JPH06162587A - Optical recording and reproducing method - Google Patents
Optical recording and reproducing methodInfo
- Publication number
- JPH06162587A JPH06162587A JP30708992A JP30708992A JPH06162587A JP H06162587 A JPH06162587 A JP H06162587A JP 30708992 A JP30708992 A JP 30708992A JP 30708992 A JP30708992 A JP 30708992A JP H06162587 A JPH06162587 A JP H06162587A
- Authority
- JP
- Japan
- Prior art keywords
- magneto
- layer
- optical recording
- wavelength
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光記録再生方法に関し、
光磁気記録媒体を用いた情報の記録再生方法に関する。The present invention relates to an optical recording / reproducing method,
The present invention relates to a method for recording / reproducing information using a magneto-optical recording medium.
【0002】[0002]
【従来の技術】近年、情報量の飛躍的な増大に伴い、情
報記録媒体に対する記録密度向上の要求が高まってい
る。光ディスクは記録密度が高い上に、ランダムアクセ
ス性、可搬性に優れている。特に光磁気ディスク(光磁
気記録媒体)は繰り返し記録が可能で、信頼性にも優れ
るため、コンピュータ用外部記憶装置、録音装置の記録
媒体として既に商品化されている。2. Description of the Related Art In recent years, along with a dramatic increase in the amount of information, there is an increasing demand for improving the recording density of information recording media. The optical disc has a high recording density and is excellent in random accessibility and portability. In particular, a magneto-optical disk (magneto-optical recording medium) can be repeatedly recorded and is excellent in reliability, so that it has already been commercialized as a recording medium for external storage devices for computers and recording devices.
【0003】現在商品化されている光磁気ディスクの記
憶容量は直径5.25インチのディスク片面当り300
メガバイト程度である。この記憶容量を1ギガバイト程
度まで高めるために、トラックピッチを短くすることや
記録信号の変調方式を変更することが提案されており、
実用化の目処が立ちつつある。しかしながら、現行技術
の範囲内で記録密度(記憶容量)を更に向上させるの
は、記録密度が既に理論的な限界に近づいていることか
ら不可能であると言わざるを得ない。The storage capacity of the magneto-optical disk currently commercialized is 300 per one side of a disk having a diameter of 5.25 inches.
It is about megabytes. In order to increase the storage capacity up to about 1 gigabyte, it has been proposed to shorten the track pitch and change the recording signal modulation method.
The prospect of practical application is emerging. However, it must be said that it is impossible to further improve the recording density (storage capacity) within the range of the current technology because the recording density is already close to the theoretical limit.
【0004】光ディスクにおける記録密度の理論的限界
を決定するのは記録再生に使われるレーザ光の集光スポ
ットの大きさである。従って更に記録密度を高めるため
にはレーザ光のスポットをより小さく絞ることが不可欠
である。レーザ光のスポット径dは使用するレーザ光の
波長λと対物レンズの開口数NAにより次式で表され
る。ただし、kはレンズの開口形状、入射光束の強度分
布によって決まる定数である。It is the size of the focused spot of the laser light used for recording / reproducing that determines the theoretical limit of the recording density in the optical disk. Therefore, in order to further increase the recording density, it is indispensable to narrow down the spot of the laser light. The spot diameter d of the laser light is expressed by the following equation by the wavelength λ of the laser light used and the numerical aperture NA of the objective lens. However, k is a constant determined by the aperture shape of the lens and the intensity distribution of the incident light beam.
【0005】d=k・λ/NA レーザ光のスポット径dを小さくするためには、波長λ
の短い光源を用いること、及び開口数NAの大きな対物
レンズを用いることが必要である。レンズの開口数を大
きくすると、焦点深度が浅くなり、またディスクの傾き
や基板の厚み斑に対する許容度が急激に低下してしまう
ため、光ヘッドのサーボ能力が低下してしまう。従っ
て、レンズの開口数は現行の0.55程度よりさほど大
きくすることはできない。よって、レーザ光のスポット
径を小さくして記録密度を向上させるためには、光ヘッ
ドの光源として現行の825nm、780nmよりも短
い波長の光源を使用することが不可欠である。D = k · λ / NA In order to reduce the spot diameter d of the laser light, the wavelength λ
It is necessary to use a light source having a short aperture and an objective lens having a large numerical aperture NA. When the numerical aperture of the lens is increased, the depth of focus becomes shallow, and the tolerance for the tilt of the disk and the unevenness of the thickness of the substrate sharply decreases, so that the servo performance of the optical head deteriorates. Therefore, the numerical aperture of the lens cannot be made much larger than the current 0.55. Therefore, in order to reduce the spot diameter of the laser beam and improve the recording density, it is essential to use a light source having a wavelength shorter than the current 825 nm and 780 nm as the light source of the optical head.
【0006】光磁気ディスクの再生信号の品質を支配す
るのは反射率と磁気カー回転角であり、より具体的には
反射率の平方根と磁気カー回転角との積という形で表さ
れる。これを性能係数と呼ぶこととする。現在商品化さ
れている光磁気ディスクの記録層としては、TbFeC
oに代表される重希土類−遷移金属アモルファス合金が
使われている。これら合金の性能係数は現行光磁気ディ
スクドライブのレーザ光の波長800nm程度では比較
的大きな値を示すが、光の波長が短くなって600nm
以下になると急激に減少してしまう。またドライブの信
号検出に使われている光検出素子のフォトダイオードの
検出感度も、800nm付近では高いが600nm以下
になると急激に低下してしまう。これらの事実は現行の
技術では短波長側で再生信号の強度が極端に低下してし
まい、安定した記録信号の再生が不可能になることを意
味している。It is the reflectance and the magnetic Kerr rotation angle that dominate the quality of the reproduction signal of the magneto-optical disk, and more specifically, it is represented by the product of the square root of the reflectance and the magnetic Kerr rotation angle. This is called a performance coefficient. TbFeC is used as the recording layer of currently commercialized magneto-optical disks.
A heavy rare earth-transition metal amorphous alloy represented by o is used. The performance coefficient of these alloys shows a relatively large value at the wavelength of the laser light of the existing magneto-optical disk drive of about 800 nm, but the wavelength of the light becomes 600 nm due to the shorter wavelength.
When it becomes below, it will decrease rapidly. Further, the detection sensitivity of the photodiode of the photodetection element used for signal detection of the drive is high near 800 nm, but sharply drops below 600 nm. These facts mean that with the current technology, the intensity of the reproduction signal is extremely reduced on the short wavelength side, and stable reproduction of the recording signal becomes impossible.
【0007】以上に述べてきたように、記録密度の向上
を狙った短波長光源を用いた光磁気ディスクシステムを
実現するには、短波長側での再生信号強度の低下が問題
となっている。As described above, in order to realize a magneto-optical disk system using a short wavelength light source aiming at an improvement in recording density, a reduction in reproduction signal strength on the short wavelength side becomes a problem. .
【0008】[0008]
【発明が解決しようとする課題】先に述べたように、大
きな再生信号を得るためには記録媒体の性能係数を大き
くすることと光検出素子の感度を向上させる事が重要で
ある。光磁気ディスクドライブで用いられている光検出
素子、フォトダイオードにおける光の検出は、光がpn
接合付近の電子を伝導帯に励起し、伝導帯の電子がpn
接合を移動し、フォトダイオードを電流が流れることに
よりなされる。フォトダイオードを構成するSi半導体
の光吸収係数は短波長側で大きくなるため、短波長の光
はフォトダイオード表面近傍で吸収されてしまい、pn
接合付近まで到達しにくくなる。その結果pn接合付近
で励起される電子の数が減少するため、光の検出感度が
低下してしまう。よって短波長側で光検出素子の検出感
度を向上させるのは理論的に困難であり、短波長側で大
きな再生信号を得るためには記録媒体の性能係数を大き
くすることが重要である。As described above, in order to obtain a large reproduced signal, it is important to increase the performance coefficient of the recording medium and improve the sensitivity of the photodetector. The light is detected by the photodetector and the photodiode used in the magneto-optical disk drive.
The electrons near the junction are excited to the conduction band, and the electrons in the conduction band are pn
This is done by moving the junction and passing a current through the photodiode. Since the light absorption coefficient of the Si semiconductor that constitutes the photodiode becomes large on the short wavelength side, light having a short wavelength is absorbed near the surface of the photodiode, and the pn
It is difficult to reach the vicinity of the joint. As a result, the number of electrons excited near the pn junction decreases, and the light detection sensitivity decreases. Therefore, it is theoretically difficult to improve the detection sensitivity of the photodetector on the short wavelength side, and it is important to increase the performance coefficient of the recording medium in order to obtain a large reproduced signal on the short wavelength side.
【0009】光磁気ディスクは一般的には、透明基板上
に、光磁気記録層、光干渉層、光反射層、保護層等、複
数の層を設けることにより構成される。再生信号強度を
支配する性能係数はこれらの全ての層を総合して考慮し
なければならない。本発明は全ての層を構成する材料、
層厚、及び層構成を最適化し、光磁気ディスクの600
nm以下の波長での性能係数を高めて、600nm以下
の短波長光を用いた光磁気ディスクシステムを提供する
ことを目的とする。A magneto-optical disk is generally constructed by providing a plurality of layers such as a magneto-optical recording layer, a light interference layer, a light reflecting layer, and a protective layer on a transparent substrate. The figure of merit that governs the reproduced signal strength must be considered in all of these layers. The present invention is a material constituting all layers,
Optimizing the layer thickness and layer structure, the magneto-optical disk 600
It is an object of the present invention to provide a magneto-optical disk system using a short-wavelength light of 600 nm or less by enhancing the performance coefficient at a wavelength of nm or less.
【0010】[0010]
【課題を解決するための手段】本発明者らは高記録密度
光磁気ディスクシステムを提供すべく鋭意検討した結
果、基板上に少なくとも、誘電体層、光磁気記録層、反
射層を順次有する光磁気記録媒体の反射層としてAg、
あるいはAgを主成分とする合金、化合物を用いること
により、600nm以下の波長で優れた再生特性を示す
光磁気記録が可能となることを明らかにした。DISCLOSURE OF THE INVENTION As a result of intensive investigations by the present inventors to provide a high recording density magneto-optical disk system, as a result, an optical disk having at least a dielectric layer, a magneto-optical recording layer and a reflective layer on a substrate in order. Ag as a reflective layer of a magnetic recording medium,
Alternatively, it has been clarified that the use of an alloy or compound containing Ag as a main component enables magneto-optical recording exhibiting excellent reproduction characteristics at a wavelength of 600 nm or less.
【0011】本発明は、基板上に少なくとも、誘電体
層、光磁気記録層、Agを主成分とする反射層を順次有
する光磁気記録媒体に、波長600nm以下のレーザ光
を用いて記録・再生を行うことを特徴とする光記録再生
方法である。以下に本発明を詳細に説明する。本発明に
て用いられる光磁気記録媒体の基板としては、ガラス、
ポリカーボネート等のプラスチック、あるいはガラス上
に光ヘッド案内用の溝付き樹脂を形成した基板などが挙
げられる。溝の深さ、及び間隔は使用する波長に合わせ
て最適化、つまり波長が短くなるほど溝を浅くし、間隔
を細かくするのが好ましい。このような基板の複屈折
は、光磁気信号の品質を損なわないよう極力小さいこと
が望ましい。また基板の厚みは1〜2mm程度が一般的
である。The present invention uses a laser beam having a wavelength of 600 nm or less for recording / reproducing on a magneto-optical recording medium having at least a dielectric layer, a magneto-optical recording layer, and a reflective layer containing Ag as a main component on a substrate. Is an optical recording / reproducing method. The present invention will be described in detail below. As the substrate of the magneto-optical recording medium used in the present invention, glass,
Examples thereof include plastics such as polycarbonate, and substrates in which a grooved resin for guiding an optical head is formed on glass. It is preferable to optimize the depth and spacing of the grooves according to the wavelength to be used, that is, the shorter the wavelength, the shallower the grooves and the finer the spacing. It is desirable that the birefringence of such a substrate be as small as possible so as not to impair the quality of the magneto-optical signal. The substrate generally has a thickness of about 1 to 2 mm.
【0012】誘電体層は光を干渉させる層であり、基板
と光磁気記録層との間に設けられ、基板と光磁気記録層
と間で光を多重反射させ、見かけ上の磁気カー回転角を
増大させる役割、干渉効果を担う。その厚みは使用する
光の波長に合わせて変化させなければ、充分な干渉効果
が得られない。例えば、波長が450nm程度の時は、
誘電体層の厚みを35nmとすると干渉効果が著しく、
波長を更に短くした場合は、誘電体の厚みも薄くした方
が大きな干渉効果が得られる。また、誘電体層は基板と
光磁気記録層との密着性を高める役割、光磁気記録層と
基板を断熱する役割、プラスチック基板を通して侵入し
てくる水分から光磁気記録層を保護する役割等を合わせ
持つ。The dielectric layer is a layer that interferes with light, is provided between the substrate and the magneto-optical recording layer, multiple-reflects light between the substrate and the magneto-optical recording layer, and causes an apparent magnetic Kerr rotation angle. Play a role of increasing the interference effect. A sufficient interference effect cannot be obtained unless its thickness is changed according to the wavelength of light used. For example, when the wavelength is about 450 nm,
When the thickness of the dielectric layer is 35 nm, the interference effect is remarkable,
When the wavelength is further shortened, the thinner the dielectric, the greater the interference effect. In addition, the dielectric layer plays a role of enhancing the adhesion between the substrate and the magneto-optical recording layer, a role of insulating the magneto-optical recording layer and the substrate, a role of protecting the magneto-optical recording layer from moisture that penetrates through the plastic substrate, and the like. Hold together.
【0013】誘電体層は更に光磁気記録層と反射層の間
にも設けることができる。これにより更に光の干渉効果
を高め、磁気カー回転角を増大させることが可能であ
る。一層または二層設けられる誘電体層の厚みは使用す
る光の波長に合わせてそれぞれ変化させなければ、充分
な干渉効果が得られない。誘電体層の厚みは、使用する
光の波長が600nm程度の場合は40nm〜55nm
程度(一次干渉点を利用する場合)あるいは180nm
〜195nm程度(二次干渉点を利用する場合)が好ま
しく、使用する光の波長が400nm程度の場合は25
nm〜35nm程度(一次干渉点を利用する場合)ある
いは120nm〜130nm程度(二次干渉点を利用す
る場合)が好ましい。The dielectric layer can be further provided between the magneto-optical recording layer and the reflective layer. This makes it possible to further enhance the light interference effect and increase the magnetic Kerr rotation angle. A sufficient interference effect cannot be obtained unless the thickness of one or two dielectric layers is changed according to the wavelength of light used. The thickness of the dielectric layer is 40 nm to 55 nm when the wavelength of light used is about 600 nm.
Degree (when using the primary interference point) or 180 nm
˜195 nm (when using a secondary interference point) is preferable, and 25 when the wavelength of light used is about 400 nm
It is preferably about nm to 35 nm (when using the primary interference point) or about 120 nm to 130 nm (when using the secondary interference point).
【0014】光磁気記録層と反射膜との間に設けられる
誘電体層は光を干渉させる役割の他に、光磁気記録層と
反射層を断熱する役割等を担う。誘電体層として用いら
れる材料としては窒化シリコン、酸化タンタル、酸化シ
リコン、酸化アルミニウム、酸化チタン、硫化亜鉛等や
これらの混合物からなるアモルファス薄膜が一般的であ
る。The dielectric layer provided between the magneto-optical recording layer and the reflective film plays a role of interfering light, and also has a role of insulating the magneto-optical recording layer and the reflective layer. As a material used for the dielectric layer, an amorphous thin film made of silicon nitride, tantalum oxide, silicon oxide, aluminum oxide, titanium oxide, zinc sulfide, etc., or a mixture thereof is generally used.
【0015】光磁気記録層はレーザ光を集光させて加熱
し、熱磁気記録を行う層である。記録が行われるために
は、磁化が膜面に対して垂直に向かなければならないの
で、光磁気記録層としては垂直磁気異方性の大きいこと
が望ましい。光の波長が短くなって集光スポット径が小
さくなると、単位面積当りの光のエネルギー密度が高く
なるため、再生光を照射したときの光磁気記録層の温度
は従来の800nm程度の波長の場合よりも高くなりや
すい。光磁気記録層の温度が高くなると磁気カー回転角
が減少し、再生信号の出力が低下するが、低下の割合は
光磁気記録層のキュリー温度が低いほど著しい。The magneto-optical recording layer is a layer for condensing and heating laser light to perform thermo-magnetic recording. Since the magnetization must be perpendicular to the film surface for recording, it is desirable that the magneto-optical recording layer has a large perpendicular magnetic anisotropy. When the wavelength of light is shortened and the diameter of the focused spot is reduced, the energy density of light per unit area is increased. Therefore, the temperature of the magneto-optical recording layer when the reproducing light is irradiated is about 800 nm in the conventional case. More likely to be expensive. When the temperature of the magneto-optical recording layer increases, the magnetic Kerr rotation angle decreases and the output of the reproduction signal decreases, but the rate of decrease is more remarkable as the Curie temperature of the magneto-optical recording layer is lower.
【0016】よって600nm以下の波長の光を用いて
記録再生を行うための光磁気記録層の材料としては従来
の800nm程度の波長用の光磁気記録層のキュリー温
度170〜200℃よりも高いキュリー温度を持つもの
を使うのが好ましい。また大きな再生信号を得るために
は使用する光の波長でカー回転角が大きいことが好まし
く、特には220℃〜280℃のキュリー温度であるの
が好ましい。Therefore, as the material of the magneto-optical recording layer for recording / reproducing by using the light having the wavelength of 600 nm or less, the Curie temperature higher than the Curie temperature 170 to 200 ° C. of the conventional magneto-optical recording layer for the wavelength of about 800 nm is used. It is preferable to use one that has a temperature. Further, in order to obtain a large reproduced signal, it is preferable that the Kerr rotation angle is large at the wavelength of the light used, and the Curie temperature of 220 ° C. to 280 ° C. is particularly preferable.
【0017】以上のような条件を満たす光磁気記録層と
してはTb濃度15〜25原子%、Co濃度10〜50
原子%のTbFeCoアモルファス合金、Co濃度20
〜50原子%のNdTbFeCoアモルファス合金、C
o/Pt人工格子等が例として挙げられる。光磁気記録
層の膜厚は、レーザ光のパワーに対する記録感度、性能
係数等を考慮して使用する波長に合わせて決定するのが
好ましく、膜厚は光の波長が短いほど薄くすることが可
能である。光磁気記録層の膜厚は、通常10nm〜40
nm程度とされる。The magneto-optical recording layer satisfying the above conditions has a Tb concentration of 15 to 25 atomic% and a Co concentration of 10 to 50.
Atomic% TbFeCo amorphous alloy, Co concentration 20
~ 50 atomic% NdTbFeCo amorphous alloy, C
An example is an o / Pt artificial lattice. It is preferable to determine the film thickness of the magneto-optical recording layer according to the wavelength to be used in consideration of the recording sensitivity to the power of laser light, the performance coefficient, etc. The film thickness can be made thinner as the wavelength of light is shorter. Is. The thickness of the magneto-optical recording layer is usually 10 nm to 40
It is about nm.
【0018】反射層は光磁気記録層を透過した光を反射
して再び光磁気記録層に戻す役割を担う。これにより光
の利用効率を高めると共に、反射率と磁気カー回転角が
増大し、性能係数が増大する。また、反射膜は光磁気記
録媒としての熱伝導率に影響を与える。現在商品化され
ている800nm程度の波長に対応する光磁気ディスク
の反射層としてはアルミニウムあるいはアルミニウム合
金が使用されているのに対し、本発明ではAgを主体と
する反射層が使用されるのが特徴的である。The reflective layer plays a role of reflecting the light transmitted through the magneto-optical recording layer and returning it to the magneto-optical recording layer again. As a result, the efficiency of light utilization is increased, the reflectance and the magnetic Kerr rotation angle are increased, and the coefficient of performance is increased. The reflective film also affects the thermal conductivity of the magneto-optical recording medium. While aluminum or an aluminum alloy is used as the reflective layer of a magneto-optical disk that is currently commercialized and has a wavelength of about 800 nm, in the present invention, a reflective layer mainly containing Ag is used. It is characteristic.
【0019】反射層として、従来のアルミニウム、アル
ミニウム合金、あるいは金を用いると600nm以下の
波長では光学定数が記録層の光学定数に近くなり充分な
性能係数を得ることができないが、Agを主体とする反
射層は600nm以下の波長でも磁性層との光学定数の
差が保たれており、高いエンハンス効果が得られ、良好
な性能係数を得ることが可能になるものと考えられる。When conventional aluminum, aluminum alloy, or gold is used for the reflective layer, the optical constant is close to the optical constant of the recording layer at a wavelength of 600 nm or less, and a sufficient coefficient of performance cannot be obtained. It is considered that the reflecting layer maintains a difference in optical constant from the magnetic layer even at a wavelength of 600 nm or less, a high enhancement effect can be obtained, and a good performance coefficient can be obtained.
【0020】Ag単体では硫化ガスにより腐食されやす
いため、腐食防止効果を持つ元素、例えば、Au、P
t、Pd等を単独で、もしくは複数の種類をAgに添加
して反射層としてもよい。他の元素の添加量は反射層中
50原子%未満、好ましくは80原子%以下、通常は6
原子%程度までである。また、反射層の更に外側に、外
部環境、機械的損傷から媒体を保護するための、光硬化
性樹脂等からなる保護層を設けるとより好ましい。Since a simple substance of Ag is easily corroded by a sulfide gas, an element having a corrosion preventing effect, for example, Au, P
Alternatively, t, Pd, or the like may be used alone, or a plurality of types may be added to Ag to form a reflective layer. The amount of addition of other elements is less than 50 atomic%, preferably 80 atomic% or less, usually 6 in the reflective layer.
Up to about atomic%. Further, it is more preferable to provide a protective layer made of a photocurable resin or the like on the outer side of the reflective layer to protect the medium from the external environment and mechanical damage.
【0021】[0021]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例に限定されるものではない。 実施例1 基板としては厚さ1.2mmのガラス基板を用いた。基
板上に誘電体層として、酸化タンタル薄膜を反応性スパ
ッタリング法により形成した。EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist. Example 1 A 1.2 mm thick glass substrate was used as the substrate. A tantalum oxide thin film was formed as a dielectric layer on the substrate by the reactive sputtering method.
【0022】その後、その表面を高周波プラズマで5分
間エッチングし、表面を平滑化した。エッチング後の酸
化タンタル層の厚みが約35nmとなるように初期の膜
厚を設定した。次にこの酸化タンタル層の上にTb(20)
Fe(64)Co(16)(原子%)の組成からなるアモルファ
ス合金を約20nmの厚さに直流マグネトロンスパッタ
リング法により形成し、光磁気記録層とした。その上に
Agを約50nmの厚さに直流マグネトロンスパッタリ
ング法により形成し、反射層とした。After that, the surface was etched by high frequency plasma for 5 minutes to smooth the surface. The initial film thickness was set so that the thickness of the tantalum oxide layer after etching was about 35 nm. Next, on this tantalum oxide layer, Tb (20)
An amorphous alloy having a composition of Fe (64) Co (16) (atomic%) was formed in a thickness of about 20 nm by a DC magnetron sputtering method to form a magneto-optical recording layer. Ag was formed thereon to a thickness of about 50 nm by a DC magnetron sputtering method to form a reflective layer.
【0023】反射膜の上に保護層として酸化タンタル層
を30nmの厚さに、更に紫外線硬化樹脂層を3μmの
厚さに、それぞれ反応性スパッタリング法、スピン塗布
法により設けて、光磁気記録媒体とした。記録特性、及
び再生特性は磁気カーヒステリシス曲線と反射率を測定
することにより確認した。即ち、ヒステリシス曲線の角
型比が1で、保磁力が大きければ、良好な記録特性を示
すことが分かり、反射率の平方根と磁気カー回転角との
積が使用する波長で大きければ良好な再生特性を示すこ
とが分かる。A tantalum oxide layer having a thickness of 30 nm and an ultraviolet curable resin layer having a thickness of 3 μm are provided as protective layers on the reflective film by a reactive sputtering method and a spin coating method, respectively. And The recording characteristic and the reproducing characteristic were confirmed by measuring the magnetic Kerr hysteresis curve and the reflectance. That is, it is understood that if the squareness ratio of the hysteresis curve is 1 and the coercive force is large, good recording characteristics are exhibited, and if the product of the square root of reflectance and the magnetic Kerr rotation angle is large at the wavelength used, good reproduction is achieved. It can be seen that it shows characteristics.
【0024】反射率の測定は、ディスクのグルーブの設
けられていない平坦な鏡面部分で基板を通して行った。
まず入射角を2度として分光光度計でアルミニウム膜に
対する光ディスクの相対反射率を測定し、予め別の装置
で測定したアルミニウム膜の絶対反射率を用いて校正し
た。実際のドライブでは、基板表面で反射した光は信号
に寄与しないので、ガラス基板の光学定数から基板表面
で反射する光を計算し、測定値から差し引いて反射率と
した。The reflectance was measured through the substrate at the flat mirror surface portion of the disk where the groove was not provided.
First, the relative reflectance of the optical disk with respect to the aluminum film was measured with a spectrophotometer at an incident angle of 2 degrees, and the absolute reflectance of the aluminum film measured by another device in advance was used for calibration. In an actual drive, the light reflected on the substrate surface does not contribute to the signal. Therefore, the light reflected on the substrate surface was calculated from the optical constants of the glass substrate, and the reflectance was subtracted from the measured value.
【0025】磁気カーヒステリシス曲線の測定は偏光面
変調法により、反射率の場合と同様、ディスクのグルー
ブの設けられていない平坦な鏡面部分で基板を通して行
った。磁気カー回転角の決定は、ヒステリシス曲線とグ
ラントムソンプリズム検光子を単位角度回転させた場合
の出力変化とを比較して行った。ただし、この場合も基
板表面で反射した偏光面の回転のない光を含んでいるた
め、見かけ上実際よりも小さな回転角が得られる。The measurement of the magnetic Kerr hysteresis curve was carried out by a polarization plane modulation method through the substrate at the flat mirror surface portion where the groove of the disk was not provided, as in the case of the reflectance. The magnetic Kerr rotation angle was determined by comparing the hysteresis curve with the output change when the Glan-Thompson prism analyzer was rotated by a unit angle. However, in this case as well, since the light reflected by the surface of the substrate and having no rotation of the plane of polarization is included, a rotation angle smaller than the actual rotation angle can be obtained.
【0026】そこで、得られた回転角に基板表面での反
射光を考慮して補正を加えることにより、実際の磁気カ
ー回転角を決定した。測定の波長は450nmを一例と
して選んだ。ヒステリシス曲線の形状より角型比が1で
保磁力は800kA/m程度であることが分かった。こ
れは現在商品化されている800nm程度の波長用の光
磁気ディスクと同等のレベルであるから、良好な記録特
性と言える。また、450nmでの反射率は10.3%
であり、磁気カー回転角は1.33度であった、反射率
の平方根と磁気カー回転角の積で与えられる性能係数と
しては4.3という値が得られた。優れた再生特性を有
していると言える。Therefore, the actual magnetic Kerr rotation angle was determined by correcting the obtained rotation angle in consideration of the reflected light on the substrate surface. The wavelength of measurement was selected to be 450 nm as an example. From the shape of the hysteresis curve, it was found that the squareness ratio was 1 and the coercive force was about 800 kA / m. Since this is at a level equivalent to that of a magneto-optical disk for wavelengths of about 800 nm which is currently commercialized, it can be said that it has good recording characteristics. The reflectance at 450 nm is 10.3%.
The magnetic Kerr rotation angle was 1.33 degrees, and a value of 4.3 was obtained as the coefficient of performance given by the product of the square root of reflectance and the magnetic Kerr rotation angle. It can be said that it has excellent reproduction characteristics.
【0027】ちなみに、現在商品化されている光磁気デ
ィスクの800nmでの性能は、反射率:23.1%、
磁気カー回転角:1.00、性能係数4.8程度であ
る。 比較例1 反射層としてアルミニウムを約50nmの厚さで設けた
以外は実施例1と同様の方法でディスクを作製した。実
施例1と同様の方法で記録特性と再生特性を評価した。Incidentally, the performance of the currently commercialized magneto-optical disk at 800 nm has a reflectance of 23.1%,
The magnetic Kerr rotation angle is 1.00 and the performance coefficient is about 4.8. Comparative Example 1 A disk was produced in the same manner as in Example 1 except that aluminum was provided as the reflective layer to a thickness of about 50 nm. The recording characteristics and the reproducing characteristics were evaluated in the same manner as in Example 1.
【0028】角型比は1で、保磁力は800kA/m程
度であり、良好な記録特性を示す。しかし、450nm
での反射率は16.1%、磁気カー回転角は0.84度
であり、性能係数としては3.4という低い値しか得ら
れず、良好な再生特性を示さなかった。 比較例2 反射層として金を約50nmの厚さで設けた以外は実施
例1と同様の方法でディスクを作製した。実施例1と同
様の方法で記録特性と再生特性を評価した。角型比は1
で、保磁力は800kA/m程度であり、良好な記録特
性を示す。しかし、450nmでの反射率は11.3
%、磁気カー回転角は1.03度であり、性能係数とし
ては3.5という低い値しか得られず、良好な再生特性
を示さなかった。The squareness ratio is 1 and the coercive force is about 800 kA / m, which shows good recording characteristics. However, 450 nm
The reflectance was 16.1%, the magnetic Kerr rotation angle was 0.84 degrees, and the performance coefficient was only 3.4, which was a low value, and did not show good reproduction characteristics. Comparative Example 2 A disk was produced in the same manner as in Example 1 except that gold was provided as the reflective layer to a thickness of about 50 nm. The recording characteristics and the reproducing characteristics were evaluated in the same manner as in Example 1. Squareness ratio is 1
Then, the coercive force is about 800 kA / m, which shows good recording characteristics. However, the reflectance at 450 nm is 11.3
%, The magnetic Kerr rotation angle was 1.03 degrees, and a low coefficient of performance of 3.5 was obtained, which did not show good reproduction characteristics.
【0029】[0029]
【発明の効果】以上詳述した通り、本発明によれば、現
行よりも波長の短い600nm以下の波長の光を用いた
高記録密度の光磁気記録システムが提供される。As described in detail above, according to the present invention, there is provided a magneto-optical recording system having a high recording density, which uses light having a wavelength of 600 nm or shorter, which is shorter than the existing one.
Claims (1)
記録層、Agを主成分とする反射層を順次有する光磁気
記録媒体に、波長600nm以下のレーザ光を用いて記
録・再生を行うことを特徴とする光記録再生方法。1. Recording / reproducing is performed on a magneto-optical recording medium having at least a dielectric layer, a magneto-optical recording layer, and a reflective layer containing Ag as a main component on a substrate in this order using laser light having a wavelength of 600 nm or less. An optical recording / reproducing method characterized by the above.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30708992A JPH06162587A (en) | 1992-11-17 | 1992-11-17 | Optical recording and reproducing method |
DE69326525T DE69326525T2 (en) | 1992-11-17 | 1993-11-15 | Magneto-optical recording medium and method for recording and reproducing optical information |
EP93118467A EP0598377B1 (en) | 1992-11-17 | 1993-11-15 | Magneto-optical recording medium and optical information recording and reading-out method |
KR1019930024476A KR940012268A (en) | 1992-11-17 | 1993-11-17 | Magneto-optical recording media and optical recording and playback methods |
US08/768,867 US5853872A (en) | 1992-11-17 | 1996-12-17 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30708992A JPH06162587A (en) | 1992-11-17 | 1992-11-17 | Optical recording and reproducing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06162587A true JPH06162587A (en) | 1994-06-10 |
Family
ID=17964897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30708992A Pending JPH06162587A (en) | 1992-11-17 | 1992-11-17 | Optical recording and reproducing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06162587A (en) |
-
1992
- 1992-11-17 JP JP30708992A patent/JPH06162587A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5853872A (en) | Magneto-optical recording medium | |
EP0387420B1 (en) | Magneto-optical recording medium | |
US4842956A (en) | Opto-magnetic recording medium having three exchange-coupled magnetic layers | |
JPH0350341B2 (en) | ||
US4675767A (en) | Opto-magnetic recording medium | |
US5914198A (en) | Magneto-optical recording medium having dielectric layers with different indices of refraction | |
JPH076427A (en) | Magneto-optical recording medium | |
US5643650A (en) | Magneto-optical recording medium | |
JPH06162587A (en) | Optical recording and reproducing method | |
JPH06243526A (en) | Optical information recording and reproducing method | |
JPH06243525A (en) | Optical information recording and reproducing method | |
JP2558011B2 (en) | Magneto-optical storage medium | |
JP2921590B2 (en) | Magneto-optical recording medium | |
JPH076426A (en) | Magneto-optical recording medium | |
JPH076428A (en) | Magneto-optical recording medium | |
KR100205403B1 (en) | Structure of magneto-optical recording medium | |
US5514468A (en) | Magneto-optical recording medium | |
JPH0562248A (en) | Optical disk medium using two wavelengths | |
JPH06243521A (en) | Magneto-optical recording medium | |
JP2001235603A (en) | Optical device, optical device for optical recording and reproducing, and information recording and reproducing device | |
JP3495751B2 (en) | Optical information recording medium | |
JPH06243520A (en) | Magneto-optical recording medium | |
JPS60125948A (en) | Thermomagnetic recording medium | |
JP2801984B2 (en) | Magneto-optical storage element | |
JPH0490153A (en) | Magneto-optical disk |