, the active layer 6 and the n-type cladding layer 7 becomes a laser light emitting portion.
That is, the upper electrode 4 connected to the p-type cladding layer 5
And a lower electrode 8 connected to the n-type cladding layer 7, a DH junction emits laser light. Ray
The emitted light is emitted from the DH junction to the outside of the semiconductor laser device in the direction perpendicular to the surface including the DH junction. The lower electrode 4 is electrically connected to the heat sink 1 through the brazing material 9. The brazing material 9 also has a function of mechanically fixing the semiconductor laser element 10 to the heat sink 1. Further, the brazing filler metal 9 also has a function of dissipating the heat generated in the DH joint portion by the laser emission to the heat sink 1.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述の半導
体素子のダイボンド方法において、ろう材により半導体
素子をヒ−トシンクにダイボンドする際に、一定量のろ
う材を一定温度で一定の加圧力の下でダイボンドを行っ
ているが、半導体素子は、その形状が微小であるため、
常に一定温度でダイボンドすることが困難であった。そ
のため、ろう材が半導体素子の側面に這い上がり、DH
接合部にまで達し、DH接合部を電気的に短絡したり、
ろう材が下部電極のAu系合金膜と反応を起こし、Au
系合金膜に吸収されてしまい、下部電極とヒ−トシンク
の接合が不十分となり、この接合部は機械的にも弱く電
気抵抗も増加し、DH接合部で発生する熱の放熱効果も
悪くなったりしていた。
In the die-bonding method for a semiconductor element described above, when a semiconductor element is die-bonded to a heat sink with a brazing material, a certain amount of brazing material is applied at a constant temperature and under a constant pressure. Although the die-bonding is done in, the shape of the semiconductor element is very small.
It was always difficult to die bond at a constant temperature. Therefore, the brazing material creeps up on the side surface of the semiconductor element, causing DH
Reaching the junction and electrically shorting the DH junction,
The brazing material reacts with the Au-based alloy film of the lower electrode,
The lower electrode and the heat sink are not sufficiently joined to each other because they are absorbed by the system alloy film, and this joint is mechanically weak and electric resistance increases, and the heat dissipation effect of heat generated at the DH joint also deteriorates. It was.

【0007】一方、p型クラッド層の下部電極側の中央
部は突起となっており、その上に下部電極が形成されて
いる。半導体素子をヒ−トシンクにダイボンドする際に
は、下部電極を先端部にして、半導体素子はヒ−トシン
クに加圧しながら押し付けられる。この時、下部電極面
が、ヒ−トシンク面に平行にならないことがあり、この
場合には、p型クラッド層の一部に加圧力が集中するた
め、p型クラッド層が、破壊されることがあった。そこ
で、本発明は半導体素子をヒ−トシンクにダイボンドす
る時、ろう材の厚さを一定にできるようにし、それによ
り、半導体素子の側面へのろう材の這い上がりによるD
H接合部の電気的短絡を防止し、ダイボンドの際に半導
体素子を破壊しない、放熱効果の良いろう材層を形成で
きる、半導体素子のダイボンド方法を提供する事を目的
とする。
On the other hand, the central portion of the p-type cladding layer on the lower electrode side is a protrusion, and the lower electrode is formed on the protrusion. When the semiconductor element is die-bonded to the heat sink, the semiconductor element is pressed against the heat sink while applying pressure to the heat sink, with the lower electrode as the tip. At this time, the lower electrode surface may not be parallel to the heat sink surface. In this case, the pressing force is concentrated on a part of the p-type cladding layer, so that the p-type cladding layer is destroyed. was there. Therefore, the present invention allows the thickness of the brazing material to be constant when the semiconductor element is die-bonded to the heat sink, so that the brazing material creeps up to the side surface of the semiconductor element.
An object of the present invention is to provide a die-bonding method for a semiconductor element, which can prevent an electrical short circuit at the H-junction, prevent a semiconductor element from being destroyed during die-bonding, and can form a brazing material layer having a good heat dissipation effect.

【0008】[0008]

【課題を解決するための手段】本発明の半導体素子のダ
イボンド方法は、ダイボンド面側の半導体層の突起部に
形成された一つの電極を持つ半導体素子をろう材を介し
てヒ−トシンクに取り付けるダイボンド方法において、
このヒ−トシンクのダイボンド面上にスペ−サを配置
し、深さが前記半導体層の突起部と前記一つの電極との
合計の高さより深く、且つ幅が前記一つの電極の幅より
大きくしかも前記半導体素子の素子幅より小さい溝をこ
のスペ−サに設け、この溝にろう材を充填する工程を有
することにより、上述の目的を達成するものである。
According to the method of die-bonding a semiconductor element of the present invention, a semiconductor element having one electrode formed on a protrusion of a semiconductor layer on the die-bonding surface side is attached to a heat sink via a brazing material. In the die-bonding method,
A spacer is arranged on the die bond surface of the heat sink, the depth is deeper than the total height of the protrusions of the semiconductor layer and the one electrode, and the width is larger than the width of the one electrode. The above object is achieved by providing a groove smaller than the element width of the semiconductor element in the spacer and filling the groove with a brazing material.

【0009】[0009]

【実施例】以下、添付図面を参照して本発明の一実施例
を説明する。図1は、本発明の半導体素子のダイボンド
方法の一実施例である半導体レ−ザ素子のダイボンド方
法を説明するための製造工程図である。符号は、前述の
従来例の場合と共通のものは、同一符号を付けてその説
明を省略する。図1において、2はろう材を、3はスペ
−サを示す。図1(A)には、ダイボンド直前の半導体
レ−ザ素子10を示す。上部電極8の形成されたn型ク
ラッド層7と下部電極4の形成されたp型クラッド層5
とこの2つのクラッド層間に配置された活性層6とから
構成されたDH接合部をもつ半導体レ−ザ素子10が、
ヒ−トシンク上1に形成されたろう材2上に配置されて
いる。半導体レ−ザ素子10の形状は、横400μm、
奥行き400μm、高さ150μmである。p型クラッ
ド層5は、その中央部が突き出しており、その突き出し
高さは、2μmであり、その突き出し部の幅は20μm
である。上部電極8及び下部電極4は、Au系合金膜よ
り構成されており、その厚さは1μmである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a manufacturing process diagram for explaining a die bonding method for a semiconductor laser device, which is an embodiment of the die bonding method for a semiconductor device of the present invention. The reference numerals common to those in the above-mentioned conventional example are given the same reference numerals and the description thereof will be omitted. In FIG. 1, 2 is a brazing filler metal and 3 is a spacer. FIG. 1A shows a semiconductor laser device 10 immediately before die bonding. The n-type cladding layer 7 having the upper electrode 8 formed thereon and the p-type cladding layer 5 having the lower electrode 4 formed thereon
And a semiconductor laser device 10 having a DH junction composed of an active layer 6 disposed between the two clad layers,
It is arranged on the brazing material 2 formed on the heat sink 1. The shape of the semiconductor laser device 10 is 400 μm in width,
The depth is 400 μm and the height is 150 μm. The central portion of the p-type clad layer 5 projects, the projection height is 2 μm, and the width of the projection is 20 μm.
Is. The upper electrode 8 and the lower electrode 4 are made of an Au-based alloy film and have a thickness of 1 μm.

【0010】一方、ヒ−トシンク1上には、スペ−サ3
となる厚さ4μmのSiN薄膜が、CVD法により形成
された後、ダイボンド位置にある340μm×340μ
mの領域のSiN薄膜が除去される。次に、ろう材2と
なる厚さ4μmのIn薄膜が蒸着法によって形成され、
さらに、ダイボンド位置にある340μm×340μm
の領域に埋め込まれたIn薄膜を残して、他のIn薄膜
は除去される。
On the other hand, on the heat sink 1, there is a spacer 3
After the SiN thin film having a thickness of 4 μm is formed by the CVD method, 340 μm × 340 μ at the die bond position.
The SiN thin film in the region m is removed. Next, an In thin film having a thickness of 4 μm to be the brazing material 2 is formed by the vapor deposition method,
Furthermore, 340 μm × 340 μm at the die bond position
Other In thin films are removed, leaving the In thin film buried in the region of.

【0011】次に、ヒ−トシンク1は200℃まで加熱
される。半導体レ−ザ素子10の上部電極8にヒ−トシ
ンクに向かう一定の加圧力が印加される。加熱されたろ
う材2は、軟化変形し、下部電極4と接合する。この
時、突き出し部の容積相当分のろう材2がp型クラッド
層5の周囲にわずかにはみ出すが問題ない。以上のよう
に、半導体レ−ザ素子10のダイボンドが行われる。こ
の後、ヒ−トシンク1は冷却されて、後処理されて、半
導体レ−ザ装置になる。図2(B)には、ヒ−トシンク
1にダイボンドされた半導体レ−ザ素子10を示す。
Next, the heat sink 1 is heated to 200.degree. A constant pressing force toward the heat sink is applied to the upper electrode 8 of the semiconductor laser device 10. The heated brazing material 2 is softened and deformed, and is joined to the lower electrode 4. At this time, there is no problem that the brazing material 2 corresponding to the volume of the protruding portion slightly protrudes around the p-type cladding layer 5. As described above, the die bonding of the semiconductor laser device 10 is performed. After that, the heat sink 1 is cooled and post-processed to be a semiconductor laser device. FIG. 2B shows the semiconductor laser device 10 die-bonded to the heat sink 1.

【0012】上述のようにダイボンドされた半導体レ−
ザ装置を調べた結果、ろう材2が半導体レ−ザ素子10
の側面に盛り上がっていなかった。電気特性を測定した
ところ、電気的な短絡がない事が確認された。この半導
体レ−ザ装置の側面を研磨してダイボンド部の断面を調
べた結果、ヒ−トシンク1面と下部電極4面との間隔は
1μm一定で、平行でありろう材2の脱落もみられなか
った。
A semiconductor laser die-bonded as described above.
As a result of investigating the laser device, the brazing material 2 is the semiconductor laser element 10.
Wasn't raised on the side of. When the electrical characteristics were measured, it was confirmed that there was no electrical short circuit. As a result of polishing the side surface of this semiconductor laser device and examining the cross section of the die-bonded portion, the distance between the heat sink 1 surface and the lower electrode 4 surface was constant at 1 μm, and the brazing material 2 did not fall off. It was

【0013】なお、上述の本発明の実施例では、ヒ−ト
シンクのダイボンド面上にスペ−サを配置し、深さが半
導体層の突起部と一つの電極との合計の高さより深く、
且つ幅が一つの電極の幅より大きくしかも半導体素子の
素子幅より小さい溝をこのスペ−サに設け、この溝にろ
う材を充填する工程を有する時の結果について述べた
が、深さが半導体層の突起部と一つの電極との合計の高
さより深く、且つ幅が一つの電極の幅より大きくしかも
半導体素子の素子幅より小さい溝をヒ−トシンクのダイ
ボンド面に設け、この溝にろう材を充填する工程を有す
る場合にも、良好な結果が得られる事は、言うまでもな
い。
In the above-described embodiment of the present invention, the spacer is arranged on the die-bonding surface of the heat sink, and the depth is deeper than the total height of the protrusion of the semiconductor layer and one electrode.
The result of the step of providing a groove having a width larger than the width of one electrode and smaller than the element width of the semiconductor element in this spacer and filling the groove with a brazing material is described. A groove deeper than the total height of the protrusions of the layer and one electrode and having a width larger than the width of one electrode and smaller than the element width of the semiconductor element is formed on the die-bonding surface of the heat sink, and the brazing material is provided in this groove. Needless to say, good results can be obtained even when there is a step of filling.

【0014】[0014]

【発明の効果】以上説明したように本発明の半導体素子
のダイボンド方法は、ダイボンド面側の半導体層の突起
部に形成された一つの電極を持つ半導体素子をろう材を
介してヒ−トシンクに取り付けるダイボンド方法におい
て、このヒ−トシンクのダイボンド面上にスペ−サを配
置し、深さが前記半導体層の突起部と前記一つの電極と
の合計の高さより深く、且つ幅が前記一つの電極の幅よ
り大きくしかも前記半導体素子の素子幅より小さい溝を
このスペ−サに設け、この溝にろう材を充填する工程を
有することにより、ダイボンドする時、ろう材の厚さを
一定にできるようにし、それにより、半導体素子の側面
へのろう材の這い上がりによるDH接合部の電気的短絡
を防止し、ダイボンドの際に半導体素子を破壊しない、
放熱効果の良いろう材層を形成できる、半導体素子のダ
イボンド方法を提供する事が出来る。
As described above, according to the method for die-bonding a semiconductor element of the present invention, a semiconductor element having one electrode formed on the protrusion of the semiconductor layer on the die-bonding surface side is used as a heat sink via a brazing material. In the die-bonding method for mounting, a spacer is arranged on the die-bonding surface of the heat sink, and the depth is deeper than the total height of the protrusion of the semiconductor layer and the one electrode, and the width is the one electrode. By providing a groove larger than the width of the semiconductor element and smaller than the element width of the semiconductor element in this spacer and filling the groove with a brazing filler metal, the thickness of the brazing filler metal can be made constant during die bonding. In this way, it is possible to prevent an electrical short circuit of the DH junction due to the brazing material creeping up to the side surface of the semiconductor element, and to prevent the semiconductor element from being broken during die bonding.
It is possible to provide a die-bonding method for a semiconductor element, which can form a brazing material layer having a good heat dissipation effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光半導体素子のダイボンド方法の一実
施例である半導体レ−ザ素子のダイボンド方法を説明す
るための製造工程図である。
FIG. 1 is a manufacturing process diagram for explaining a die bonding method for a semiconductor laser device which is an embodiment of the die bonding method for an optical semiconductor device according to the present invention.

【図2】従来の半導体レ−ザ素子のダイボンド方法の一
例を説明するための製造工程図である。
FIG. 2 is a manufacturing process diagram for explaining an example of a conventional die-bonding method for a semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 ヒ−トシンク 2 ろう材 3 スペ−サ 4 下部電極 5 p型クラッド層 10 半導体レ−ザ素子(半導体素子) DESCRIPTION OF SYMBOLS 1 Heat sink 2 Brazing material 3 Spacer 4 Lower electrode 5 p-type clad layer 10 Semiconductor laser element (semiconductor element)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ダイボンド面側の半導体層の突起部に形
成された一つの電極を持つ半導体素子をろう材を介して
ヒ−トシンクに取り付けるダイボンド方法において、こ
のヒ−トシンクのダイボンド面上にスペ−サを配置し、
深さが前記半導体層の突起部と前記一つの電極との合計
の高さより深く、且つ幅が前記一つの電極の幅より大き
くしかも前記半導体素子の素子幅より小さい溝をこのス
ペ−サに設け、この溝にろう材を充填する工程を有する
ことを特徴とする半導体素子のダイボンド方法。
1. A die-bonding method in which a semiconductor element having one electrode formed on a protrusion of a semiconductor layer on the die-bonding surface side is attached to a heat sink via a brazing material, and a space is formed on the die-bonding surface of the heat sink. -Place the
This spacer is provided with a groove having a depth deeper than the total height of the protrusion of the semiconductor layer and the one electrode, and a width larger than the width of the one electrode and smaller than the element width of the semiconductor element. A die-bonding method for a semiconductor device, which comprises a step of filling the groove with a brazing material.
【請求項2】 ダイボンド面側の半導体層の突起部に形
成された一つの電極を持つ半導体素子をろう材を介して
ヒ−トシンクに取り付けるダイボンド方法において、深
さが前記半導体層の突起部と前記一つの電極との合計の
高さより深く、且つ幅が前記一つの電極の幅より大きく
しかも前記半導体素子の素子幅より小さい溝をこのヒ−
トシンクのダイボンド面に設け、この溝にろう材を充填
する工程を有することを特徴とする半導体素子のダイボ
ンド方法。
2. A die-bonding method for mounting a semiconductor element having one electrode formed on a protrusion of a semiconductor layer on the die-bonding surface side to a heat sink via a brazing material, wherein the depth of the semiconductor layer is equal to that of the protrusion. A groove deeper than the total height of the one electrode and having a width larger than the width of the one electrode and smaller than the element width of the semiconductor element is formed in this heater.
A die-bonding method for a semiconductor device, comprising the step of providing the die-bonding surface of a tosink and filling the groove with a brazing material.
JP33532792A 1992-11-20 1992-11-20 Method for die bonding semiconductor element Pending JPH06163607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33532792A JPH06163607A (en) 1992-11-20 1992-11-20 Method for die bonding semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33532792A JPH06163607A (en) 1992-11-20 1992-11-20 Method for die bonding semiconductor element

Publications (1)

Publication Number Publication Date
JPH06163607A true JPH06163607A (en) 1994-06-10

Family

ID=18287285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33532792A Pending JPH06163607A (en) 1992-11-20 1992-11-20 Method for die bonding semiconductor element

Country Status (1)

Country Link
JP (1) JPH06163607A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203519A (en) * 2004-01-14 2005-07-28 Sumitomo Electric Ind Ltd Semiconductor light emitting device
WO2008031345A1 (en) * 2006-09-12 2008-03-20 Hong Kong Applied Science and Technology Research Institute Co. Ltd Semiconductor light emitting device
US7446412B2 (en) * 2006-03-28 2008-11-04 Intel Corporation Heat sink design using clad metal
JP2009043806A (en) * 2007-08-07 2009-02-26 Mitsubishi Electric Corp Semiconductor light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203519A (en) * 2004-01-14 2005-07-28 Sumitomo Electric Ind Ltd Semiconductor light emitting device
US7446412B2 (en) * 2006-03-28 2008-11-04 Intel Corporation Heat sink design using clad metal
US7882634B2 (en) 2006-03-28 2011-02-08 Intel Corporation Method of manufacturing heat sink using clad metal
WO2008031345A1 (en) * 2006-09-12 2008-03-20 Hong Kong Applied Science and Technology Research Institute Co. Ltd Semiconductor light emitting device
JP2009043806A (en) * 2007-08-07 2009-02-26 Mitsubishi Electric Corp Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP6564206B2 (en) Light emitting device
JPH06236933A (en) Equipment with parts to be pressure-connected
JP4545956B2 (en) Semiconductor device and manufacturing method thereof
US5907571A (en) Semiconductor laser device and method for manufacturing the same
JPH06163607A (en) Method for die bonding semiconductor element
JP2003046181A (en) Sub-mount, semiconductor device, and method of manufacturing sub-mount
JP2002222992A (en) Led light emitting element and device thereof
JP2799328B2 (en) Surface emitting semiconductor laser
JPH08330672A (en) Semiconductor device
JP4631205B2 (en) Semiconductor device and manufacturing method thereof
JP2001111156A (en) Optical module
JP3153149B2 (en) Semiconductor laser device and method of manufacturing the same
JP2000049415A (en) Nitride semiconductor laser element
JPH04315486A (en) Photoelectric device and manufacture thereof
JP2020113695A (en) Stem for semiconductor package and semiconductor package
JPH0582686A (en) Semiconductor heat sink structure
JPH11186670A (en) Surface type optical device and its manufacture
JP2019004032A (en) Light-emitting device and method of manufacturing the same
JP2002372647A (en) Light source device
JP3634538B2 (en) Semiconductor laser device manufacturing method and semiconductor laser device
JPH06163981A (en) Emiconductor device
JP2007242842A (en) Semiconductor laser device and manufacturing method thereof
US20220181525A1 (en) Header for semiconductor package, and semiconductor package
JPH0846289A (en) Manufacturing method of semiconductor laser
JPH08125270A (en) Laminated semiconductor laser