JPH06162975A - Charged particle irradiation apparatus and beam sensor - Google Patents

Charged particle irradiation apparatus and beam sensor

Info

Publication number
JPH06162975A
JPH06162975A JP33115792A JP33115792A JPH06162975A JP H06162975 A JPH06162975 A JP H06162975A JP 33115792 A JP33115792 A JP 33115792A JP 33115792 A JP33115792 A JP 33115792A JP H06162975 A JPH06162975 A JP H06162975A
Authority
JP
Japan
Prior art keywords
sample
small
diameter metal
ion beam
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33115792A
Other languages
Japanese (ja)
Inventor
Tetsuo Tsukamoto
哲生 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP33115792A priority Critical patent/JPH06162975A/en
Publication of JPH06162975A publication Critical patent/JPH06162975A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To irradiate an ion beam on a sample correctly and uniformly at a low cost by using a beam sensor on which a central metal pipe and a plurality of metal conductors spaced in equal distances from the central metal pipe are provided for aligning the center of the sample to the position of the beam sensor. CONSTITUTION:A beam sensor 2 and a sample hold member 3 are disposed adjacent to each other in a longitudinal window part 1A on a sample holder 1. An ion beam is irradiated on the beam sensor 2 and adjusted so that the distribution of the ion beam becomes uniform. Thereafter, the sample holder 1 is moved in the direction of an arrow, the sample hold member 3 is moved to the position of the beam sensor 2 to align its center to that of the beam sensor 2 and the ion beam is irradiated on the sample. The beam sensor 2 of the abovementioned charged particles, irradiation apparatus has a central metal pipe 2C0 having very small diameter and a plurality of metal conductors 2C1-2C2 each having a very small diameter and spaced at equal distances from the central pipe in uniform distance from there, which are inserted and fixed into the through hole of an electric insulating base member 2B in an envelope 2A, and an electric insulating sheet 2D and a conductive aperture member 2E are placed on the top of the envelope.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は,金属薄膜などの試料に
イオンビームを照射,又はイオンビームと電子ビームの
双方を照射可能な荷電粒子照射装置及びそれに用いるビ
ームセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle irradiation apparatus capable of irradiating a sample such as a metal thin film with an ion beam or both an ion beam and an electron beam, and a beam sensor used therefor.

【従来の技術】例えば,金属材料,半導体材料などの薄
膜に外部イオン源より各種のガスイオンなどを注入して
その格子欠陥を分析したり,また核融合炉の炉壁材料で
ある試料に,例えばHeイオンを注入して各種分析を行
うためなどにも電子顕微鏡が用いられている。また加速
器部で加速したイオンビームを顕微鏡内部の試料に照射
しながら顕微鏡観察を行うことが可能であり,イオンの
照射により材料の格子挙動の変化などを直接観察できる
ので,材料の基礎定数,材料のマクロな現象を支配する
ミクロな現象を測定する場合にも電子顕微鏡は大変有効
である。この場合,試料全面にほぼ均一にイオンビーム
を照射することが好ましい。斯かる分析などを行うのに
用いられる従来の電子顕微鏡の一例として,特開昭62
─31930号,および特開平1─120744号公報
に開示されている。特開昭62─31930号公報で
は,加速器結合透過型電子顕微鏡の中空円筒状対物レン
ズの中空部を通過したイオンビームが試料に照射され
る。対物レンズの中空部を囲むように対物レンズ面に等
間隔に設置された3つ以上の電極でこれら電極に照射さ
れるイオンビーム電流をモニタし,それぞれの電極での
電流値がほぼ等しくなるようにビーム位置を調整するも
のである。この調整終了時においては,イオンビームは
そのほぼ中心部が,中空部の中央に照射され,その結果
イオンビームは,試料全面にほぼ均一に照射される。さ
らに,それぞれでモニタされた電流値をマイコンなどの
計算機に取り込み,電流値の増減に基づき,偏向器に計
算機からの指令を与えることにより,イオンビームの位
置調整ができる。以上述べたように,従来の荷電粒子照
射装置では,中空部を囲むように対物レンズ壁面に等間
隔に設置された3つ以上の電極で,中空部以外の,つま
り試料に照射されないイオン電流をモニタし,それぞれ
の電極でのイオンビーム電流値が等しくなるようにビー
ム位置を調整するものであり,試料に照射されるイオン
ビーム電流を測定することができないと同時に,イオン
ビームを照射する約2φのターゲット以外の広い部分に
照射することにより電子顕微鏡内部にイオンスパッタや
汚れが生じるため好ましい方法ではなかった。出来れば
目的の試料範囲外にはイオンを照射しないようにするこ
とが必要である。このような問題点を解決するため,特
開平1ー120744号公報ではイオンビーム照射装置
から電子顕微鏡装置の筐体内に導入されたイオンビーム
を,試料を支持する試料ホルダに設けた1個に微小なマ
イクロファラディカップの底部に明けた微小孔を通して
試料に照射して,イオンビーム電流を検出しているの
で,試料に照射されるイオンビーム電流量を正確に検出
できる。また,試料に照射されるイオンビームの分布状
態を検出するのには,単一の微小マイクロファラディカ
ップの位置をいろいろな箇所に動かして行っていた。
2. Description of the Related Art For example, various gas ions are injected from an external ion source into a thin film of a metal material, a semiconductor material or the like to analyze lattice defects thereof, or to a sample which is a wall material of a fusion reactor, For example, an electron microscope is also used for implanting He ions and performing various analyzes. In addition, it is possible to perform microscope observation while irradiating the sample inside the microscope with the ion beam accelerated by the accelerator, and it is possible to directly observe changes in the lattice behavior of the material by irradiation of ions, so The electron microscope is also very effective in measuring microscopic phenomena that control the macroscopic phenomena of. In this case, it is preferable to irradiate the entire surface of the sample with the ion beam substantially uniformly. As an example of a conventional electron microscope used for performing such an analysis, there is disclosed in Japanese Patent Laid-Open No. Sho 62-62.
No. 31930 and Japanese Patent Laid-Open No. 120744/1989. In Japanese Laid-Open Patent Publication No. 62-31930, a sample is irradiated with an ion beam that has passed through the hollow portion of a hollow cylindrical objective lens of an accelerator-coupled transmission electron microscope. The ion beam current applied to these electrodes is monitored by three or more electrodes that are installed at equal intervals on the surface of the objective lens so as to surround the hollow part of the objective lens, and make sure that the current value at each electrode is almost equal. It is to adjust the beam position. At the end of this adjustment, the center of the ion beam is irradiated to the center of the hollow portion, and as a result, the ion beam is irradiated almost uniformly on the entire surface of the sample. Furthermore, the position of the ion beam can be adjusted by importing the monitored current value into a computer such as a microcomputer and giving a command from the computer to the deflector based on the increase or decrease in the current value. As described above, in the conventional charged particle irradiation apparatus, three or more electrodes installed at equal intervals on the wall surface of the objective lens so as to surround the hollow portion can generate an ion current other than the hollow portion, that is, the ion current not irradiated to the sample. It monitors and adjusts the beam position so that the ion beam current value at each electrode becomes equal. The ion beam current applied to the sample cannot be measured, and at the same time, the ion beam irradiation is about 2φ. Irradiation to a wide area other than the target of No. 2 causes ion sputtering and stains inside the electron microscope, which is not a preferable method. If possible, it is necessary not to irradiate ions outside the intended sample range. In order to solve such a problem, in Japanese Patent Laid-Open No. 120744/1989, the ion beam introduced from the ion beam irradiation device into the housing of the electron microscope device is reduced to one minute provided on the sample holder supporting the sample. Since the ion beam current is detected by irradiating the sample through the small holes opened at the bottom of the micro Faraday cup, the amount of ion beam current applied to the sample can be accurately detected. Moreover, in order to detect the distribution state of the ion beam irradiated on the sample, the position of a single micro Faraday cup was moved to various positions.

【発明が解決しようとする問題点】しかし上記従来例の
試料と同じ大きさのアパーチャをもつファラディカップ
では,試料全体に照射されるイオンビームの総合の値を
一度に検出するには適しているが,試料全体に照射され
るイオンビームの分布状態を短時間で検出するには適し
ていない。また,単一の微小マイクロファラディカップ
の位置を動かして試料に照射されるイオンビームの分布
状態を検出する場合,その全体的な分布を検出するのに
はかなりの時間を要し,観察中にイオンビームの分布状
態を確認するという点では次のような問題がある。イオ
ンビームの照射による試料の状態の変化の途中で,イオ
ンビームの分布状態を観測するために試料からイオンビ
ームを長時間外すことになり,このことはイオンビーム
の照射によって試料に生じたバブルの合体や消滅,或い
はイオンビームの照射による温度変化などの状態変化を
変えてしまい,不連続にしてしまう。また,従来のイオ
ンビームセンサはマイクロファラディカップ等を用いて
いたので,構造が比較的複雑にならざるを得なかった。
したがって,本発明では簡単な構成で極めて安価なビー
ムセンサを提供し,このようなビームセンサにより試料
に実際に照射されるイオンビーム電流の分布状態を短時
間で検出し,また電子顕微鏡内の試料の中心位置にイオ
ンビームの中心を合わせ得ることを目的としている。
However, a Faraday cup having an aperture of the same size as the sample of the conventional example is suitable for detecting the total value of the ion beam irradiated on the entire sample at once. However, it is not suitable for detecting the distribution state of the ion beam irradiated on the entire sample in a short time. In addition, when the position of a single micro Faraday cup is moved to detect the distribution of the ion beam that irradiates the sample, it takes a considerable amount of time to detect the overall distribution. There are the following problems in confirming the distribution state of the ion beam. During the change of the state of the sample due to the irradiation of the ion beam, the ion beam is removed from the sample for a long time in order to observe the state of distribution of the ion beam. It changes state changes such as coalescence, disappearance, or temperature change due to ion beam irradiation, resulting in discontinuity. In addition, the conventional ion beam sensor used a micro Faraday cup, etc., so the structure had to be relatively complicated.
Therefore, the present invention provides a very inexpensive beam sensor with a simple structure, detects the distribution state of the ion beam current actually applied to the sample by such a beam sensor in a short time, and also provides a sample in an electron microscope. The purpose is to align the center of the ion beam with the center position of.

【問題点を解決するための手段】本発明は,試料位置に
載置された試料と該試料のイオンビーム照射面とほぼ等
しい面積の領域に位置するように,前記試料位置の隣に
配置された微小径金属パイプとその周りに設けられた複
数の微小径金属導体とからなるビームセンサを有する試
料ホルダを備え,前記試料に照射されるべきイオンビー
ムを微小径金属パイプと複数の微小径金属導体に照射し
て,前記試料のイオン照射面域に相当する面域の微小領
域でのイオンビーム電流の分布を検出し,またこれら微
小径金属導体が検出したイオンビーム電流の分布がほぼ
等しくなるように,プリズム用電源と分析マグネット用
電源の1つ以上の電圧を調整してイオンビームの方向を
調整すると共に,イオン源マグネット用電源と,上流レ
ンズ電源と下流レンズ電源の一方又は双方の電圧を調整
してイオンビームの拡がりを調整して,前記試料に均一
にイオンビームを照射するものである。さらにまた,ビ
ーム通過小孔をに有する微小径金属パイプと,絶縁材料
を介してその微小径金属パイプの周りに配置された複数
の微小径金属導体と,これらを支持するそと囲器とから
なるビームセンサである。
According to the present invention, a sample placed at a sample position and an ion beam irradiation surface of the sample are arranged adjacent to the sample position so as to be located in a region having substantially the same area. And a sample holder having a beam sensor composed of a small diameter metal pipe and a plurality of small diameter metal conductors provided around the small diameter metal pipe. By irradiating the conductor, the distribution of the ion beam current in the minute region of the surface area corresponding to the ion irradiation surface of the sample is detected, and the distribution of the ion beam current detected by these small diameter metal conductors becomes almost equal. As described above, the direction of the ion beam is adjusted by adjusting one or more voltages of the power source for the prism and the power source for the analysis magnet, and the power source for the ion source magnet, the upstream lens power source and the downstream lens power source are adjusted. Adjust the spread of the ion beam by adjusting one or both of the voltage's power supply, in which uniformly irradiates the ion beam to the sample. Furthermore, a small-diameter metal pipe having a beam passage small hole in it, a plurality of small-diameter metal conductors arranged around the small-diameter metal pipe through an insulating material, and a sleeve and an enclosure for supporting them. It is a beam sensor.

【実施例】図1ないし図3により本発明の実施例につい
て説明する。図1は金属材料からなる試料ホルダ1の一
部分を示し,試料ホルダ1の軸線に沿って設けられた長
手の窓部1Aに,ビームセンサ2と試料ホールド部材3
とがピン又はネジによって隣り合って取り付けられてい
る。ビームセンサ2は図2に示すように,外囲器2A,
電気絶縁ベース部材2B,中央に位置する微小径金属パ
イプ2C0 とその周りに配設された複数の微小径金属導
体2C1 〜2C4 ,絶縁シート部材2D,金属材料より
なるアパーチャ部材2Eからなる。外囲器2Aは金属材
料からなる直方体状外形をもつもので,上部は円形の窓
が明けられており,下部は完全に開いている。そして外
囲器2Aの側壁の一部分は電気絶縁ベース部材2Bの外
径とほぼ等しい内径を有し,電気絶縁ベース部材2Bが
その部分に嵌入される。そして外囲器2Aはその対向す
る外壁にそれぞれ一対の取付け穴2aを備え,ピン又は
ネジによって試料ホルダ1の窓部に取り付けられる。電
気絶縁ベース部材2Bは電気絶縁材料からなる円板形状
のものであり,その中心,およびその中心から等距離で
互いにほぼ90°離れた位置に微小径金属パイプ2C0
と複数の微小径金属導体2C1 〜2C4 の取付け用の貫
通穴を備える。各貫通穴の内径は微小径金属パイプ2C
0 と複数の微小径金属導体2C1 〜2C4 の外径とほぼ
等しく,それら各貫通穴に微小径金属パイプ2C0 と複
数の微小径金属導体2C1 〜2C4 が嵌挿される。微小
径金属パイプ2C0 はステンレススチールのような金属
材料からなり,試料ホールド部材3に保持される試料の
イオン照射面積に比べてかなり小さな外径を有する。例
えば,試料のイオン照射領域の径が3mmの場合,この
微小径金属パイプ2C0 は,外径が0.2mm,内径が
0.1mmで,長さは2.5mmである。つまり,微小
径金属パイプ2C0 はビームを通過させるための0.1
mm径のビーム通路Hoを有する。この微小径金属パイ
プ2C0 は細いので自由自在に曲げられるので,検出し
たビーム電流を引き出す引出し線を別途ハンダ付けして
もよいが,微小径金属パイプ2C0 を長くしておいて,
これを所望なように曲げて自由端側を引出し線として利
用してもよい。また4本の微小径金属導体2C1,2C2,
2C3,2C4 は,例えば外径が0.5mmで,長さが4
00mmの絶縁被覆銅線である。これら微小径金属導体
2C1,2C2,2C3,2C4 も自由自在に曲げることが可
能なので,それらの自由端側は検出したイオンに対応す
る電流を引き出す引出し線の役割も果たす。また,これ
ら4本の微小径金属導体2C1,2C2,2C3,2C4 は微
小径金属パイプ2C0 のような金属パイプでも勿論よ
い。これら金属パイプは,イオンビームが斜めより入射
するため,厳密に下端部が閉止されている必要はない。
そしてこれら微小径金属パイプ2C0 と微小径金属導体
2C1 〜2C4 は,好ましくはそれら上端が電気絶縁ベ
ース部材2Bの上面と同一レベルにあるよう配置される
ことにより,ビームセンサ2の隣にセットされた試料と
同一レベルに位置し,好ましいビーム検出ができる。上
記実施例は電子顕微鏡内の試料にイオンを照射してその
場観察を行う場合に使用するものであるが,正確なイオ
ン照射量の検出は必要でなく,試料に均一に照射させる
ために相対的なイオン分布状態を検出したい場合には,
電子ビームを通過させるための微小通路Hoは不要であ
る。したがって,5本とも等しい銅線のような細長い導
体を用いることができる。絶縁シート部材2Dは,電気
絶縁ベース部材2Bの上面の面域とほぼ等しい大きさの
薄い電気絶縁シートであり,微小径金属パイプ2C0
微小径金属導体2C1 〜2C4 が配置される位置に相当
する箇所にそれらの内径とほぼ等しい孔2D1 を有す
る。絶縁シート部材2Dは電気絶縁ベース部材2B上に
載置され,その上に配置されるアパーチャ部材2Eと微
小径金属パイプ2C0 ,微小径金属導体2C1 〜2C4
間の電気絶縁を行う。アパーチャ部材2Eは金属材料か
らなる薄い円形状の板であり,これも微小径金属パイプ
2C0 ,微小径金属導体2C1 〜2C4 が配置される位
置にそれぞれ相当する箇所に絶縁シート部材2Dの穴2
1 よりも若干径の小さな穴2E1 を有し,この穴は,
穴径が電流密度を決定するため正確な径を有する。な
お,アパーチャ部材2Eは固定電位に接続される。な
お,以上の実施例において微小径金属導体2C1 〜2C
4 は,それらの断面が円形に限らず,任意の形状のもの
でも良い。次に図3をも用いて本発明の荷電粒子照射装
置の一実施例について説明を行うと,図3において10
はイオン源マグネット,11はイオン源マグネット用の
可変直流電源,12はイオンビームを収束させる上流レ
ンズ,13は上流レンズ用の可変直流電源,14は不所
望のイオンを分析偏向する分析マグネット,15は分析
マグネットの可変直流電源,16は再度イオンビームを
収束させるための下流レンズ,17は下流レンズ用の可
変直流電源,18はイオンビームを静電偏向するプリズ
ム装置,19はプリズム装置用の可変直流電源であり,
これらは従来と同様な構成である。制御・表示機構部2
0は,前述の微小径金属導体2C1 〜2C4 が検出した
イオンビームの大きさに応じて可変直流電源11,1
3,15,17,19の1つ以上制御するものである。
これは,中央に位置する微小径金属パイプ2C0 を中心
にして向かい合う2組の一対の微小径金属導体2C1
2C2,2C3 と2C4により検出されたイオン検出信号
の大きさの差がそれぞれほぼゼロになるよう,可変直流
電源11と13と17,可変直流電源15と19それぞ
れのいずれか1つ以上の電圧を制御する。次にこれら図
面を用いて操作および動作について説明を行う。図3に
示すように電子顕微鏡装置内の試料にイオンビームを照
射しながらその場観察を行って,例えば試料の結晶格子
等の挙動を観察する場合,先ず図1に示す試料ホルダ1
の位置を調整し,ビームセンサ2の中央に位置する微小
径金属パイプ2C0 の微小通路Hoを電子銃(図示せ
ず)からの電子ビームが通過するように位置合わせす
る。この位置合わせは,電子顕微鏡の像観察用蛍光板
(図示せず)の中央にビーム通路Hoの影が来るように
試料ホルダ1の位置を調整することにより行われる。次
にその位置に試料ホルダ1を固定した状態でイオンビー
ムを照射する。制御・表示機構部20は,微小径金属パ
イプ2C0 を中心にして向かい合う一対の微小径金属導
体2C1 と2C2,2C3 と2C4 により検出されたイオ
ン検出信号の大きさの差がそれぞれほぼゼロになるよ
う,上流レンズ用と下流レンズ用の可変直流電源(或い
はイオン源マグネット用の可変直流電源)11と13と
17の電圧を調整してイオンビームの拡がりを調整する
と共に,プリズム用と分析マグネット用可変直流電源1
9と15の1つ以上の電圧を制御してイオンビームの方
向を調整して,イオンビーム電流の分布がほぼ等しくな
るイオンビーム分布均等位置を求める。次に微小径金属
パイプ2C0 のビーム通路Ho中心と試料ホールド部材
3の中心,つまり試料4の中心との間の距離Xだけ,試
料ホルダ1を矢印方向に動かして,前記イオンビーム分
布均等位置にセットする。または,低倍率で試料の像観
察を行うことにより,試料の貫通穴(図示せず)の位置
を蛍光板の中央に位置させてもよい。これによって,試
料4の中心が微小径金属パイプ2C0 のビーム通路Ho
の位置に平行移動したことになり,電子顕微鏡の軸中心
にある試料4の全面にほぼ均一にイオンビームが照射さ
れることになる。このようにして非常に短時間でほぼ均
一な分布のイオンビーム電流を試料に照射することがで
きる。また,イオンビーム照射装置内の試料についても
前述とほぼ同様な操作を行えばよい。なお,これらを自
動的に行わずに手動で行う場合には,微小径金属パイプ
2Cと微小径金属導体2C1 〜2C4 のビーム電流検出
値をそれぞれ示す計器,又はディスプレイを備え,これ
らの示すビーム電流検出値を観察しながら上流レンズ用
と下流レンズ用,或いはイオン源マグネット用の可変直
流電源11と13と17,プリズム用と分析マグネット
用の可変直流電源19と15の1つ以上のボリュウムを
調整すればよい。また,ビームセンサ2と試料ホールド
部材3の位置は互いに入れ代わってもよく,この場合に
はイオンビーム分布均等位置を求めた後,試料ホルダを
矢印とは逆の方向に前記距離Xだけ移動させる。実施例
ではビームセンサ2として,微小径金属パイプ2C0
微小径金属導体2C1 〜2C4 を用いたが,これらの取
り付けスペース,或いは必要なイオンビーム分布状態の
検出精度などを考慮してそれらの採用個数,間隔などを
決めればよいが,微小径金属パイプ2C0 と2個以上の
微小径金属導体は必要である。特にイオンビーム照射装
置内で用いる場合のように,検出中心が不要の場合に
は,微小径金属パイプ2C0 を省略することもできる。
なお,前述の実施例のようなイオンビーム照射装置と電
子顕微鏡との組合わせだけでなく,イオンビーム照射装
置とレーザビーム照射装置とをの組合わせた荷電粒子照
射装置の場合も全く同様であり,この場合にはレーザビ
ームによるビーム通路Hoの影を像観察用蛍光板の中央
に位置するように調整を行う。次に図4により,より簡
単な構成で製作し易く,かつ安価なビームセンサ2の他
の実施例について説明する。外囲器2Aは金属材料から
なる直方体状外形をもつもので,上部は円形の窓が明け
られており,ビームが照射され易いようにテーパー形状
の凹所2A1を備える。その凹所2A1の底部2A2に
は,上方からみて正四角形の貫通穴2A3を有し,そし
て微小径金属パイプ2C0 と微小径金属導体2C1 〜2
4 の束ねられたものが貫通穴2A3に嵌入され,下方
向に延びている。微小径金属パイプ2C0 は, 好ましく
はその表面に薄い電気絶縁被膜が形成されているが,そ
の上端は切断時に電気絶縁被膜が破壊されているので,
外囲器2Aおよび微小径金属導体2C1 〜2C4 のいず
れかとの短絡を防ぐために,テフロンのような電気絶縁
材料2Fで上端部を含む一部分が被覆されている。同様
に微小径金属導体2C1 〜2C4 も,好ましくはその表
面に薄い電気絶縁被膜が形成されているが,その上端は
切断時に電気絶縁被膜が破壊されているので,外囲器2
Aおよび微小径金属導体2C1 〜2C4 のいずれかとの
短絡を防ぐためと,これらを束ねるために,テフロンの
ような電気絶縁シート2Gで上端部を含む一部分が巻か
れている。そしてこのように微小径金属パイプ2C0
中心にして,電気絶縁材料2Fを介してその周りに微小
径金属導体2C1 〜2C4 接触させ,電気絶縁シート2
Gで束ねたものを外囲器2Aの貫通穴2A3に嵌入させ
ているので,前記実施例のビームセンサに比べて検出精
度は低下するものの,非常に安価で小型のビームセンサ
を得ることができる。なお,図示していないが,微小径
金属パイプ2C0 には銀ろうなどにより引出し細線がろ
う付けされており,また微小径金属導体2C1 〜2C4
は容易に曲げられる程度の太さであるので,引出し細線
も兼ねている。この実施例においても,微小径金属導体
2C1 〜2C4 は微小径金属パイプであっても勿論よ
い。次に図5により,前述実施例と同様に簡単な構成で
製作し易く,かつ安価なビームセンサ2の他の実施例に
ついて説明する。外囲器2Aは絶縁材料からなる直方体
状外形をもつもので,上部は円形の窓が明けられてお
り,ビームが照射され易いようにテーパー形状の凹所2
A1を備える。その凹所2A1の底部2A2には,その
中央に電子ビームを通過させるための微小通路Hoが設
けられており,その微小通路Hoを形成する壁面にはス
パッタリング,又はメッキなどによりアルミニウムのよ
うな金属膜2C0'が形成されている。このような微小通
路Ho壁面の金属膜2C0'が前記実施例の微小径金属パ
イプ2C0 と同じ役割を果たす。また,凹所2A1の底
部2A2には,微小通路Hoを中心にして4つの同面積
の金属膜2C1' 〜2C4'がアルミニウムのような金属
材料を蒸着,スパッタリングなどを行うことにより形成
されており,これらは前記実施例の微小径金属導体2C
1 〜2C4 と同じ役割を果たす。これら金属膜2C0'〜
2C4'には,それぞれ金属細線からなる引出し線L0
1 ,L2 ,L3 ,L4 が銀ろうなどによってろう付け
されている。引出し線L0 からは,微小通路Hoを通過
するビーム電流量に応じた検出信号が得られ,また引出
し線L1 〜L4 からは金属膜2C0'〜2C4'に照射され
たイオン量に応じた検出信号がそれぞれ得られる。な
お,金属膜2C0'〜2C4'は,凹所2A1の底部2A2
全面に予め金属膜を形成し,しかる後所定のパターンに
従ってエッチングを行うことにより形成しても良い。ま
た,外囲器2Aを絶縁材料で構成したが,金属のような
導電材料を用いてもよく,この場合には凹所2A1の底
部2A2全面にポリイミド樹脂のような絶縁膜を形成
し,その上に前述のような金属膜2C0'〜2C4'を形成
すれば良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a part of a sample holder 1 made of a metal material. A beam sensor 2 and a sample holding member 3 are provided in a longitudinal window 1A provided along the axis of the sample holder 1.
And are mounted next to each other by pins or screws. As shown in FIG. 2, the beam sensor 2 includes an envelope 2A,
It is composed of an electrically insulating base member 2B, a small diameter metal pipe 2C 0 located at the center and a plurality of small diameter metal conductors 2C 1 to 2C 4 arranged around it, an insulating sheet member 2D, and an aperture member 2E made of a metal material. . The envelope 2A has a rectangular parallelepiped outer shape made of a metal material, a circular window is opened in the upper part, and the lower part is completely opened. A portion of the side wall of the envelope 2A has an inner diameter substantially equal to the outer diameter of the electrically insulating base member 2B, and the electrically insulating base member 2B is fitted into that portion. The envelope 2A is provided with a pair of mounting holes 2a on the opposing outer walls, and is attached to the window portion of the sample holder 1 by a pin or a screw. The electrically insulating base member 2B is a disk-shaped member made of an electrically insulating material, and has a small-diameter metal pipe 2C 0 at its center and at positions equidistant from the center and separated from each other by approximately 90 °.
And a plurality of through-holes for mounting of small diameter metal conductor 2C 1 ~2C 4. The inner diameter of each through hole is a small diameter metal pipe 2C
0 and substantially equal to the plurality of the outer diameter of the small diameter metal conductor 2C 1 ~2C 4, small diameter metal pipe 2C 0 and a plurality of small diameter metallic conductors 2C 1 ~2C 4 is fitted into each of these through holes. The small-diameter metal pipe 2C 0 is made of a metal material such as stainless steel and has an outer diameter considerably smaller than the ion irradiation area of the sample held by the sample holding member 3. For example, when the diameter of the ion irradiation region of the sample is 3 mm, the small diameter metal pipe 2C 0 has an outer diameter of 0.2 mm, an inner diameter of 0.1 mm, and a length of 2.5 mm. That is, the small-diameter metal pipe 2C 0 has a diameter of 0.1 for passing the beam.
It has a beam passage Ho with a diameter of mm. Since this small diameter metal pipe 2C 0 is thin and can be freely bent, a lead wire for drawing out the detected beam current may be soldered separately, but the small diameter metal pipe 2C 0 is made longer,
This may be bent as desired and the free end side may be used as a leader line. In addition, four fine metal conductors 2C 1, 2C 2,
2C 3 and 2C 4 have an outer diameter of 0.5 mm and a length of 4
It is an insulation-coated copper wire of 00 mm. Since these minute diameter metal conductors 2C 1, 2C 2, 2C 3, 2C 4 can also be bent freely, their free end side also functions as a lead wire for drawing out a current corresponding to the detected ion. Further, these four fine metal conductors 2C 1, 2C 2, 2C 3, 2C 4 may be metal pipes such as the fine metal pipe 2C 0 . Since the ion beam obliquely enters these metal pipes, it is not necessary to strictly close the lower ends.
Then, the small-diameter metal pipe 2C 0 and the small-diameter metal conductors 2C 1 to 2C 4 are preferably arranged next to the beam sensor 2 by being arranged so that their upper ends are at the same level as the upper surface of the electrically insulating base member 2B. The beam is positioned at the same level as the set sample, and a favorable beam detection can be performed. The above-mentioned embodiment is used when in-situ observation is performed by irradiating a sample in an electron microscope, but it is not necessary to accurately detect the ion irradiation amount, and it is necessary to uniformly irradiate the sample. If you want to detect a typical ion distribution,
The minute passage Ho for passing the electron beam is unnecessary. Therefore, it is possible to use an elongated conductor such as a copper wire which is the same for all five wires. The insulating sheet member 2D is a thin electric insulating sheet having a size substantially equal to the surface area of the upper surface of the electric insulating base member 2B, and is a position where the small diameter metal pipe 2C 0 and the small diameter metal conductors 2C 1 to 2C 4 are arranged. Has holes 2D 1 approximately equal to their inner diameters. The insulating sheet member 2D is placed on the electrically insulating base member 2B, and the aperture member 2E, the small diameter metal pipe 2C 0 , and the small diameter metal conductors 2C 1 to 2C 4 are placed thereon.
Provide electrical insulation between. The aperture member 2E is a thin circular plate made of a metal material, and this is also a part of the insulating sheet member 2D at the positions corresponding to the positions where the small diameter metal pipe 2C 0 and the small diameter metal conductors 2C 1 to 2C 4 are arranged. Hole 2
It has a hole 2E 1 with a diameter slightly smaller than D 1 , and this hole is
The hole diameter has an accurate diameter because it determines the current density. The aperture member 2E is connected to a fixed potential. Incidentally, in the above embodiment, the small diameter metal conductors 2C 1 to 2C are used.
The cross sections of 4 are not limited to circular shapes, but may be of any shape. Next, an embodiment of the charged particle irradiation apparatus of the present invention will be described with reference to FIG.
Is an ion source magnet, 11 is a variable DC power supply for the ion source magnet, 12 is an upstream lens for focusing the ion beam, 13 is a variable DC power supply for the upstream lens, 14 is an analysis magnet for analyzing and deflecting undesired ions, 15 Is a variable DC power source for the analysis magnet, 16 is a downstream lens for refocusing the ion beam, 17 is a variable DC power source for the downstream lens, 18 is a prism device for electrostatically deflecting the ion beam, and 19 is a variable device for the prism device. DC power supply,
These have the same configurations as conventional ones. Control / display mechanism 2
0 is a variable DC power supply 11, 1 according to the size of the ion beam detected by the small diameter metal conductors 2C 1 to 2C 4 described above.
It controls one or more of 3, 15, 17, and 19.
This is due to the difference in the magnitude of the ion detection signals detected by the pair of two small-diameter metal conductors 2C 1 and 2C 2, 2C 3 and 2C 4 facing each other with the small-diameter metal pipe 2C 0 located in the center as the center. One or more voltages of the variable DC power supplies 11 and 13 and 17, and the variable DC power supplies 15 and 19 are controlled so that each becomes approximately zero. Next, operations and operations will be described with reference to these drawings. As shown in FIG. 3, when the sample in the electron microscope apparatus is subjected to in-situ observation while irradiating an ion beam to observe the behavior of the sample such as a crystal lattice, first, the sample holder 1 shown in FIG.
Is adjusted so that the electron beam from the electron gun (not shown) passes through the minute passageway Ho of the minute diameter metal pipe 2C 0 located at the center of the beam sensor 2. This alignment is performed by adjusting the position of the sample holder 1 so that the shadow of the beam passage Ho is in the center of the image observation fluorescent plate (not shown) of the electron microscope. Next, the sample holder 1 is fixed at that position, and ion beam irradiation is performed. The control / display mechanism 20 has a difference in magnitude of ion detection signals detected by the pair of small-diameter metal conductors 2C 1 and 2C 2, 2C 3 and 2C 4 facing each other with the small-diameter metal pipe 2C 0 as the center. Adjust the voltage of the variable DC power supplies (or variable DC power supplies for ion source magnets) 11 and 13 and 17 for the upstream lens and the downstream lens so that it becomes almost zero to adjust the spread of the ion beam and also for the prism. And variable DC power supply for analysis magnet 1
The direction of the ion beam is adjusted by controlling one or more voltages of 9 and 15, and the ion beam distribution uniform position where the distributions of the ion beam currents are almost equal is obtained. Next, the sample holder 1 is moved in the direction of the arrow by the distance X between the center of the beam passage Ho of the small diameter metal pipe 2C 0 and the center of the sample holding member 3, that is, the center of the sample 4, and the ion beam distribution uniform position is obtained. Set to. Alternatively, the position of the through hole (not shown) of the sample may be located at the center of the fluorescent plate by observing the image of the sample at a low magnification. As a result, the center of the sample 4 is the beam passage Ho of the small diameter metal pipe 2C 0.
This means that the sample 4 has been moved in parallel to the position of, and the entire surface of the sample 4 at the axis center of the electron microscope is irradiated with the ion beam substantially uniformly. In this way, the sample can be irradiated with an ion beam current having a substantially uniform distribution in a very short time. Further, the same operation as described above may be performed on the sample in the ion beam irradiation apparatus. In the case of manually without them automatically, small diameter metal pipe 2C and small diameter metal conductor 2C 1 meter shown ~2C 4 beam current detection values respectively, or a display, indicated by these One or more volumes of variable DC power supplies 11 and 13 and 17 for upstream lens and downstream lens or ion source magnet, and variable DC power supplies 19 and 15 for prism and analysis magnet while observing the beam current detection value. Should be adjusted. Further, the positions of the beam sensor 2 and the sample holding member 3 may be replaced with each other. In this case, after obtaining the ion beam distribution uniform position, the sample holder is moved by the distance X in the direction opposite to the arrow. . In the embodiment, the small-diameter metal pipe 2C 0 and the small-diameter metal conductors 2C 1 to 2C 4 are used as the beam sensor 2, but these are taken into consideration in consideration of their mounting space, the required detection accuracy of the ion beam distribution state, and the like. Although the number of adopted, the interval, etc. may be determined, the fine metal pipe 2C 0 and two or more fine metal conductors are required. In particular, when the detection center is not required, as in the case of being used in the ion beam irradiation apparatus, the small diameter metal pipe 2C 0 can be omitted.
The same applies not only to the combination of the ion beam irradiation device and the electron microscope as in the above-described embodiment, but also to the charged particle irradiation device in which the ion beam irradiation device and the laser beam irradiation device are combined. In this case, adjustment is performed so that the shadow of the beam passage Ho caused by the laser beam is located at the center of the image observation fluorescent plate. Next, with reference to FIG. 4, another embodiment of the beam sensor 2 which is simpler to manufacture and less expensive will be described. The envelope 2A has a rectangular parallelepiped outer shape made of a metal material, has a circular window at the top, and has a tapered recess 2A1 so that the beam can be easily irradiated. The bottom portion 2A2 of the recess 2A1 has a through hole 2A3 of a square shape when viewed from above, and has a small diameter metal pipe 2C 0 and small diameter metal conductors 2C 1 to 2C 2.
The bundle of C 4 is fitted into the through hole 2A3 and extends downward. The small-diameter metal pipe 2C 0 is preferably formed with a thin electric insulation coating on its surface, but since the electric insulation coating is broken at the upper end of the pipe,
To prevent a short circuit between the envelope 2A and one of small diameter metal conductor 2C 1 ~2C 4, a portion including the upper end portion with an electrically insulating material, 2F, such as Teflon is coated. Likewise small-diameter metal conductor 2C 1 ~2C 4 also, since preferably is a thin electrically insulating film on its surface is formed at its upper end is electrically insulating coating is destroyed at the time of cutting, the envelope 2
And to prevent a short circuit between one of A and small diameter metal conductor 2C 1 ~2C 4, in order to bundle them, a portion including the upper end portion with an electrically insulating sheet 2G such as Teflon is wound. In this way, centering on the small diameter metal pipe 2C 0 , the small diameter metal conductors 2C 1 to 2C 4 are contacted around the small diameter metal pipe 2C 0 through the electric insulating material 2F, and the electric insulating sheet 2
Since the one bundled with G is fitted into the through hole 2A3 of the envelope 2A, the detection accuracy is lower than that of the beam sensor of the above-mentioned embodiment, but a very inexpensive and small beam sensor can be obtained. . Although not shown, the fine metal pipe 2C 0 is brazed with a fine lead wire by silver brazing or the like, and the fine metal conductors 2C 1 to 2C 4 are also attached.
Since it has a thickness that can be easily bent, it also serves as a thin drawing wire. Also in this embodiment, the minute metal conductors 2C 1 to 2C 4 may be minute metal pipes. Next, with reference to FIG. 5, another embodiment of the beam sensor 2 which is easy and inexpensive to manufacture with the same configuration as the above-mentioned embodiment will be described. The envelope 2A has a rectangular parallelepiped outer shape made of an insulating material, a circular window is opened in the upper part, and a tapered recess 2 is formed so that the beam can be easily irradiated.
Equipped with A1. The bottom portion 2A2 of the recess 2A1 is provided with a minute passageway Ho for passing an electron beam in the center thereof, and the wall surface forming the minute passageway Ho is formed of a metal such as aluminum by sputtering or plating. The film 2C 0 'is formed. The metal film 2C 0 ′ on the wall surface of the minute passage Ho plays the same role as the minute diameter metal pipe 2C 0 of the above-mentioned embodiment. Further, on the bottom portion 2A2 of the recess 2A1, four metal films 2C 1 ′ to 2C 4 ′ having the same area around the minute passage Ho are formed by depositing a metal material such as aluminum or sputtering. These are the small-diameter metal conductors 2C of the above embodiment.
It plays the same role as the 1 ~2C 4. These metal films 2C 0 '~
2C 4 'includes lead wires L 0 , which are thin metal wires,
L 1 , L 2 , L 3 , and L 4 are brazed by silver solder or the like. From lead line L 0, to obtain a detection signal corresponding to the beam current passing through the small passage Ho, also ion content is from lead line L 1 ~L 4 irradiated to the metal film 2C 0 '~2C 4' A detection signal corresponding to each is obtained. The metal films 2C 0 ′ to 2C 4 ′ are formed on the bottom 2A2 of the recess 2A1.
Alternatively, a metal film may be formed on the entire surface in advance, and then etching may be performed according to a predetermined pattern. Although the envelope 2A is made of an insulating material, a conductive material such as a metal may be used. In this case, an insulating film such as a polyimide resin is formed on the entire bottom portion 2A2 of the recess 2A1. The above-mentioned metal films 2C 0 ′ to 2C 4 ′ may be formed on it.

【発明の効果】以上述べたように本発明によれば,次の
ような効果を達することができる。 1.製作し易く,かつ安価で小型のビームセンサを得る
ことができる。 2.荷電粒子照射装置内の試料に実際に照射されるイオ
ンビームに非常に近いイオンビーム電流の分布状態を瞬
時に検出することができる。 3.ほぼ均一な分布のイオンビームを試料に照射するこ
とができる。 4.電子顕微鏡装置内の試料の中心位置にイオンビーム
の中心を合わせ得ることができる。 5.したがって,ほぼ均一な分布のイオンビームを試料
に照射しながらその場観察が行えるので,金属材料や半
導体材料などの各種分析,観察を正確に行うことができ
る。 6.試料の微小領域での分布状態が明らかになるため,
イオンビームを集束させ照射することによって,試料に
おける照射した部分と未照射の部分とが明確化され,こ
れによって,貴重な1つの試料を2以上の部分に分け,
条件を変えて照射実験を行うことができる。
As described above, according to the present invention, the following effects can be achieved. 1. A beam sensor that is easy to manufacture, inexpensive, and small can be obtained. 2. It is possible to instantaneously detect the distribution state of the ion beam current that is very close to the ion beam actually irradiated on the sample in the charged particle irradiation apparatus. 3. The sample can be irradiated with an ion beam having a substantially uniform distribution. 4. The center of the ion beam can be aligned with the center position of the sample in the electron microscope apparatus. 5. Therefore, since in-situ observation can be performed while irradiating the sample with an ion beam having a substantially uniform distribution, various analyzes and observations of metal materials and semiconductor materials can be performed accurately. 6. Since the distribution state in the microscopic region of the sample becomes clear,
By focusing and irradiating the ion beam, the irradiated and unirradiated parts of the sample are clarified, which divides a valuable sample into two or more parts,
Irradiation experiments can be performed under different conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる荷電粒子照射装置に用いられる
試料ホルダの一例を示す図である。
FIG. 1 is a diagram showing an example of a sample holder used in a charged particle irradiation apparatus according to the present invention.

【図2】本発明にかかるビームセンサの一実施例を示す
図である。
FIG. 2 is a diagram showing an embodiment of a beam sensor according to the present invention.

【図3】本発明にかかる荷電粒子照射装置の一実施例を
示す図である。
FIG. 3 is a diagram showing an embodiment of a charged particle irradiation apparatus according to the present invention.

【図4】本発明にかかる他のビームセンサの一実施例を
示す図である。
FIG. 4 is a diagram showing an embodiment of another beam sensor according to the present invention.

【図5】本発明にかかる他のビームセンサの一実施例を
示す図である。
FIG. 5 is a diagram showing an embodiment of another beam sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・試料ホルダ 2・・・・ビームセンサ 2A・・・外囲器 2B・・・電気絶縁ベース部材 2C0 ・・・微小径金属パイプ 2C1 〜2C4 ・・・微小径金属導体 2D・・・電気絶縁シート部材 2E・・・アパーチャ部材 3・・・・試料ホールド部材 4・・・・試料 10・・・・イオン源マグネット 11・・・・イオン源マグネット用電源 12・・・・上流レンズ 13・・・・上流レンズ用電源 14・・・・分析マグネット 15・・・・分析マグネット用電源 16・・・・下流レンズ 17・・・・下流レンズ用電源 18・・・・プリズム装置 19・・・・プリズム装置用電源 20・・・・制御・表示機構部 Ho・・・・微小通路 2C0'〜2C4'・・・・金属膜 L0 〜L4 ・・・・引出し線1 ... Sample holder 2 ... Beam sensor 2A ... Enclosure 2B ... Electrically insulating base member 2C 0 ... Small diameter metal pipe 2C 1 to 2C 4 ... Small diameter metal conductor 2D ・ ・ ・ Electrically insulating sheet member 2E ・ ・ ・ Aperture member 3 ・ ・ ・ ・ Sample holding member 4 ・ ・ ・ ・ Sample 10 ・ ・ ・ ・ Ion source magnet 11 ・ ・ ・ ・ ・ ・ Power source for ion source magnet 12 ・ ・ ・・ Upstream lens 13 ・ ・ ・ ・ Power supply for upstream lens 14 ・ ・ ・ ・ ・ ・ Power supply for analysis magnet 15 ・ ・ ・ ・ Power supply for analysis magnet 16 ・ ・ ・ ・ Downstream lens 17 ・ ・ ・ ・ ・ ・ Power supply for downstream lens 18 ・ ・ ・ ・ ・ ・ Prism Device 19 ・ ・ ・ ・ Power source for prism device 20 ・ ・ ・ ・ ・ ・ Control / display mechanism Ho ・ ・ ・ ・ Micro passage 2C 0 'to 2C 4 ' ... Metal film L 0 to L 4 ... line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/027

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 試料位置に載置された試料と,該試料の
イオンビーム照射面とほぼ等しい面積の領域に位置する
ように前記試料位置の隣に配置された複数の微小径金属
導体を備えたビームセンサとを有する試料ホルダを備
え,前記試料に照射されるべきイオンビームを前記複数
の微小径金属導体に照射して,前記試料のイオン照射面
域に相当する面域の微小領域でのイオンビーム電流の分
布を検出できるようにしたことを特徴とする荷電粒子照
射装置。
1. A sample placed at a sample position, and a plurality of small-diameter metal conductors arranged adjacent to the sample position so as to be located in a region having substantially the same area as the ion beam irradiation surface of the sample. A sample holder having a beam sensor, and irradiating the plurality of minute diameter metal conductors with an ion beam to be irradiated onto the sample, so that a small area of a surface area corresponding to the ion irradiation surface area of the sample is provided. A charged particle irradiation apparatus characterized in that the distribution of the ion beam current can be detected.
【請求項2】 試料位置に載置された試料と,該試料の
イオンビーム照射面とほぼ等しい面積の領域に位置する
ように前記試料位置の隣に配置された,微小径金属パイ
プとこれの周りに位置する複数の微小径金属導体とから
なるビームセンサとを有する試料ホルダを荷電粒子照射
装置内に備え,前記試料に照射されるイオンビームを先
ず前記複数の微小径金属導体に照射して,これら微小径
金属導体が検出したイオンビーム電流の分布がほぼ等し
くなるイオンビーム分布均等位置を検出し,次に前記試
料ホルダを動かして前記試料を前記イオンビーム分布均
等位置にセットし,前記試料にイオンビームを照射する
ことを特徴とする荷電粒子照射装置。
2. A sample placed at a sample position, a small-diameter metal pipe arranged next to the sample position so as to be located in a region having substantially the same area as the ion beam irradiation surface of the sample, and A sample holder having a beam sensor composed of a plurality of small-diameter metal conductors located around the sample holder is provided in the charged particle irradiation apparatus, and the ion beam irradiated to the sample is first irradiated to the plurality of small-diameter metal conductors. Detecting the ion beam distribution uniform position where the distributions of the ion beam currents detected by these small-diameter metal conductors are almost equal, and then moving the sample holder to set the sample to the ion beam distribution uniform position. A charged particle irradiation apparatus, which irradiates an ion beam on a surface of a charged particle.
【請求項3】 試料位置に載置された試料と,該試料の
イオンビーム照射面とほぼ等しい面積の領域に位置する
ように単一のビーム通路を有する微小径金属パイプと該
微小径金属パイプを中心に等距離に位置する複数の微小
径金属導体とからなるビームセンサとを,前記試料位置
の隣に配置してなる試料ホルダを備えた荷電粒子照射装
置に導入されるビームを,前記微小径金属パイプの前記
ビーム通路を通過させて中心位置を決め,その中心位置
に前記試料ホルダをセットし,この状態でイオンビーム
を前記複数の微小径金属導体に照射して検出を行い,こ
れら微小径金属導体が検出したイオンビーム電流の分布
がほぼ等しくなるように,プリズム用電源と分析マグネ
ット用電源とイオン源マグネット用電源の1つ以上の電
圧を調整してイオンビームの方向を調整すると共に,上
流レンズ電源と下流レンズ電源の一方又は双方の電圧を
調整してイオンビームの拡がりを調整することを特徴と
する荷電粒子照射装置。
3. A sample placed at a sample position, a micro-diameter metal pipe having a single beam passage so as to be located in a region having substantially the same area as the ion beam irradiation surface of the sample, and the micro-diameter metal pipe. A beam sensor composed of a plurality of small-diameter metal conductors that are equidistant from each other at the center and a beam introduced into a charged particle irradiation apparatus equipped with a sample holder arranged next to the sample position The center position is determined by passing through the beam passage of the small-diameter metal pipe, the sample holder is set at the center position, and in this state, the ion beam is irradiated to the plurality of small-diameter metal conductors for detection, Adjust the voltage of one or more of the power source for the prism, the power source for the analysis magnet, and the power source for the ion source magnet so that the distribution of the ion beam current detected by the small-diameter metal conductor is almost equal. A charged particle irradiation apparatus characterized by adjusting the beam direction and adjusting the voltage of one or both of an upstream lens power supply and a downstream lens power supply to adjust the divergence of an ion beam.
【請求項4】 中心に設けられた貫通孔と,中心から等
距離にある2個以上の別の貫通穴を有する電気絶縁ベー
ス部材と,前記中心に設けられた貫通孔と,前記2個以
上の貫通穴にそれぞれを通して設けられた微小径金属導
体と,前記微小径金属パイプと微小径金属導体との上端
面に載置された電気絶縁シートと,および電気絶縁シー
トの上面に備えられ,前記微小径金属パイプと微小径金
属導体各々に対応する箇所にアパーチャを複数備える導
電性アパーチャ部材と,とからなることを特徴とするビ
ームセンサ。
4. An electrically insulating base member having a through hole provided in the center, two or more other through holes equidistant from the center, a through hole provided in the center, and the two or more. A small-diameter metal conductor provided through each of the through holes, an electric insulating sheet placed on the upper end surfaces of the small-diameter metal pipe and the small-diameter metal conductor, and an upper surface of the electric insulating sheet. A beam sensor, comprising: a small diameter metal pipe; and a conductive aperture member having a plurality of apertures at locations corresponding to the small diameter metal conductors.
【請求項5】 ビーム通路を有する絶縁被覆された微小
径金属パイプと,前記絶縁被覆を介して前記微小径金属
パイプの周りに配置された複数の微小径金属導体と,前
記微小径金属パイプと前記複数の微小径金属導体を支持
する外囲器とからなることを特徴とするビームセンサ。
5. A small-diameter metal pipe covered with an insulating material having a beam passage, a plurality of small-diameter metal conductors arranged around the small-diameter metal pipe through the insulating coating, and the small-diameter metal pipe. A beam sensor comprising: an envelope that supports the plurality of small-diameter metal conductors.
【請求項6】 ビーム通路を有する電気絶縁性の外囲器
と,そのビーム通路を形成する内壁に形成された金属膜
と,前記ビーム通路を中心にして,前記電気絶縁性の外
囲器のイオン照射面に形成された複数の金属膜と,前記
各金属膜にそれぞれ接続された引出し線とからなること
を特徴とするビームセンサ。
6. An electrically insulative envelope having a beam passage, a metal film formed on an inner wall forming the beam passage, and the electrically insulative envelope around the beam passage. A beam sensor comprising: a plurality of metal films formed on an ion irradiation surface; and a lead wire connected to each of the metal films.
【請求項7】 前記微小径金属導体が微小径金属線であ
ることを特徴とする請求項1乃至請求項5のいずれかに
記載のビームセンサ。
7. The beam sensor according to claim 1, wherein the fine metal conductor is a fine metal wire.
【請求項8】 前記微小径金属導体が微小径金属パイプ
であることを特徴とする請求項1乃至請求項5のいずれ
かに記載のビームセンサ。
8. The beam sensor according to claim 1, wherein the fine metal conductor is a fine metal pipe.
【請求項9】 前記微小径金属導体が金属膜であること
を特徴とする請求項1乃至請求項5のいずれかに記載の
ビームセンサ。
9. The beam sensor according to claim 1, wherein the small-diameter metal conductor is a metal film.
JP33115792A 1992-11-17 1992-11-17 Charged particle irradiation apparatus and beam sensor Withdrawn JPH06162975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33115792A JPH06162975A (en) 1992-11-17 1992-11-17 Charged particle irradiation apparatus and beam sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33115792A JPH06162975A (en) 1992-11-17 1992-11-17 Charged particle irradiation apparatus and beam sensor

Publications (1)

Publication Number Publication Date
JPH06162975A true JPH06162975A (en) 1994-06-10

Family

ID=18240515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33115792A Withdrawn JPH06162975A (en) 1992-11-17 1992-11-17 Charged particle irradiation apparatus and beam sensor

Country Status (1)

Country Link
JP (1) JPH06162975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673009B1 (en) * 2005-08-01 2007-01-24 삼성전자주식회사 Apparatus for measuring center of beam profiler, ion implanter and method using the same
US20130220806A1 (en) * 2010-11-05 2013-08-29 Hitachi High-Technologies Corporation Ion milling device
CN107063817A (en) * 2017-04-25 2017-08-18 河钢股份有限公司邯郸分公司 A kind of pickling detection means of test button half

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673009B1 (en) * 2005-08-01 2007-01-24 삼성전자주식회사 Apparatus for measuring center of beam profiler, ion implanter and method using the same
US7462846B2 (en) 2005-08-01 2008-12-09 Samsung Electronics Co., Ltd. Apparatus for measuring a position of an ion beam profiler and a method for its use
US20130220806A1 (en) * 2010-11-05 2013-08-29 Hitachi High-Technologies Corporation Ion milling device
US20160163508A1 (en) * 2010-11-05 2016-06-09 Hitachi High-Technologies Corporation Ion milling device
US10008365B2 (en) 2010-11-05 2018-06-26 Hitachi High-Technologies Corporation Ion milling device
US20180301318A1 (en) * 2010-11-05 2018-10-18 Hitachi High-Technologies Corporation Ion milling device
US11133153B2 (en) 2010-11-05 2021-09-28 Hitachi High-Tech Corporation Ion milling device
CN107063817A (en) * 2017-04-25 2017-08-18 河钢股份有限公司邯郸分公司 A kind of pickling detection means of test button half

Similar Documents

Publication Publication Date Title
US6303932B1 (en) Method and its apparatus for detecting a secondary electron beam image and a method and its apparatus for processing by using focused charged particle beam
US9523714B2 (en) Electrical inspection of electronic devices using electron-beam induced plasma probes
US6825475B2 (en) Deflection method and system for use in a charged particle beam column
JPS5917499B2 (en) mass spectrometer
JPH07505247A (en) Plasma flow and plasma device control method
EP0734044B1 (en) Ion energy analyzer and electrically controlled geometric filter for same
JPH06162975A (en) Charged particle irradiation apparatus and beam sensor
US5994704A (en) Electromagnetic deflector
JPH1172451A (en) Apparatus and method for secondary ion mass spectrometry
US3522428A (en) Mass spectrometer having a plurality of relatively movable collectors
JP2003035682A (en) Sample holder and sample analysis method
JPH03125452A (en) Method and apparatus for displaying characteristics of insulating layer
JPH05258694A (en) Charged particle emitting device and composite faraday cup
WO2024066108A1 (en) Electro-optical test platform device
CN114008536B (en) Drawing device and deflector
JPH10162760A (en) Electron beam device
JPS6231930A (en) Accelerator-connected transmission type electron microscope
KR20230032877A (en) Discharge detecting device and charged particle beam irradiating device
KR100217336B1 (en) Charge protecting method
JPH05171472A (en) Method for detecting end point of ion beam etching
JPH02183135A (en) Molecular beam intensity measuring apparatus
GB2059080A (en) Measuring ionic beam current
TW202320116A (en) Discharge site detection method and discharge site detection device
JPH0374035A (en) Electron beam device
JPS6353850A (en) Multi-channel analyzer for atom-like particle

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201