JPH06163229A - Method of manufacturing rare earth element magnetic fine powder - Google Patents

Method of manufacturing rare earth element magnetic fine powder

Info

Publication number
JPH06163229A
JPH06163229A JP4339764A JP33976492A JPH06163229A JP H06163229 A JPH06163229 A JP H06163229A JP 4339764 A JP4339764 A JP 4339764A JP 33976492 A JP33976492 A JP 33976492A JP H06163229 A JPH06163229 A JP H06163229A
Authority
JP
Japan
Prior art keywords
rare earth
fine powder
salt
powder
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4339764A
Other languages
Japanese (ja)
Inventor
Yasunori Matsunari
靖典 松成
Kouji Sezaki
好司 瀬▲ざき▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4339764A priority Critical patent/JPH06163229A/en
Publication of JPH06163229A publication Critical patent/JPH06163229A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the magnetic characteristics without fail by a method wherein alloy magnet powder mainly comprising Re (representing at least one kind of rare earth element including Y) T (representing exceeding one kind of element out of Fe, Co, Ni) is deposited from a solution to eliminate the crushing step for suppressing the formation of magnetic impurity phase due to the crystalline strain by crushing step. CONSTITUTION:In this manufacturing method of rare earth element magnet fine powder, a solution base comprising the salt of Re (representing at least one kind of rare earth element including Y) or an organic metallic compound, T (representing exceeding one kind of salt or an organic metallic compound) and the salt of the other material or organic compound is mixed with a precipitant to deposit fine powder so that the fine powder may be reduced to be atmospheric heat-treated for manufacturing the rare earth element magnet fine powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は焼結磁石やボンド磁石の
材料として好適な希土類磁石微粉の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine powders of rare earth magnets suitable as materials for sintered magnets and bonded magnets.

【0002】[0002]

【従来の技術】近年、希土類磁石微粉はエレクトロニク
ス機器の軽薄短小化の傾向に呼応して大幅な伸長を果し
ている。これまで開発されている希土類磁石微粉のうち
高磁気特性のものはSm−Fe−N系、Nd−Fe−B
系の2種に大別される。
2. Description of the Related Art In recent years, fine powders of rare earth magnets have greatly expanded in response to the tendency of electronic devices to become thinner, thinner and smaller. Among the rare earth magnet fine powders that have been developed so far, those having high magnetic properties are Sm-Fe-N system and Nd-Fe-B.
It is roughly divided into two types.

【0003】以下に従来の希土類磁石微粉の製造方法に
ついて説明する。まず、Sm−Co系であるが、これは
高周波溶解炉などで所望の組成のインゴットを作製した
後、これを粉砕し、成形、焼結したものをもう一度粉砕
するという方法で行われていた。
A conventional method for producing a rare earth magnet fine powder will be described below. First of all, the Sm-Co system was carried out by a method in which an ingot having a desired composition was produced in a high-frequency melting furnace or the like, and then the ingot was crushed, molded and sintered, and then crushed again.

【0004】次にNd−Fe−B系であるが、これは高
周波溶解炉などで所望の組成のインゴットを作製し、均
質化処理した後、これを粉砕し、アンモニアや窒素雰囲
気中で熱処理し窒素原子を拡散させるという方法で行な
われていた。
Next, the Nd-Fe-B system, which is an ingot having a desired composition in a high-frequency melting furnace, is homogenized, crushed, and heat-treated in an atmosphere of ammonia or nitrogen. This was done by diffusing nitrogen atoms.

【0005】次にNd−Fe−B系であるが、これは高
周波溶解炉などで所望の組成のインゴットを作製した
後、これを粉砕し、成形、焼結したものをもう一度粉砕
するという方法と、溶融合金を急冷薄帯製造装置によっ
てアモルファスリボンにしその後熱処理、粉砕するとい
う方法とで行なわれていた。特にアモルファスリボンに
よる方法については上記磁粉をホットプレスによって成
形体とした後に、高温下で塑性変形させることによって
異方性のバルク磁石を得、これを粉砕するという方法も
行なわれていた。
Next is the Nd-Fe-B system, which is a method in which an ingot having a desired composition is produced in a high frequency melting furnace, and then the ingot is crushed, shaped and sintered, and then crushed again. The method of making a molten alloy into an amorphous ribbon by a quenching ribbon manufacturing apparatus, followed by heat treatment and crushing. In particular, regarding the method using an amorphous ribbon, a method has also been used in which after the magnetic powder is formed into a compact by hot pressing, an anisotropic bulk magnet is obtained by plastically deforming at high temperature and crushing this.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
技術では、いずれも粉砕という工程が不可欠であり、そ
のため得られた磁石微粉には粉砕による結晶歪が多く残
存し、これらが磁気的不純物として作用するため、所望
の磁気特性を得ることができないという問題を有してい
た。
However, in each of the above-mentioned prior arts, the step of pulverization is indispensable, so that the obtained magnet fine powder has a lot of crystal strain due to pulverization, and these act as magnetic impurities. Therefore, there is a problem that desired magnetic characteristics cannot be obtained.

【0007】本発明は上記従来の問題点を解決するもの
で必要な元素を含む溶液系から沈殿物として微粉を取り
出し、その後還元さらに雰囲気熱処理を実施することに
より、結晶歪による磁気的不純物がほとんど見られない
希土類磁石微粉の製造方法を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems, and fine powder is taken out as a precipitate from a solution system containing necessary elements, and then reduction and atmospheric heat treatment are performed, so that magnetic impurities due to crystal strain are almost eliminated. It is an object to provide a method for producing rare earth magnet fine powder that cannot be seen.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の希土類磁石微粉の製造方法は以下の3項目よ
り構成される。 Yを含む希土類元素の塩または有機金属化合物のうち
少なくとも1種と、Fe、Co、Niの塩または有機金
属化合物のうち少なくとも1種とからなる溶液系、ある
いはYを含む希土類元素の塩または有機金属化合物のう
ち少なくとも1種と、Fe、Co、Niの塩または有機
金属化合物のうち少なくとも1種と、Bの有機化合物と
からなる溶液系を作製し、前記溶液に沈殿剤を作用させ
ることで沈殿微粉を析出させて、この沈殿微粉を還元し
その後雰囲気熱処理をすることで次の一般式で表される
組成の磁石微粉を得る希土類磁石微粉の製造方法。 一般式 Rea 100-a-b-C b c ただしReはYを含む希土類元素のうち少なくとも1
種、TはFe、Co、Niのうち少なくとも1種、Xは
C、Nのうち少なくとも1種以上であり、a、b、cは
モル百分率で5≦a≦30、0≦b≦15、1≦c≦1
5 前記希土類磁石微粉の粒子径が0.01〜10μmで
ある前記記載の希土類磁石微粉の製造方法。 前記沈殿微粉をCa粉と混合して非酸化性雰囲気で熱
処理することで還元する前記または前記記載の希土
類磁石微粉の製造方法。
In order to achieve this object, the method for producing a fine powder of rare earth magnet of the present invention comprises the following three items. A solution system comprising at least one salt or organometallic compound of a rare earth element containing Y and at least one salt or an organometallic compound of Fe, Co, Ni, or a salt or organic salt of a rare earth element containing Y By preparing a solution system comprising at least one of the metal compounds, at least one of Fe, Co, Ni salts or organometallic compounds, and the organic compound of B, and allowing a precipitating agent to act on the solution. A method for producing a rare earth magnet fine powder, in which a fine precipitate powder is deposited, the fine precipitate powder is reduced, and then heat treatment is performed in an atmosphere to obtain a fine magnet powder having a composition represented by the following general formula. General formula Re a T 100-abC B b X c where Re is at least 1 of rare earth elements including Y
Seed, T is at least one of Fe, Co, and Ni, X is at least one of C and N, and a, b, and c are molar percentages 5 ≦ a ≦ 30, 0 ≦ b ≦ 15, 1 ≦ c ≦ 1
5 The method for producing a rare earth magnet fine powder as described above, wherein the particle diameter of the rare earth magnet fine powder is 0.01 to 10 μm. The method for producing a rare earth magnet fine powder as described above or the above, wherein the precipitated fine powder is mixed with Ca powder and heat-treated in a non-oxidizing atmosphere to reduce the fine powder.

【0009】[0009]

【作用】この構成によって、結晶歪による磁気的不純物
相の少ない希土類磁石微粉の製法を提供することができ
る。
With this structure, it is possible to provide a method for producing a rare earth magnet fine powder having a small amount of magnetic impurity phase due to crystal strain.

【0010】[0010]

【実施例】以下本発明の詳細を実施例に基づき説明す
る。本発明において必須項目である必要な元素含む溶液
系から沈殿物として磁石微粉を製造する技術は、磁石微
粉が直接製造されるため粉砕工程を省くことが可能とな
るので、従来問題であった結晶歪による磁気的不純物相
をほとんど見られないレベルにまで低減できる。
EXAMPLES The details of the present invention will be described below based on examples. In the present invention, the technique of producing magnet fine powder as a precipitate from a solution system containing necessary elements which is an essential item in the present invention, since the fine magnet powder is directly produced, it is possible to omit the pulverization step, and thus the crystal which has been a problem in the past. The magnetic impurity phase due to strain can be reduced to a level where it is hardly seen.

【0011】次に本実施例の製造方法を用いて希土類磁
石微粉を作製した例を示す。 (実施例1)Sm(O−iso−C3 7 3 、Fe
(O−iso−C3 7 3 をそれぞれSm9.6 Fe
80.5で示される微粉組成に見合った分量だけ、乾燥した
iso−C3 7 OH中に溶質全体で2mol/l(リ
ットル)となるように溶解し、均一溶液を調製した。次
に各溶液を500mlとりだしてそれぞれ80℃に保持
しながら蒸留水をiso−C3 7 OHで10倍に希釈
した溶液を各系の加水分解に必要な量の1.5当量加
え、そのまま80℃で12時間攪拌した。生成した沈殿
物を遠心分離して取り出した後、Ca粉と混合しAr雰
囲気下で700℃に4時間保持することで還元し合金粉
化した。さらにCaO粉を除去した後、アンモニア雰囲
気下で500℃に4時間保持することでN原子を拡散さ
せて粒子径がほぼ500nmであるSm9.6 Fe80.5
9.9で示される組成の希土類磁石微粉を得た。
Next, an example of producing rare earth magnet fine powder using the manufacturing method of this embodiment will be described. (Example 1) Sm (O-iso- C 3 H 7) 3, Fe
(O-iso-C 3 H 7) 3 , respectively Sm 9.6 Fe
An amount corresponding to the fine powder composition represented by 80.5 was dissolved in dry iso-C 3 H 7 OH so that the total amount of the solutes was 2 mol / l (liter) to prepare a uniform solution. Next, while taking out 500 ml of each solution and maintaining each at 80 ° C., a solution prepared by diluting distilled water 10 times with iso-C 3 H 7 OH was added in an amount of 1.5 equivalents necessary for hydrolysis of each system, and the mixture was left as it was The mixture was stirred at 80 ° C for 12 hours. The generated precipitate was taken out by centrifugation, mixed with Ca powder, and held at 700 ° C. for 4 hours under Ar atmosphere to reduce and powder the alloy. After removing the CaO powder, the N atom is diffused by keeping it at 500 ° C. for 4 hours in an ammonia atmosphere, and the particle diameter is about 500 nm. Sm 9.6 Fe 80.5 N
A rare earth magnet fine powder having a composition shown by 9.9 was obtained.

【0012】また、比較例として粉砕工程を含む常法に
よりSm9.6 Fe80.5で示される組成の微粉を作製し
た。すなわち微粉組成に見合った分量のSm、Feを高
周波溶解炉によって溶融し合金化した。得られた合金を
ハンマーミルで粉砕した後グリーン成形体とし、これを
焼結しさらに適当な熱処理を施した後に再度粉砕した。
ついでアンモニア雰囲気下で500℃に4時間保持する
ことでN原子を拡散させて53〜106μmに分級しS
9.6 Fe80.5 9.9で示される組成の希土類磁石微粉
を得た。
As a comparative example, a fine powder having a composition represented by Sm 9.6 Fe 80.5 was prepared by a conventional method including a pulverizing step. That is, an amount of Sm and Fe corresponding to the composition of fine powder was melted and alloyed in a high frequency melting furnace. The obtained alloy was crushed by a hammer mill to obtain a green compact, which was sintered, further subjected to an appropriate heat treatment, and then pulverized again.
Then, by holding at 500 ° C. for 4 hours in an ammonia atmosphere, N atoms are diffused and classified into 53 to 106 μm and S
A rare earth magnet fine powder having a composition represented by m 9.6 Fe 80.5 N 9.9 was obtained.

【0013】得られた磁石粉とビスフェノールA型エポ
キシ樹脂とフェノールノボラックの混合物をメチルエチ
ルケトンで希釈したバインダー樹脂とを磁粉含率が97
重量%となるように混合し、混合物を攪はんしながらメ
チルエチルケトンを蒸発させ、成形前のブレンド物を得
た。かかるブレンド物を成形圧力5t/cm2 でプレス
成形し、得られた等方性ボンド磁石の特性を「表1」に
示す。
The magnetic powder content of the obtained magnet powder, a binder resin obtained by diluting a mixture of bisphenol A type epoxy resin and phenol novolac with methyl ethyl ketone was 97.
The mixture was mixed at a weight percentage, and methyl ethyl ketone was evaporated while stirring the mixture to obtain a blend before molding. The characteristics of the isotropic bonded magnet obtained by press-molding such a blend at a molding pressure of 5 t / cm 2 are shown in "Table 1".

【0014】(実施例2)SmCl3 ・6H2 O、Co
Cl2 ・6H2 OをそれぞれSm9.6 Fe80.5で示され
る微粉組成に見合った分量だけ、蒸留水中に溶質全体で
2mol/lとなるように溶解し、均一溶液を調製し
た。次に各溶液を500mlとりだしてそれぞれ80℃
に保持しながら0.1mol/lのNaOH水溶液を各
系の加水分解に必要な量の1.5当量加え、そのまま8
0℃で12時間攪拌した。生成した沈殿物を遠心分離し
て取り出した後、Ca粉と混合しAr雰囲気下で700
℃に4時間保持することで還元し合金粉化した。さらに
CaO粉を除去した後、アンモニア雰囲気下で500℃
に4時間保持することでN原子を拡散させて粒子径がほ
ぼ500nmであるSm9.6 Fe80.5 9.9で示される
希土類磁石微粉を得た。
Example 2 SmCl 3 .6H 2 O, Co
Cl 2 .6H 2 O was dissolved in distilled water in an amount corresponding to the fine powder composition represented by Sm 9.6 Fe 80.5 in distilled water so that the total amount of solutes was 2 mol / l, to prepare a uniform solution. Next, take out 500 ml of each solution and each at 80 ℃.
While maintaining at 0.1 mol / l, an aqueous NaOH solution of 0.1 mol / l was added in an amount of 1.5 equivalents necessary for the hydrolysis of each system, and 8
The mixture was stirred at 0 ° C for 12 hours. After removing the generated precipitate by centrifugation, it is mixed with Ca powder and 700
The alloy powder was reduced by holding it at 4 ° C for 4 hours. After removing CaO powder, 500 ℃ under ammonia atmosphere
By holding it for 4 hours, N atoms were diffused to obtain a rare earth magnet fine powder represented by Sm 9.6 Fe 80.5 N 9.9 having a particle diameter of about 500 nm.

【0015】得られた磁石粉とビスフェノールA型エポ
キシ樹脂とフェノールノボラックの混合物をメチルエチ
ルケトンで希釈したバインダー樹脂とを磁粉含率が97
重量%となるように混合し、混合物を攪はんしながらメ
チルエチルケトンを蒸発させ、成形前のブレンド物を得
た。かかるブレンド物を成形圧力5t/cm2 でプレス
成形し、得られた等方性ボンド磁石の特性を「表1」に
示す。
The magnetic powder content of the obtained magnet powder, a binder resin obtained by diluting a mixture of bisphenol A type epoxy resin and phenol novolac with methyl ethyl ketone was 97.
The mixture was mixed at a weight percentage, and methyl ethyl ketone was evaporated while stirring the mixture to obtain a blend before molding. The characteristics of the isotropic bonded magnet obtained by press-molding such a blend at a molding pressure of 5 t / cm 2 are shown in "Table 1".

【0016】[0016]

【表1】 [Table 1]

【0017】この「表1」から明らかなように、本実施
例の希土類磁石微粉の製造方法によれば、所望の通り
に、粉砕することで生じる結晶歪に基づく磁気的不純物
相をほとんど見られないレベルにまで低減でき優れた磁
気特定の希土類磁石微粉およびボンド磁石を得ることが
できる。
As is clear from "Table 1", according to the method for producing the rare earth magnet fine powder of the present embodiment, most of the magnetic impurity phase based on the crystal strain generated by the pulverization can be seen as desired. It is possible to obtain an excellent magnetic specific rare earth magnet fine powder and a bonded magnet that can be reduced to a level that does not exist.

【0018】なお、上記実施例では希土類元素などの塩
または有機金属化合物を塩化物およびイソプロポキシド
としたが、硫酸塩など他の無機塩類も使用でき、工業的
に安価な原料を選択、使用することができる。有機金属
化合物も他のアルコキシドやアセチルアセトナート塩な
どのβ−ジケトナート塩といったものが使用できる。ま
た、副生成物などの不純物が混入し難い点においてアル
コキシドを原料とすることは好ましい。
It should be noted that in the above-mentioned examples, salts or organic metal compounds such as rare earth elements were chlorides and isopropoxides, but other inorganic salts such as sulfates can also be used, and industrially inexpensive raw materials can be selected and used. can do. As the organic metal compound, other alkoxides and β-diketonate salts such as acetylacetonate salts can be used. In addition, it is preferable to use an alkoxide as a raw material in that impurities such as by-products are unlikely to be mixed.

【0019】また、溶媒は通常のものが自由に選択でき
る。原料が塩の場合には蒸留水が、有機金属化合物の場
合はアルコール、エーテル、テトラヒドロキシフラン、
ジメチルホルムアミド、ジメチルスルフォキシドがそれ
ぞれ好適である。アルコキシドを原料とした場合には溶
解性の点から対応するアルコールであることがより好ま
しい。溶液の濃度は析出する微粉の粒度に影響を与える
因子であるので所望のサイズになるような濃度を選択す
ることができる。より細かい粒度を得るには高濃度であ
る方が好適である。
The usual solvent can be freely selected. Distilled water is used when the raw material is salt, alcohol, ether, tetrahydroxyfuran,
Dimethylformamide and dimethylsulfoxide are preferred. When an alkoxide is used as a raw material, the corresponding alcohol is more preferable from the viewpoint of solubility. Since the concentration of the solution is a factor that affects the particle size of the fine powder to be precipitated, it is possible to select a concentration that gives a desired size. Higher concentrations are preferred to obtain finer particle sizes.

【0020】沈殿剤は微粉析出が可能である全ての物が
使用できる。本実施例のようにアルコキシドを水で求核
置換することで沈殿させたり、金属イオンを水酸化物イ
オンと反応させることで沈殿させたりする他に、シュウ
酸イオン、リン酸イオン、ホウ酸イオンなどを加えるこ
とで難溶性塩として析出させたり、アンモニアや硫化水
素を吹き込むことで水酸化物や硫化物として沈殿させて
もよい。また、本発明に用いられる上記沈澱剤は、同時
に複数種用いることも本発明の範ちゅうである。さらに
は、2種以上の沈澱剤を使用する場合には、複数種を同
時に投入することもできるし、時間をおいて順次投入す
ることもできる。このように投入法を選択することによ
って、複数金属種の層構造からなる粒子を作製したり、
均一相からなる粒子を作製したりすることができ、複数
種の沈澱剤を使用することの特長ということができる。
但し、層構造は磁気特性上好適な場合もあるが、好適で
ない場合もあり、その場合には加熱等によって複数金属
種間の相互拡散処理を行う必要がある。
As the precipitant, any substance capable of depositing fine powder can be used. In addition to precipitation by nucleophilic substitution of alkoxide with water as in this Example, or precipitation by reacting metal ion with hydroxide ion, oxalate ion, phosphate ion, borate ion For example, it may be precipitated as a sparingly soluble salt by adding such a compound, or may be precipitated as a hydroxide or sulfide by blowing in ammonia or hydrogen sulfide. Further, it is within the scope of the present invention to use a plurality of the precipitants used in the present invention at the same time. Furthermore, when two or more types of precipitants are used, a plurality of types can be added at the same time, or can be added sequentially with a time interval. By selecting the charging method in this way, particles with a layered structure of multiple metal species can be prepared,
It can be said that particles having a uniform phase can be prepared, and the advantage of using a plurality of types of precipitants.
However, although the layer structure may be suitable in some cases in terms of magnetic properties, it may not be suitable in some cases. In that case, it is necessary to perform mutual diffusion treatment between a plurality of metal species by heating or the like.

【0021】微粉の還元であるが常法のCa還元が使用
できる。還元時の雰囲気はArの他に真空、窒素などの
不活性雰囲気や、水素、アンモニア、アンモニア+水
素、アンモニア+一酸化炭素といった還元性雰囲気が使
用できる。還元効率を上げるために還元性雰囲気で処理
することが好ましい。
Although it is a reduction of fine powder, a conventional Ca reduction can be used. As the atmosphere during the reduction, in addition to Ar, an inert atmosphere such as vacuum or nitrogen, or a reducing atmosphere such as hydrogen, ammonia, ammonia + hydrogen, or ammonia + carbon monoxide can be used. It is preferable to perform the treatment in a reducing atmosphere in order to increase the reduction efficiency.

【0022】また還元後の雰囲気熱処理であるが拡散さ
せたい元素によって雰囲気種を自由に選択できる。N原
子を拡散させたい場合にはアンモニア、アンモニア+水
素、アンモニア+一酸化炭素などを、C原子を拡散させ
たい場合にはメタン、メタン+水素、メタン+一酸化炭
素などを使用することができる。酸化を抑制する意味で
還元雰囲気と組み合わせてやる方法が好適である。また
この処理は前記還元処理に引き続いて実施してもよい
し、還元処理後一旦CaOを除去してから実施してもよ
い。
Although the atmosphere heat treatment after the reduction is performed, the atmosphere species can be freely selected depending on the element to be diffused. Ammonia, ammonia + hydrogen, ammonia + carbon monoxide, etc. can be used to diffuse N atoms, and methane, methane + hydrogen, methane + carbon monoxide, etc. can be used to diffuse C atoms. . A method of combining with a reducing atmosphere is preferable in order to suppress oxidation. This treatment may be performed subsequent to the reduction treatment, or may be performed after removing CaO once after the reduction treatment.

【0023】本発明における希土類元素ReはYを含む
希土類元素の1種以上であって、Nd、Pr、La、C
e、Sm、Gd、Pm、Eu、Lu、Dy、Tb、Ho
などが例示できる。Yは希土類元素ではないが本発明で
は他の希土類元素と同様に扱える。本発明において好ま
しい希土類元素ReはNdもしくはSmを主体とするも
のであるが、複合希土類であるミッシュメタルやジジム
あるいは他の希土類元素を含んでもかまわない。
The rare earth element Re in the present invention is one or more kinds of rare earth elements including Y, and is Nd, Pr, La or C.
e, Sm, Gd, Pm, Eu, Lu, Dy, Tb, Ho
Can be exemplified. Although Y is not a rare earth element, it can be treated in the same manner as other rare earth elements in the present invention. The preferred rare earth element Re in the present invention is mainly composed of Nd or Sm, but may contain misch metal, didymium, or other rare earth elements which are complex rare earth elements.

【0024】また、本発明おいて磁気特性を改良するた
めに添加元素を加えてもかまわない。添加元素として
は、Al、Si、Ti、V、Cr、Mn、Cu、Zn、
Ga、Ge、Zr、Nb、Mo、In、Sn、Sb、H
f、Ta、W、Pb、Bi、Cなどが例示でき、塩また
は有機金属化合物として溶液中に添加することができ
る。これらの添加元素はBr、iHc、角型柱、などの
諸特性を向上させることを目的として1種以上添加する
ことができる。
In the present invention, additional elements may be added to improve the magnetic properties. As the additive element, Al, Si, Ti, V, Cr, Mn, Cu, Zn,
Ga, Ge, Zr, Nb, Mo, In, Sn, Sb, H
Examples thereof include f, Ta, W, Pb, Bi and C, which can be added to the solution as a salt or an organometallic compound. One or more of these additive elements may be added for the purpose of improving various characteristics such as Br, iHc, and prismatic columns.

【0025】本発明で得られる磁石微粉の粒子径は0.
01〜10μmであることが好ましい。粉砕を含む常法
ではこのレベルまで粉砕しようとすると過粉砕となり磁
石として実用性のないものとなるが、本発明による製造
方法ではこのレベルに近づくほど磁気特性が向上するこ
とがら知れている。ハンドリングのことを考えると0.
1〜1μmであることがより好ましい。
The particle size of the magnet fine powder obtained in the present invention is 0.
It is preferably from 01 to 10 μm. In a conventional method including pulverization, if it is attempted to pulverize up to this level, it becomes over-pulverized and becomes impractical as a magnet, but it is known that the magnetic properties are improved as the production method according to the present invention approaches this level. Considering handling, 0.
It is more preferably 1 to 1 μm.

【0026】本発明で得られる磁石粉末は結合剤で固め
たボンド磁石または焼結して焼結磁石として用いること
ができる。上記実施例では結合剤を合成樹脂としたがZ
n、Biなど低融点合金であってもよい。ボンド磁石用
磁粉として用いる場合には磁粉表面にシラン系、チタネ
ート系のカップリング剤などによる処理をしても良いこ
とはいうまでもない。
The magnet powder obtained in the present invention can be used as a bonded magnet hardened with a binder or a sintered magnet obtained by sintering. In the above embodiment, the binder was synthetic resin, but Z
It may be a low melting point alloy such as n or Bi. Needless to say, when used as a magnetic powder for a bonded magnet, the surface of the magnetic powder may be treated with a silane-based or titanate-based coupling agent.

【0027】またさらに焼結磁石、ボンド磁石などを作
製したのち、樹脂コーティング、金属メッキなどを施す
こともできる。
Furthermore, after producing a sintered magnet, a bonded magnet, etc., resin coating, metal plating, etc. can be applied.

【0028】[0028]

【発明の効果】以上、詳述したように本発明によれば、
希土類磁石微粉において、磁気特性を向上させることが
でき、かつ常法に比べ原料が低価格であり工程数が少な
いので製造コストを抑制することができるので、工業的
価値は極めて高いということができる。
As described above in detail, according to the present invention,
In rare earth magnet fine powder, it is possible to improve the magnetic properties, and since the raw material is lower in price and the number of steps is smaller than the conventional method, the manufacturing cost can be suppressed, so it can be said that the industrial value is extremely high. .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Yを含む希土類元素の塩または有機金属
化合物のうち少なくとも1種と、Fe、Co、Niの塩
または有機金属化合物のうち少なくとも1種とからなる
溶液系、あるいはYを含む希土類元素の塩または有機金
属化合物のうち少なくとも1種と、Fe、Co、Niの
塩または有機金属化合物のうち少なくとも1種と、Bの
有機化合物とからなる溶液系を作製し、前記溶液に沈殿
剤を作用させることで沈殿微粉を析出させて、この沈殿
微粉を還元しその後雰囲気熱処理をすることで次の一般
式で表される組成の磁石微粉を得る希土類磁石微粉の製
造方法。 一般式 Rea 100-a-b-C b c ただしReはYを含む希土類元素のうち少なくとも1
種、TはFe、Co、Niのうち少なくとも1種、Xは
C、Nのうち少なくとも1種以上であり、a、b、cは
モル百分率で5≦a≦30、0≦b≦15、1≦c≦1
1. A solution system comprising at least one salt of a rare earth element or an organometallic compound containing Y and at least one salt of an Fe, Co, Ni salt or an organometallic compound, or a rare earth element containing Y. A solution system comprising at least one of an element salt or an organometallic compound, at least one of Fe, Co, or Ni salt or an organometallic compound, and an organic compound of B is prepared, and a precipitating agent is added to the solution. The method for producing a rare earth magnet fine powder, in which the fine powder of the precipitate is precipitated by the action of, and the fine powder of the precipitate is reduced and then heat treated in an atmosphere to obtain a fine magnet powder having a composition represented by the following general formula. General formula Re a T 100-abC B b X c where Re is at least 1 of rare earth elements including Y
Seed, T is at least one of Fe, Co, and Ni, X is at least one of C and N, and a, b, and c are molar percentages 5 ≦ a ≦ 30, 0 ≦ b ≦ 15, 1 ≦ c ≦ 1
5
【請求項2】 前記希土類磁石微粉の粒子径が0.01
〜10μmである請求項1記載の希土類磁石微粉の製造
方法。
2. The particle diameter of the rare earth magnet fine powder is 0.01
The method for producing a fine powder of rare earth magnet according to claim 1, wherein the fine powder has a diameter of 10 μm.
【請求項3】 前記沈殿微粉をCa粉と混合して非酸化
性雰囲気で熱処理することで還元する請求項1または2
記載の希土類磁石微粉の製造方法。
3. The reduction method according to claim 1, wherein the precipitated fine powder is mixed with Ca powder and heat-treated in a non-oxidizing atmosphere.
A method for producing the rare earth magnet fine powder described.
JP4339764A 1992-11-25 1992-11-25 Method of manufacturing rare earth element magnetic fine powder Pending JPH06163229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4339764A JPH06163229A (en) 1992-11-25 1992-11-25 Method of manufacturing rare earth element magnetic fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4339764A JPH06163229A (en) 1992-11-25 1992-11-25 Method of manufacturing rare earth element magnetic fine powder

Publications (1)

Publication Number Publication Date
JPH06163229A true JPH06163229A (en) 1994-06-10

Family

ID=18330588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4339764A Pending JPH06163229A (en) 1992-11-25 1992-11-25 Method of manufacturing rare earth element magnetic fine powder

Country Status (1)

Country Link
JP (1) JPH06163229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363474A (en) * 2003-06-06 2004-12-24 Yaskawa Electric Corp Method for manufacturing particles for permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363474A (en) * 2003-06-06 2004-12-24 Yaskawa Electric Corp Method for manufacturing particles for permanent magnet
JP4525003B2 (en) * 2003-06-06 2010-08-18 株式会社安川電機 Method for producing particles for permanent magnet

Similar Documents

Publication Publication Date Title
KR101855530B1 (en) Rare earth permanent magnet and their preparation
US7488394B2 (en) Rare earth permanent magnet
EP0184722A1 (en) Rare earth alloy powders and process of producing same
DE112011102958T5 (en) Magnetic material and process for its production
Ormerod The physical metallurgy and processing of sintered rare earth permanent magnets
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP3317646B2 (en) Manufacturing method of magnet
JP3470032B2 (en) Rare earth permanent magnet material and manufacturing method thereof
CN111902898B (en) Method for producing sintered magnet and sintered magnet
JP2012080073A (en) Magnetic material
JPH06163229A (en) Method of manufacturing rare earth element magnetic fine powder
JP3331306B2 (en) Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder
JPH06158122A (en) Production of rare-earth magnet fine powder
US20030217620A1 (en) Process for the production of neodymium-iron-boron permanent magnet alloy powder
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JPH06151133A (en) Manufacture of magnet powder
JPH06151135A (en) Manufacture magnet powder
JPS59219453A (en) Permanent magnet material and its production
WO2023054035A1 (en) Rare earth magnet material, and magnet
JP3715331B2 (en) Method for producing raw powder for anisotropic bonded magnet
JPH1092616A (en) Manufacture of rare-earth permanent magnet
JP3231000B2 (en) Manufacturing method of rare earth permanent magnet
JP2001207201A (en) Sm-Fe-N SERIES COATED ALLOY POWDER FOR MAGNET AND PRODUCING METHOD THEREFOR
JPH06163231A (en) Magnetic powder for bonded magnet and manufacture thereof
CN107910154B (en) Preparation method for improving processability of neodymium iron boron