JPH06160788A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH06160788A
JPH06160788A JP31469292A JP31469292A JPH06160788A JP H06160788 A JPH06160788 A JP H06160788A JP 31469292 A JP31469292 A JP 31469292A JP 31469292 A JP31469292 A JP 31469292A JP H06160788 A JPH06160788 A JP H06160788A
Authority
JP
Japan
Prior art keywords
optical
electrode
optical waveguide
forming substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31469292A
Other languages
Japanese (ja)
Other versions
JP2868046B2 (en
Inventor
Katsuhiro Imada
勝大 今田
Kiichi Yoshiara
喜市 吉新
Hidefusa Uchikawa
英興 内川
Hisao Watai
久男 渡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4314692A priority Critical patent/JP2868046B2/en
Publication of JPH06160788A publication Critical patent/JPH06160788A/en
Application granted granted Critical
Publication of JP2868046B2 publication Critical patent/JP2868046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the optical modulator which is low in driving voltage and is small in light insertion loss. CONSTITUTION:An optical waveguide forming substrate 1 formed with optical waveguides 2 having an electrooptical effect and an electrode forming substrate 3 formed with a film-like superconducting electrode 4 consisting of an oxide superconductor are so fixed in proximity that the optical waveguides 2 and the electrode 4 face each other. The distance between the optical waveguides 2 and the oxide superconducting electrode 4 is set at <=20mum. The surface of the optical waveguides 2 in proximity to the oxide superconducting electrode 4 is so formed as to come into contact with a material having the light refractive index lower than the light refractive index of the optical waveguides 2 or atm. layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光通信における外部
光変調器、特に酸化物超電導体からなる変調電極を有す
る光変調器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external optical modulator in optical communication, and more particularly to an optical modulator having a modulation electrode composed of an oxide superconductor.

【0002】[0002]

【従来の技術】光通信システムの伝送速度の高速化及び
大容量化に伴い、光変調の高周波化が必要となり、高周
波光変調方式が検討されてきている。この方式は、大別
して半導体レーザーによる直接変調方式と、LiNbO
3 (以下LN)などの電気光学結晶を用いた光変調器に
よる外部変調方式に分けられる。半導体レーザーによる
直接変調方式は、発振レーザー光自体を高周波変調し、
変調レーザー光を取り出す方式で、その周波数限界は現
在のところ十数GHzまで伸びてきてはいるが、周波数
チャーピングという本質的に避けられない問題点があ
る。周波数チャーピングは、強度変調の際に周波数が広
がる現象で、高周波域で特に問題となる。そこで、周波
数チャーピングのない外部変調方式が見直されつつあ
る。この分野の従来技術については、例えばO plus
E,1991年7月号,第104頁等に記載されてい
る。
2. Description of the Related Art With the increase in transmission speed and the increase in capacity of optical communication systems, it is necessary to increase the frequency of optical modulation, and high-frequency optical modulation methods have been studied. This method is roughly classified into a direct modulation method using a semiconductor laser and LiNbO.
3 (hereinafter LN) can be classified into an external modulation method by an optical modulator using an electro-optic crystal. The direct modulation method using a semiconductor laser modulates the oscillating laser light itself with high frequency,
It is a method of extracting modulated laser light, and its frequency limit has been extended to ten and several GHz at present, but there is an unavoidable problem of frequency chirping. Frequency chirping is a phenomenon in which the frequency spreads during intensity modulation, and is particularly problematic in the high frequency range. Therefore, an external modulation method without frequency chirping is being reviewed. For the prior art in this field, for example, O plus
E, July 1991, p. 104, etc.

【0003】従来、外部変調方式で用いられる代表的な
LN光変調器においては、高速化及び大容量化のために
高周波を用いて変調を行う場合、新たな問題点が生じる
ことが避けられなかった。それは、変調効率(変調度)
が低下し、伝搬損失が大きくなることと、大きな変調電
力(変調器の駆動電圧)を必要とすることである。特に
後者の問題は、新たに駆動用高電圧制御素子を開発しな
ければならない点及びその高電圧制御システムの信頼性
が低い点などで、光通信システム構築の大きな障害とな
っている。しかし、現在までに報告されている光変調器
において、実現できている駆動電圧の低減及び変調効率
の向上は、まだ満足できるレベルには達していない。即
ち、外部変調方式による光変調器を実用・普及化させる
ために、一層の駆動電圧の低減・高変調効率が必要にな
る。
Conventionally, in a typical LN optical modulator used in an external modulation method, when performing modulation using a high frequency for speeding up and large capacity, new problems cannot be avoided. It was It is the modulation efficiency (degree of modulation)
Is low, the propagation loss is large, and a large modulation power (modulator driving voltage) is required. In particular, the latter problem is a major obstacle to the construction of an optical communication system because a high voltage control element for driving must be newly developed and the reliability of the high voltage control system is low. However, in the optical modulators reported to date, the reduction of the driving voltage and the improvement of the modulation efficiency that have been realized have not yet reached a satisfactory level. That is, further reduction of the driving voltage and high modulation efficiency are required in order to put the optical modulator using the external modulation method into practical use and popularization.

【0004】このため、光変調器電極の表面抵抗を下げ
て、高周波の伝搬損失を抑制する必要がある。そこでこ
の発明者らは以前に、変調電極として電気光学結晶上に
超電導膜で形成した光変調器を提案した。図7は従来の
光変調器を示す断面図である。図において、1は光導波
路形成基板、2は光導波路形成基板1に形成した光導波
路、4は電極であり、蒸着法,スパッタ法,化学気相蒸
着法等の成膜方法により、電気光学効果を有する光導波
路2が形成された基板1上に形成した酸化物超電導膜で
ある。
Therefore, it is necessary to reduce the surface resistance of the optical modulator electrode to suppress high frequency propagation loss. Therefore, the present inventors have previously proposed an optical modulator in which a superconducting film is formed on an electro-optic crystal as a modulation electrode. FIG. 7 is a sectional view showing a conventional optical modulator. In the figure, 1 is an optical waveguide forming substrate, 2 is an optical waveguide formed on the optical waveguide forming substrate 1, 4 is an electrode, and an electro-optical effect is obtained by a film forming method such as a vapor deposition method, a sputtering method or a chemical vapor deposition method. It is an oxide superconducting film formed on the substrate 1 on which the optical waveguide 2 having is formed.

【0005】[0005]

【発明が解決しようとする課題】従来の光変調器におい
て、蒸着法,スパッタ法,化学気相蒸着法等の成膜方法
により、電気光学効果を有する光導波路2が形成された
基板1上に酸化物超電導膜4を形成しても、期待したほ
どの光変調の性能向上が得られない場合がある。その原
因としては次のことが考えられる。即ち、上記薄膜形成
法のいずれの場合でも、成膜時に基板温度を500〜9
00℃と高温で数時間保持するため、光導波路2中の元
素が蒸発したり、超電導膜4中の元素と反応する。この
ために、光導波路2の光伝搬損失が増大したり、伝搬モ
ード数が変化することを光強度測定器と赤外線カメラを
用いて確認した。
In a conventional optical modulator, a substrate 1 on which an optical waveguide 2 having an electro-optical effect is formed is formed by a film forming method such as a vapor deposition method, a sputtering method or a chemical vapor deposition method. Even if the oxide superconducting film 4 is formed, the expected performance improvement in light modulation may not be obtained. The possible causes are as follows. That is, in any of the above thin film forming methods, the substrate temperature is set to 500 to 9 during film formation.
Since it is held at a high temperature of 00 ° C. for several hours, the elements in the optical waveguide 2 are evaporated or react with the elements in the superconducting film 4. For this reason, it was confirmed using an optical intensity measuring instrument and an infrared camera that the optical propagation loss of the optical waveguide 2 was increased and the number of propagation modes was changed.

【0006】この発明は、かかる問題点を解決するため
になされたもので、高周波の伝搬損失の低い超電導電極
を用いることにより低い電圧で駆動できると共に、光挿
入損失の小さい光変調器を得ることを目的としている。
The present invention has been made in order to solve the above problems, and it is possible to obtain an optical modulator which can be driven at a low voltage and has a small optical insertion loss by using a superconducting conductive electrode having a low propagation loss of high frequency. It is an object.

【0007】[0007]

【課題を解決するための手段】請求項1の発明に係る光
変調器は、電気光学効果を有する光導波路が形成された
光導波路形成基板と、酸化物超電導電極が形成された電
極形成基板とを備え、光導波路が形成された面と電極が
形成された面が対向するように、光導波路形成基板と電
極形成基板が近接して固定されているものである。
According to a first aspect of the present invention, there is provided an optical modulator comprising: an optical waveguide forming substrate on which an optical waveguide having an electro-optic effect is formed; and an electrode forming substrate on which an oxide superconducting electrode is formed. The optical waveguide forming substrate and the electrode forming substrate are fixed in close proximity so that the surface on which the optical waveguide is formed and the surface on which the electrode is formed face each other.

【0008】また、請求項2の発明に係る光変調器は、
請求項1に発明に加えて、光導波路と酸化物超電導電極
との距離が20μm以下に近接して固定されているもの
である。
The optical modulator according to the invention of claim 2 is
In addition to the invention of claim 1, the distance between the optical waveguide and the oxide superconducting electrode is fixed in close proximity to 20 μm or less.

【0009】また、請求項3の発明に係る光変調器は、
請求項1に発明に加えて、酸化物超電導電極と近接する
光導波路の表面が光導波路よりも光屈折率の低い物質ま
たは大気層と接するようにしたものである。
The optical modulator according to the invention of claim 3 is
In addition to the first aspect of the invention, the surface of the optical waveguide adjacent to the oxide superconducting electrode is in contact with a substance having a lower photorefractive index than the optical waveguide or the atmosphere layer.

【0010】[0010]

【作用】上記のように構成された光変調器では、光導波
路は高温超電導薄膜形成に必要とされる500℃以上の
高温プロセスを経ることなく製造できるため、光損失の
増加はほとんどない。また、超電導形成基板に高温超電
導体のエピタキシャル成長に適するMgOなどの単結晶
基板が使用できるため、従来のLN基板上に形成する場
合より超電導特性が向上し、表面抵抗が低下する効果に
より変調効率は向上する。
In the optical modulator configured as described above, the optical waveguide can be manufactured without passing through the high temperature process of 500 ° C. or higher required for forming the high temperature superconducting thin film, so that the optical loss hardly increases. In addition, since a single crystal substrate such as MgO suitable for epitaxial growth of a high temperature superconductor can be used as the superconducting substrate, the superconducting characteristics are improved and the surface resistance is lowered compared with the case of forming the substrate on the conventional LN substrate. improves.

【0011】また、これに加えて光導波路と酸化物超電
導電極との距離を20μm以下に近接しているので、電
極の生じる電界がなるべく高くなる。
In addition to this, since the distance between the optical waveguide and the oxide superconducting electrode is close to 20 μm or less, the electric field generated by the electrode becomes as high as possible.

【0012】またさらに、酸化物超電導電極と近接する
光導波路の表面が光導波路よりも光屈折率の低い物質ま
たは大気層と接しているので、光挿入損失を小さな値に
抑える。
Furthermore, since the surface of the optical waveguide adjacent to the oxide superconducting electrode is in contact with a substance having a lower photorefractive index than the optical waveguide or the atmospheric layer, the optical insertion loss is suppressed to a small value.

【0013】[0013]

【実施例】【Example】

実施例1.図1はこの発明の実施例1による光変調器を
示す断面図である。図において、1は光導波路形成基
板、2は光導波路形成基板1に形成した光導波路、3は
電極形成基板、4は電極形成基板3に形成した電極、5
は接着層で、例えば紫外線硬化樹脂である。また、図2
は実施例1に係る電極形状を示す平面図であり、上方向
からの形状を示している。図において、8は変調信号入
力部、9は変調信号終端部である。また、図3は実施例
1による光変調器を上方向より透視して見た平面図であ
る。図において、6は光入力部であり、7は光出力部で
ある。
Example 1. 1 is a sectional view showing an optical modulator according to Embodiment 1 of the present invention. In the figure, 1 is an optical waveguide forming substrate, 2 is an optical waveguide formed on the optical waveguide forming substrate 1, 3 is an electrode forming substrate, 4 is an electrode formed on the electrode forming substrate 3, 5
Is an adhesive layer, for example, an ultraviolet curable resin. Also, FIG.
[Fig. 3] is a plan view showing an electrode shape according to the first embodiment, showing a shape from above. In the figure, 8 is a modulation signal input unit, and 9 is a modulation signal terminating unit. FIG. 3 is a plan view of the optical modulator according to the first embodiment seen through from above. In the figure, 6 is an optical input unit and 7 is an optical output unit.

【0014】電気光学効果を有する光導波路2としてx
−cut、y伝搬のTi拡散LN導波路を作成して用い
た。この作成は、まず両面光学研磨されたLN結晶によ
る光導波路形成基板1の片面に、幅6μm,膜厚50n
mのTi薄膜を電子線蒸着法及びリフトオフ法で形成
後、アルゴン雰囲気中で1050℃,10時間熱処理し
てTiをLN中に拡散させる手順で行った。図3の上面
図に示すように、光導波路2には長さ20mm、幅40
μmのマッハツェンダ干渉部分2aを設けた。
X as an optical waveguide 2 having an electro-optical effect
A cut-and-y-propagating Ti diffusion LN waveguide was prepared and used. In this preparation, first, on one surface of the optical waveguide forming substrate 1 made of LN crystal whose both surfaces are optically polished, a width of 6 μm and a film thickness of 50 n are formed.
After the Ti thin film of m was formed by the electron beam evaporation method and the lift-off method, it was heat-treated in an argon atmosphere at 1050 ° C. for 10 hours to diffuse Ti into LN. As shown in the top view of FIG. 3, the optical waveguide 2 has a length of 20 mm and a width of 40 mm.
A μm Mach-Zehnder interference portion 2a is provided.

【0015】超電導電極形成基板3にはMgO単結晶を
用いた。超電導電極4は、まずY−Ba−Cu−O系超
電導薄膜をY,Ba,Cuの金属元素比が約1:2:3
となるように反応性蒸着法により形成後、希硝酸を用い
たウェットエッチング法で電極形状に加工して形成し
た。ここで超電導薄膜は、基板付近にノズルから部分的
にオゾン化された酸素ガスを導入し、基板温度700
℃、蒸着速度4nm/min、膜厚0.5μmの条件で
形成した。電極形状は図2に示すような中心線幅30μ
m程度、ギャップ幅40〜110μmのコプレーナ型の
進行波電極とした。変調電源とのインピーダンス整合を
とるため、以下に述べる光変調器の各構造にあわせてギ
ャップ幅のサイズを調整した。なお、LN基板1の幅は
6mm,長さ40mm、MgO基板3は幅10mm,長
さ20mmのものを使用した。この様に幅と長さを変え
た基板1,3を使用したため、図3のような配置で張り
合わすことにより、光導波路2と電極4の光入力部6、
光出力部7に張り合わせられない部分があり、電極4と
コネクタとの接続や光導波路2と光ファイバの接続が容
易となる。
A MgO single crystal was used for the superconducting electrode forming substrate 3. In the superconducting electrode 4, first, a Y—Ba—Cu—O-based superconducting thin film having a metal element ratio of Y, Ba, and Cu of about 1: 2: 3.
The film was formed by the reactive vapor deposition method so as to have the following structure and then processed into the electrode shape by the wet etching method using dilute nitric acid. Here, for the superconducting thin film, a partially ozoned oxygen gas is introduced from the nozzle near the substrate, and the substrate temperature is set to 700.
The film was formed under the conditions of ℃, vapor deposition rate of 4 nm / min and film thickness of 0.5 μm. The electrode shape is center line width 30μ as shown in Fig.2.
A traveling wave electrode of a coplanar type having a gap width of about 40 m to about 110 m was used. In order to achieve impedance matching with the modulation power source, the size of the gap width was adjusted according to each structure of the optical modulator described below. The LN substrate 1 had a width of 6 mm and a length of 40 mm, and the MgO substrate 3 had a width of 10 mm and a length of 20 mm. Since the substrates 1 and 3 having different widths and lengths are used as described above, the optical waveguide 2 and the light input portion 6 of the electrode 4 can be formed by adhering the substrates in the arrangement as shown in FIG.
Since there is a portion that cannot be bonded to the light output portion 7, connection between the electrode 4 and the connector and connection between the optical waveguide 2 and the optical fiber become easy.

【0016】光導波路形成基板1と電極形成基板3は、
マスクアライナと紫外線硬化樹脂を用いて以下のように
接着した。まず、無地のガラスマスクの下側に光導波路
形成基板1を有機材料で接着する。この時、有機材料と
して、約70℃で軟化する透明なものを用い、光導波路
2側が下になるように接着する。次に、マスクアライナ
の基板ステージに紫外線硬化樹脂を滴下した電極形成基
板3を電極4側が上になるように置く。ここで用いた紫
外線硬化樹脂の光屈折率は1.5〜1.7であり、Ti
拡散LN光導波路の光屈折率約2.3に比べて小さい。
光導波路形成基板1は両面光学研磨であるため、マスク
アライナの光学顕微鏡を用いて光導波路2と電極4の位
置を合わせることができる。図3の様に光導波路2のマ
ッハツェンダ干渉部分2aに超電導電極4部の中心線が
沿って挟まれる様に両基板1,3を密着させ、紫外線を
照射して樹脂を硬化させて接着する。この様にして接着
された二枚の基板1,3に挟まれた紫外線硬化樹脂5の
厚みは、断面を電子顕微鏡により観察した結果、2μm
程度であった。この光変調器の光導波路2の端面の光入
力部6と光出力部7に光ファイバを接続し、また、変調
信号入力部8と変調信号終端部9にコネクタを接続し
た。
The optical waveguide forming substrate 1 and the electrode forming substrate 3 are
Bonding was performed as follows using a mask aligner and an ultraviolet curable resin. First, the optical waveguide forming substrate 1 is bonded to the lower side of the plain glass mask with an organic material. At this time, a transparent organic material that is softened at about 70 ° C. is used, and the organic waveguide is bonded so that the optical waveguide 2 side faces downward. Next, the electrode forming substrate 3 on which the ultraviolet curable resin has been dropped is placed on the substrate stage of the mask aligner with the electrode 4 side facing up. The ultraviolet curable resin used here has a photorefractive index of 1.5 to 1.7, and
The refractive index of the diffused LN optical waveguide is smaller than about 2.3.
Since the optical waveguide forming substrate 1 is double-sided optical polished, the optical waveguide 2 and the electrode 4 can be aligned with each other by using an optical microscope of a mask aligner. As shown in FIG. 3, the two substrates 1 and 3 are brought into close contact with each other so that the center line of the superconducting electrode 4 is sandwiched along the Mach-Zehnder interference portion 2a of the optical waveguide 2, and ultraviolet rays are irradiated to cure and bond the resin. The thickness of the ultraviolet curable resin 5 sandwiched between the two substrates 1 and 3 thus bonded together is 2 μm as a result of observing the cross section with an electron microscope.
It was about. Optical fibers were connected to the optical input section 6 and the optical output section 7 on the end face of the optical waveguide 2 of this optical modulator, and connectors were connected to the modulated signal input section 8 and the modulated signal terminal section 9.

【0017】比較例として、上記変調器(以下A)と全
く同じ構造を持ち、電極材料としてAlを用いたもの
(以下B)を作成した。また、図7の様な従来の構造で
あるLN基板1に電極4を直接形成した光変調器で、電
極4としてYBCO超電導膜を用いたもの(以下C)
と、Al電極を用いたもの(以下D)も作成した。B及
びDのAl電極は、基板を加熱しないで高真空蒸着した
厚み3μmのAl膜をリソグラフィープロセスで加工し
て形成した。電極形状はいずれも図2に示すようなコプ
レーナ伝送路型とした。
As a comparative example, a modulator having exactly the same structure as the above modulator (hereinafter A) and using Al as an electrode material (hereinafter B) was prepared. Further, an optical modulator in which the electrode 4 is directly formed on the LN substrate 1 having the conventional structure as shown in FIG. 7 and using a YBCO superconducting film as the electrode 4 (hereinafter, C).
And, the one using the Al electrode (hereinafter, D) was also prepared. The B and D Al electrodes were formed by processing a high-vacuum-deposited Al film with a thickness of 3 μm by a lithographic process without heating the substrate. The electrodes were all coplanar transmission line type as shown in FIG.

【0018】以上のA〜Dの光変調器を液体窒素温度に
冷却し、光挿入損失及び100psの矩形パルスを入力
した場合の半波長電圧と出力される変調光の形状を測定
した。この結果を表1と図4に示す。光源としては波長
1.3μmの半導体レーザを使用し、出力側では偏光子
を用いてTEモードの導波光のみ検出した。表1はA〜
Dの光変調器における光挿入損失(dB)と半波長電圧
(V)を示すものであり、図4は横軸を時間(ps),
縦軸を光強度(任意単位)とした時のA〜Dの光変調器
における特性を示すグラフである。
The above optical modulators A to D were cooled to the temperature of liquid nitrogen, and the half-wave voltage and the shape of the modulated light output when a rectangular pulse of 100 ps was input as the optical insertion loss were measured. The results are shown in Table 1 and FIG. A semiconductor laser having a wavelength of 1.3 μm was used as a light source, and a polarizer was used on the output side to detect only TE mode guided light. Table 1 is A ~
FIG. 4 shows the optical insertion loss (dB) and the half-wave voltage (V) in the D optical modulator. In FIG. 4, the horizontal axis represents time (ps),
It is a graph which shows the characteristic in the optical modulator of AD when the vertical axis is a light intensity (arbitrary unit).

【0019】[0019]

【表1】 [Table 1]

【0020】これらの光変調器の光挿入損失はA、B、
Dで6〜7dBとほぼ同程度であるのに対し、Cでは2
2dB以上と極めて大きかった。これはCでは光導波路
2がYBCO超電導薄膜の形成プロセスにさらされたた
め、劣化が生じたと考えられる。半波長電圧は実施例1
であるAが最も低く、低電圧での駆動が可能であること
が分かった。また、図4に示すように、出力される変調
光の波形は超電導電極を用いたAとCに比べて、Al電
極のBとDでは立ち上がり,立ち下がりでのなまりが大
きい。これは超電導電極の方が伝搬損失が小さく、また
周波数分散も小さい効果による結果である。
The optical insertion loss of these optical modulators is A, B,
D is almost the same as 6 to 7 dB, while C is 2
It was extremely large at 2 dB or more. It is considered that in C, since the optical waveguide 2 was exposed to the process of forming the YBCO superconducting thin film, deterioration occurred. The half-wave voltage is the first embodiment.
It was found that A was the lowest, and driving at low voltage was possible. Further, as shown in FIG. 4, the waveform of the output modulated light has larger rounding at the rising and falling of Al electrodes B and D, as compared with A and C using the superconducting conductive electrode. This is a result of the effect that the superconducting electrode has smaller propagation loss and smaller frequency dispersion.

【0021】また、この実施例の光変調器Aでは光導波
路と電極の間隔は2μmであるが、その間隔を5μm、
10μm、20μmとした光変調器も試作した。これら
の半波長電圧はそれぞれ、8.1V,11.2V,1
6.5Vであった。従って、光導波路形成基板1と電極
形成基板3の距離を20μm以上にすると、光導波路2
にとどく電極4からの電界が極めて小さくなるため、光
変調効率が著しく低下することが分かった。この間隔と
半波長電圧の関係は電極形状にも依存すると考えられ、
平面電極を用いた場合20μmを越えると、低損失の超
電導電極4を用いる効果が小さくなることを確認した。
In the optical modulator A of this embodiment, the distance between the optical waveguide and the electrode is 2 μm, but the distance is 5 μm.
Optical modulators of 10 μm and 20 μm were also manufactured. These half-wave voltages are 8.1V, 11.2V, 1
It was 6.5V. Therefore, when the distance between the optical waveguide forming substrate 1 and the electrode forming substrate 3 is 20 μm or more, the optical waveguide 2
It was found that, since the electric field from the electrode 4 was extremely small, the light modulation efficiency was significantly reduced. It is considered that the relationship between this interval and the half-wave voltage also depends on the electrode shape.
It was confirmed that the effect of using the low-loss superconducting electrode 4 becomes smaller when the flat electrode exceeds 20 μm.

【0022】上記のように、この実施例による光変調器
では、光導波路は高温超電導薄膜形成に必要とされる5
00℃以上の高温プロセスを経ることなく製造できるた
め、光損失の増加はほとんどない。また、超電導形成基
板に高温超電導体のエピタキシャル成長に適するMgO
などの単結晶基板が使用できるため、従来のLN基板上
に形成する場合より超電導特性が向上し、表面抵抗が低
下する効果により変調効率は向上する。
As described above, in the optical modulator according to this embodiment, the optical waveguide is required for forming the high temperature superconducting thin film.
Since it can be manufactured without going through a high temperature process of 00 ° C. or higher, there is almost no increase in optical loss. Also, MgO suitable for epitaxial growth of high-temperature superconductors on the superconducting substrate
Since a single crystal substrate such as that described above can be used, the superconducting characteristics are improved as compared with the case where it is formed on a conventional LN substrate, and the modulation efficiency is improved due to the effect of reducing the surface resistance.

【0023】実施例2.図5はこの発明の実施例2に係
る電極形状を示す平面図である。この実施例では、電気
光学効果を有する光導波路2として、両面光学研磨され
たz−cut,LN基板1の片面の表面に、x伝搬のT
i拡散LN導波路を作成して用いた。光導波路は単純な
一本の直線とした。また光導波路2を形成した面上に厚
み0.5μmのMgO膜を蒸着した。電極は光学研磨さ
れたMgO基板3の片面に厚み0.6μmのEr−Ba
−Cu−O(以下EBCO)系超電導膜4をスパッタ法
で形成し、これを図5のようなコプレーナ伝送線路より
構成される共振型の超電導電極に加工して形成した。シ
ョーティングストラップ部10は、厚み0.3μmのS
iO2 膜と厚み1μmのAl膜から構成され、蒸着とリ
フトオフ法で加工して形成した。
Example 2. FIG. 5 is a plan view showing an electrode shape according to the second embodiment of the present invention. In this embodiment, as an optical waveguide 2 having an electro-optical effect, x-propagation T is formed on one surface of a z-cut, LN substrate 1 whose both surfaces are optically polished.
An i-diffused LN waveguide was created and used. The optical waveguide was a simple straight line. Further, a 0.5 μm thick MgO film was vapor-deposited on the surface on which the optical waveguide 2 was formed. The electrodes were Er-Ba with a thickness of 0.6 μm on one surface of the MgO substrate 3 which was optically polished.
A -Cu-O (hereinafter EBCO) based superconducting film 4 was formed by a sputtering method, and this was processed into a resonance type superconducting electrode composed of a coplanar transmission line as shown in FIG. The shorting strap portion 10 is made of S having a thickness of 0.3 μm.
It was composed of an iO 2 film and an Al film with a thickness of 1 μm, and was formed by processing by vapor deposition and the lift-off method.

【0024】光導波路形成基板1と電極形成基板3は、
実施例1と同様にマスクアライナと紫外線硬化樹脂5を
用いて接着した。まず、無地のガラスマスクの下側に光
導波路形成基板1を有機材料で接着する。この有機材料
は約70℃で軟化する透明なものを用い、光導波路2側
が下になるように接着する。次に、マスクアライナの基
板ステージに、光導波路2よりも光屈折率の小さい紫外
線硬化樹脂5を滴下した電極形成基板3を、電極4が上
になるように置く。直線光導波路2が超電導共振電極4
の中心線のエッジ部に沿う様に両基板1,3を密着さ
せ、紫外線を照射して、樹脂を硬化させて接着層5とす
る。この光変調器の光導波路2の端面の光入力部6と光
出力部7に光ファイバを接続し、変調信号入力部8と変
調信号終端部9に高周波用コネクタを接続した。
The optical waveguide forming substrate 1 and the electrode forming substrate 3 are
As in Example 1, the mask aligner and the ultraviolet curable resin 5 were used for adhesion. First, the optical waveguide forming substrate 1 is bonded to the lower side of the plain glass mask with an organic material. As this organic material, a transparent material that softens at about 70 ° C. is used, and the organic waveguide 2 is adhered so that the optical waveguide 2 side faces downward. Next, the electrode forming substrate 3 on which the ultraviolet curable resin 5 having a smaller optical refractive index than the optical waveguide 2 is dropped is placed on the substrate stage of the mask aligner so that the electrodes 4 face upward. The linear optical waveguide 2 is a superconducting resonance electrode 4
The two substrates 1 and 3 are brought into close contact with each other along the edge portion of the center line of, and ultraviolet rays are irradiated to cure the resin to form the adhesive layer 5. Optical fibers were connected to the optical input section 6 and the optical output section 7 on the end face of the optical waveguide 2 of this optical modulator, and a high frequency connector was connected to the modulated signal input section 8 and the modulated signal terminal section 9.

【0025】比較例として上記変調器(以下P)と全く
同じ構造を持ち、電極4の材料としてAlを用いたもの
(以下Q)を作成した。また、従来の構造であるLN基
板1にバッファ層を形成し、その上に電極4を形成した
光変調器で、電極としてEBCO超電導膜を用いたもの
(以下R)と、Al電極を用いたもの(以下S)も作成
した。なお、RとSのバッファ層はPと同じ厚み0.5
μmのMgO膜とした。P及びRのAl電極は、基板を
加熱しないで高真空蒸着した厚み3μmのAl膜をリソ
グラフィープロセスで加工する方法で形成した。電極形
状はいずれも図5に示すようなコプレーナ伝送路から構
成される共振型とした。
As a comparative example, a modulator having exactly the same structure as the above modulator (hereinafter P) and using Al as the material of the electrode 4 (hereinafter Q) was prepared. Further, an optical modulator in which a buffer layer is formed on the LN substrate 1 having a conventional structure and the electrode 4 is formed thereon, which uses an EBCO superconducting film as an electrode (hereinafter, R) and an Al electrode are used. A thing (hereinafter S) was also created. The R and S buffer layers have the same thickness as P, 0.5
It was a MgO film of μm. The P and R Al electrodes were formed by a method of processing a high-vacuum deposited Al film with a thickness of 3 μm by a lithographic process without heating the substrate. All electrodes were of a resonance type composed of a coplanar transmission line as shown in FIG.

【0026】これらの光変調器を液体窒素温度に冷却
し、ネットワークアナライザを用いて電極の反射特性を
評価した。これらの共振周波数(GHz),反射損失
(dB),及びQ値を表2に示す。共振周波数はいずれ
も約10GHzであったが、反射損失とQ値はAl電極
を用いたQとSに比べて、超電導電極を使用したPとR
は大きな値となった。これは、超電導電極が常伝導のA
l電極に比べて10GHzでの導体損失が小さいためと
考えられる。とくにPでは超電導形成に適するMgO基
板を使用したため、電極部の損失が極めて小さくなった
と考えられ、Q値は480と非常に大きい。
These optical modulators were cooled to the temperature of liquid nitrogen, and the reflection characteristics of the electrodes were evaluated using a network analyzer. Table 2 shows the resonance frequency (GHz), the reflection loss (dB), and the Q value. The resonance frequency was about 10 GHz, but the reflection loss and Q value were P and R using the superconducting electrode compared to Q and S using the Al electrode.
Was a big value. This is A, where the superconducting electrode is normally conductive.
It is considered that the conductor loss at 10 GHz is smaller than that of the 1-electrode. Especially for P, since the MgO substrate suitable for forming superconductivity was used, it is considered that the loss of the electrode portion was extremely small, and the Q value was 480, which was extremely large.

【0027】[0027]

【表2】 [Table 2]

【0028】次に光挿入損失(dB)と光変調特性を評
価した。光挿入損失は光源として波長1.3μmの半導
体レーザーを使用し、入力光と出力光の強度を光パワー
メータで比較する方法で測定した。また光変調特性は、
コネクタから共振周波数の変調マイクロ波を入力し、変
調された光を反射率99%で構成されるファブリペロ干
渉計に通じて、その変調深さを求める方法で評価した。
その結果から、πradの位相変化させるための変調電
力(mW)を計算した。これらの結果を表3に示す。R
では光導波路上にバッファ層を形成しているものの、高
温の超電導薄膜形成プロセス中に光導波路から少量のL
iイオンがバッファ層や超電導電極中に拡散するため、
屈折率が変化し、光損失が18.8dBと大きくなっ
た。一方、この実施例の構造によるPでは、小さな光挿
入損失と低い変調電力を実現できることが確認された。
Next, the optical insertion loss (dB) and the optical modulation characteristic were evaluated. The light insertion loss was measured by using a semiconductor laser having a wavelength of 1.3 μm as a light source and comparing the intensities of the input light and the output light with an optical power meter. The light modulation characteristics are
The modulation microwave of the resonance frequency was input from the connector, the modulated light was passed through a Fabry-Perot interferometer having a reflectance of 99%, and the modulation depth was evaluated.
From the result, the modulation power (mW) for changing the phase of πrad was calculated. The results are shown in Table 3. R
Although the buffer layer is formed on the optical waveguide, a small amount of L is left from the optical waveguide during the high temperature superconducting thin film formation process.
Since i ions diffuse into the buffer layer and the superconducting electrode,
The refractive index changed and the optical loss increased to 18.8 dB. On the other hand, it was confirmed that P having the structure of this embodiment can realize a small optical insertion loss and a low modulation power.

【0029】[0029]

【表3】 [Table 3]

【0030】実施例3.光導波路形成基板1と電極形成
基板3を直接紫外線硬化樹脂5によって接着した場合に
おいて、TMモード光の挿入損失が大きくなることがし
ばしば観察された。とくに光導波路2と電極4の密着を
高めた場合にその傾向が見られた。その原因は光導波路
2と電極4が近接しすぎたため、光導波路2中のTMモ
ード光の電界が電極4中に散乱したためと推測される。
このような光導波路2よりも光屈折率が大きい物質や電
極4などの導体が接すると、TMモードの光の減衰が大
きくなることはよく知られている。そこで光導波路2の
表面に光導波路2よりも光屈折率の低い物質、または大
気層が接するようにして、光導波路形成基板1と超電導
電極形成基板3を近接させて固定した。
Example 3. It was often observed that when the optical waveguide forming substrate 1 and the electrode forming substrate 3 were directly adhered by the ultraviolet curable resin 5, the insertion loss of TM mode light was increased. This tendency was observed especially when the close contact between the optical waveguide 2 and the electrode 4 was enhanced. It is speculated that the cause is that the electric field of the TM mode light in the optical waveguide 2 is scattered in the electrode 4 because the optical waveguide 2 and the electrode 4 are too close to each other.
It is well known that when a substance having a light refractive index larger than that of the optical waveguide 2 or a conductor such as the electrode 4 contacts, the attenuation of the TM mode light increases. Therefore, the optical waveguide forming substrate 1 and the superconducting electrode forming substrate 3 were fixed in close proximity to each other so that a substance having a lower photorefractive index than the optical waveguide 2 or the atmosphere layer was in contact with the surface of the optical waveguide 2.

【0031】実施例3として超電導電極4と光導波路2
との間に大気層を形成した光変調器Xと、比較例として
電極4と光導波路2を密着させた光変調器Yを試作し
た。図6(a),(b)はX,Yを示す断面図である。
図において、11は大気層、12はレジストである。超
電導電極形成基板3としては、実施例1と同様、MgO
単結晶基板にYBCOの電極を形成したものを用いた。
光導波路形成基板1としては、実施例2と同様、z−c
utのLN上に一本の直線上のTi拡散光導波路を形成
したものを用いたが、実施例2と異なり光導波路形成基
板1上にはMgO膜を形成しなかった。
As a third embodiment, a superconducting electrode 4 and an optical waveguide 2
An optical modulator X in which an atmospheric layer was formed between and an optical modulator Y in which an electrode 4 and an optical waveguide 2 were in close contact with each other were manufactured as a comparative example. 6A and 6B are cross-sectional views showing X and Y.
In the figure, 11 is an atmospheric layer and 12 is a resist. As the superconducting electrode forming substrate 3, MgO is used as in the first embodiment.
A single crystal substrate having YBCO electrodes formed thereon was used.
As the optical waveguide forming substrate 1, as in the second embodiment, z-c
Although one linear Ti diffusion optical waveguide was formed on the LN of ut, the MgO film was not formed on the optical waveguide formation substrate 1 unlike Example 2.

【0032】光変調器Xの作成手順としては、まず、リ
ソグラフィプロセスにより、光導波路形成基板1上の光
導波路2が形成されていない部分に一定膜厚のレジスト
膜12を残す。この後、実施例2と同様の手法により光
導波路形成基板1と電極形成基板3を接着した。なお、
使用したTi拡散LN光導波路2はLN基板面に対して
約50nm程度の凸部となっていたため、レジスト12
の膜厚はその値より充分大きくなるように約1.2μm
とした。また、基板1,3を密着して接着する際に紫外
線硬化樹脂5が光導波路2に接しないように注意して作
成した。比較例のYにおいても光導波路2と電極4を充
分密着させた際に、紫外線硬化樹脂5がその間に挟み込
まれないように注意して接着した。
As a procedure for forming the optical modulator X, first, a resist film 12 having a constant film thickness is left on a portion of the optical waveguide forming substrate 1 where the optical waveguide 2 is not formed by a lithography process. Then, the optical waveguide forming substrate 1 and the electrode forming substrate 3 were adhered by the same method as in Example 2. In addition,
The Ti-diffused LN optical waveguide 2 used had a protrusion of about 50 nm with respect to the surface of the LN substrate.
Thickness is about 1.2 μm
And Further, the substrate 1 and the substrate 3 were closely adhered to each other, and the ultraviolet curable resin 5 was made so as not to come into contact with the optical waveguide 2. Also in Comparative Example Y, when the optical waveguide 2 and the electrode 4 were sufficiently adhered, the ultraviolet curable resin 5 was carefully adhered so as not to be sandwiched therebetween.

【0033】試作した光変調器について実施例1と同様
の光挿入損失(dB)とパルス電圧を用いた変調電圧
(V)を評価した。ただし、光の位相が変調されるた
め、変調光はファブリペロ干渉計を通して検出した。そ
の結果を表4に示す。いずれも同様に低い損失の超電導
電極を用いたため、光の位相をπrad変調させる電圧
はいずれも低い値である。Yのほうがこの実施例Xに比
べて多少低い値となったのは、Yのほうが電極4と光導
波路2の距離が小さく、光導波路2中の変調マイクロ波
の電界密度が高まったためと考えられる。しかしながら
Yでは光導波路2と電極4が密着したため、光挿入損失
は大きな値となり実用上問題があることが分かった。従
って、この実施例のように光導波路2の上に大気層11
を形成することが、光挿入損失を小さな値に抑えるのに
有効であることが分かった。
With respect to the prototyped optical modulator, the same optical insertion loss (dB) as in Example 1 and the modulation voltage (V) using the pulse voltage were evaluated. However, since the phase of the light is modulated, the modulated light was detected through the Fabry-Perot interferometer. The results are shown in Table 4. In each case, the superconducting electrode having a low loss is used in the same manner, so that the voltage for modulating the phase of light by πrad is low. The reason why the value of Y was slightly lower than that of Example X is considered to be that the distance of Y between the electrode 4 and the optical waveguide 2 was smaller and the electric field density of the modulation microwave in the optical waveguide 2 was increased. . However, in Y, since the optical waveguide 2 and the electrode 4 were in close contact with each other, the optical insertion loss became a large value and it was found that there was a problem in practical use. Therefore, as in this embodiment, the atmospheric layer 11 is formed on the optical waveguide 2.
It has been found that the formation of is effective in suppressing the optical insertion loss to a small value.

【0034】[0034]

【表4】 [Table 4]

【0035】なお、上記実施例3においては、光導波路
2の上のレジスト12を除去したため、光導波路2には
大気層11が接している。しかし、レジスト12を除去
しない場合にでも、レジスト12の光屈折率が光導波路
2の屈折率よりも小さい場合に効果があることを確認し
ている。また、光屈折率が光導波路2に比べて小さけれ
ば、無機材料を用いても良好な特性が得られることを確
認している。即ち、酸化物超電導電極4と近接する光導
波路2の表面が光導波路2よりも光屈折率の低い物質ま
たは大気層と接する構造であれば、光挿入損失を小さな
値に抑えることができる。
In the third embodiment, since the resist 12 on the optical waveguide 2 is removed, the atmospheric layer 11 is in contact with the optical waveguide 2. However, even if the resist 12 is not removed, it has been confirmed that the effect is obtained when the optical refractive index of the resist 12 is smaller than that of the optical waveguide 2. Further, it has been confirmed that if the optical refractive index is smaller than that of the optical waveguide 2, good characteristics can be obtained even if an inorganic material is used. That is, if the surface of the optical waveguide 2 adjacent to the oxide superconducting electrode 4 is in contact with a substance having a lower photorefractive index than the optical waveguide 2 or the atmosphere layer, the optical insertion loss can be suppressed to a small value.

【0036】なお、上記実施例はY−Ba−Cu−O系
あるいはEr−Ba−Cu−O系超電導電極の場合であ
るが、他の形成プロセス温度が500℃以上となる超電
導電極、例えばBi−Sr−Ca−Cu−O系等でもよ
く、上記実施例と同様な効果を発揮する。
Although the above embodiment is a case of a Y-Ba-Cu-O type or Er-Ba-Cu-O type superconducting electrode, another superconducting electrode whose forming process temperature is 500 ° C. or higher, for example, Bi. A -Sr-Ca-Cu-O system or the like may be used, and the same effect as that of the above-mentioned embodiment is exhibited.

【0037】また、電気光学効果のある光導波路のなか
で、高温プロセスにより光伝搬特性が劣化するもの、例
えば非線形光学効果を有する有機材料であってもよく、
上記実施例と同様な効果を発揮する。
Further, among the optical waveguides having an electro-optical effect, those whose optical propagation characteristics are deteriorated by a high temperature process, for example, an organic material having a nonlinear optical effect may be used.
The same effect as that of the above embodiment is exhibited.

【0038】また、酸化物超電導電極4は、その一部が
光導波路2と近接していれば、ストリップラインやマイ
クロストリップ等の他の平面電極形状であってもよい。
特に電極4と光導波路2の距離が20μm以下であれ
ば、上記実施例と同様の良好な効果を発揮する。
Further, the oxide superconducting electrode 4 may have another planar electrode shape such as a strip line or a micro strip as long as a part thereof is close to the optical waveguide 2.
In particular, if the distance between the electrode 4 and the optical waveguide 2 is 20 μm or less, the same good effect as that of the above-mentioned embodiment is exhibited.

【0039】また、電極形成基板と光導波路形成基板の
固定は、接着層5を用いずにネジなどを用いて機械的に
行ってもよく、上記実施例と同様な効果を発揮する。
Further, the electrode forming substrate and the optical waveguide forming substrate may be fixed mechanically by using a screw or the like without using the adhesive layer 5, and the same effect as that of the above embodiment is exhibited.

【0040】また、電極形成基板3と光導波路形成基板
1を張り合わせる前に、一方または両方の基板上に誘電
体膜などを形成しても、電極と光導波路の間隔が20μ
m以下であればよく、上記実施例と同様な効果を発揮す
る。
Even if a dielectric film or the like is formed on one or both of the substrates before the electrode forming substrate 3 and the optical waveguide forming substrate 1 are bonded together, the distance between the electrode and the optical waveguide is 20 μm.
As long as it is m or less, the same effect as that of the above-mentioned embodiment is exhibited.

【0041】[0041]

【発明の効果】以上のように、請求項1の発明によれ
ば、電気光学効果を有する光導波路が形成された光導波
路形成基板と、酸化物超電導電極が形成された電極形成
基板とを備え、光導波路が形成された面と電極が形成さ
れた面が対向するように、光導波路形成基板と電極形成
基板が近接して固定することにより、低い電圧で駆動で
きると共に、光挿入損失の小さい光変調器が得られる効
果がある。
As described above, according to the invention of claim 1, the optical waveguide forming substrate having the optical waveguide having the electro-optical effect is formed, and the electrode forming substrate having the oxide superconducting electrode is formed. By fixing the optical waveguide forming substrate and the electrode forming substrate in close proximity so that the surface on which the optical waveguide is formed and the surface on which the electrode is formed face each other, it is possible to drive at a low voltage and to reduce the optical insertion loss. There is an effect that the optical modulator can be obtained.

【0042】また、請求項2の発明によれば、請求項1
の発明に加え、光導波路と酸化物超電導電極との距離が
20μm以下になるように近接して固定することによ
り、電極の生じる電界を高くできる光変調器が得られる
効果がある。
According to the invention of claim 2, claim 1
In addition to the above invention, by fixing the optical waveguide and the oxide superconducting electrode in close proximity to each other so that the distance between them is 20 μm or less, there is an effect that an optical modulator capable of increasing the electric field generated by the electrode can be obtained.

【0043】また、請求項3の発明によれば、請求項1
の発明に加え、酸化物超電導電極と近接する光導波路の
表面が光導波路よりも光屈折率の低い物質または大気層
と接するようにしたことにより、光損失を小さな値に抑
えることができる光変調器が得られる効果がある。
According to the invention of claim 3, claim 1
In addition to the invention described above, by making the surface of the optical waveguide close to the oxide superconducting electrode in contact with a substance having a lower photorefractive index than that of the optical waveguide or the atmospheric layer, it is possible to suppress the optical loss to a small value. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による光変調器を示す断面
図である。
FIG. 1 is a sectional view showing an optical modulator according to a first embodiment of the present invention.

【図2】実施例1による光変調器に係る電極形状を示す
平面図である。
FIG. 2 is a plan view showing an electrode shape of the optical modulator according to the first embodiment.

【図3】実施例1による光変調器を上方向から透視して
見た平面図である。
FIG. 3 is a plan view of the optical modulator according to the first embodiment seen through from above.

【図4】実施例1と比較例の光変調器において、出力さ
れた変調光の強度の時間変化を示すグラフである。
FIG. 4 is a graph showing the time change of the intensity of the output modulated light in the optical modulators of Example 1 and the comparative example.

【図5】実施例2による光変調器に係る電極形状を示す
平面図である。
FIG. 5 is a plan view showing an electrode shape of an optical modulator according to a second embodiment.

【図6】この発明の実施例3と比較例による光変調器を
示す断面図である。
FIG. 6 is a sectional view showing an optical modulator according to a third embodiment of the present invention and a comparative example.

【図7】従来の光変調器を示す断面図である。FIG. 7 is a sectional view showing a conventional optical modulator.

【符号の説明】[Explanation of symbols]

1 光導波路形成基板 2 光導波路 3 電極形成基板 4 酸化物超電導電極 5 接着層 11 大気層 1 Optical Waveguide Forming Substrate 2 Optical Waveguide 3 Electrode Forming Substrate 4 Oxide Superconducting Electrode 5 Adhesive Layer 11 Atmosphere Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡井 久男 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisao Watai 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を有する光導波路が形成さ
れた光導波路形成基板と、酸化物超電導電極が形成され
た電極形成基板とを備え、上記光導波路が形成された面
と上記電極が形成された面が対向するように、上記光導
波路形成基板と上記電極形成基板が近接して固定されて
いる光変調器。
1. An optical waveguide forming substrate on which an optical waveguide having an electro-optical effect is formed, and an electrode forming substrate on which an oxide superconducting electrode is formed, wherein the surface on which the optical waveguide is formed and the electrode are formed. An optical modulator in which the optical waveguide formation substrate and the electrode formation substrate are fixed in close proximity to each other so that the surfaces facing each other face each other.
【請求項2】 光導波路と酸化物超電導電極との距離が
20μm以下に近接して固定されていることを特徴とす
る請求項第1項記載の光変調器。
2. The optical modulator according to claim 1, wherein the optical waveguide and the oxide superconducting electrode are fixed in proximity to each other at a distance of 20 μm or less.
【請求項3】 酸化物超電導電極と近接する光導波路の
表面が、上記光導波路よりも光屈折率の低い物質または
大気層と接するようにしたことを特徴とする請求項第1
項記載の光変調器。
3. The surface of the optical waveguide adjacent to the oxide superconducting electrode is in contact with a substance having a lower photorefractive index than that of the optical waveguide or the atmospheric layer.
An optical modulator according to the item.
JP4314692A 1992-11-25 1992-11-25 Light modulator Expired - Lifetime JP2868046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4314692A JP2868046B2 (en) 1992-11-25 1992-11-25 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4314692A JP2868046B2 (en) 1992-11-25 1992-11-25 Light modulator

Publications (2)

Publication Number Publication Date
JPH06160788A true JPH06160788A (en) 1994-06-07
JP2868046B2 JP2868046B2 (en) 1999-03-10

Family

ID=18056406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4314692A Expired - Lifetime JP2868046B2 (en) 1992-11-25 1992-11-25 Light modulator

Country Status (1)

Country Link
JP (1) JP2868046B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177365A (en) * 2001-12-10 2003-06-27 Hitachi Ltd Optical transmission device, optical reception device, and manufacturing method for optical device
WO2004111710A1 (en) * 2003-06-10 2004-12-23 Nippon Telegraph And Telephone Corporation Electrooptic modulation element
CN100380178C (en) * 2003-06-10 2008-04-09 日本电信电话株式会社 Electrooptic modulation element
WO2024066678A1 (en) * 2022-09-29 2024-04-04 中兴光电子技术有限公司 Modulator chip and modulation device comprising same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177365A (en) * 2001-12-10 2003-06-27 Hitachi Ltd Optical transmission device, optical reception device, and manufacturing method for optical device
US7136595B2 (en) 2001-12-10 2006-11-14 Hitachi, Ltd. Optical transmitter, optical receiver, and manufacturing method of optical device
WO2004111710A1 (en) * 2003-06-10 2004-12-23 Nippon Telegraph And Telephone Corporation Electrooptic modulation element
EP1526400A4 (en) * 2003-06-10 2006-07-05 Nippon Telegraph & Telephone Electrooptic modulation element
CN100380178C (en) * 2003-06-10 2008-04-09 日本电信电话株式会社 Electrooptic modulation element
US7433111B2 (en) 2003-06-10 2008-10-07 Nippon Telegraph And Telephone Corporation Electrooptic modulation element
WO2024066678A1 (en) * 2022-09-29 2024-04-04 中兴光电子技术有限公司 Modulator chip and modulation device comprising same

Also Published As

Publication number Publication date
JP2868046B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US4866406A (en) Wide-band optical modulator
CA2242653C (en) Integrated optical intensity modulator and method for fabricating the same
US5005932A (en) Electro-optic modulator
JP2713087B2 (en) Waveguide optical device
JP3179408B2 (en) Waveguide type optical device
JP2606674B2 (en) Waveguide optical device
JPWO2005019913A1 (en) Optical waveguide device and traveling wave optical modulator
Sueta et al. High speed guided-wave optical modulators
US7079714B2 (en) Electro-optic devices having flattened frequency response with reduced drive voltage
JPH1039266A (en) Optical control device
JP3043614B2 (en) Waveguide type optical device
Song et al. Analysis and demonstration of Mach–Zehnder polymer modulators using in-plane coplanar waveguide structure
JP2868046B2 (en) Light modulator
JP2847660B2 (en) Waveguide type optical modulator
JPH07120631A (en) Optical waveguide type part
Yoshida et al. A traveling-wave-type LiNbO/sub 3/optical modulator with superconducting electrodes
JP2963989B1 (en) Light modulator
JPH07508598A (en) Multi-branch digital optical switch
JP2805027B2 (en) Waveguide type optical modulator
Mikami et al. Phase tuning in optical directional coupler
Kubota et al. Temperature stabilized optical waveguide modulator
JPH10142567A (en) Waveguide type optical device
JPH0756199A (en) Polarization-independent waveguide type optical switch
JPH02114243A (en) Optical control device and its manufacture
JP2848455B2 (en) Waveguide type optical device