JPH06160379A - Diagnosing method for aging deterioration of oil-filled electric apparatus - Google Patents

Diagnosing method for aging deterioration of oil-filled electric apparatus

Info

Publication number
JPH06160379A
JPH06160379A JP4305785A JP30578592A JPH06160379A JP H06160379 A JPH06160379 A JP H06160379A JP 4305785 A JP4305785 A JP 4305785A JP 30578592 A JP30578592 A JP 30578592A JP H06160379 A JPH06160379 A JP H06160379A
Authority
JP
Japan
Prior art keywords
oil
ketones
deterioration
electrical equipment
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4305785A
Other languages
Japanese (ja)
Other versions
JP3011556B2 (en
Inventor
Keiichi Abe
景一 阿部
Tokihiro Umemura
時博 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4305785A priority Critical patent/JP3011556B2/en
Publication of JPH06160379A publication Critical patent/JPH06160379A/en
Application granted granted Critical
Publication of JP3011556B2 publication Critical patent/JP3011556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PURPOSE:To diagnose an aging deterioration state of oil-impregnated insulator without adverse influence of CO to be generated when an internal malfunction occurs. CONSTITUTION:Ketones dissolved in insulation oil are detected to diagnose its deterioration. In the case of detecting the ketones, the oil is sampled from an oil-filled electric apparatus body, deteriorated product dissolved in the oil is extracted as a sample 2, and an aqueous solution sensor 4 having sensitivity to the ketones is used. Or, the oil is sampled from the body, vaporized to a vapor state, and it is measured without contact with the body by using a synthetic 2-molecule film sensor having sensitivity to the ketone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、油入変圧器、油入リア
クトル等の油入電気機器の経年劣化診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing aged deterioration of oil-filled electrical equipment such as oil-filled transformers and oil-filled reactors.

【0002】[0002]

【従来の技術】油入変圧器、油入リアクトル等のような
油入電気機器の寿命には、絶縁油、絶縁紙、プレスボー
ド等の絶縁材料の劣化が最も大きく影響する。このた
め、近年においては、絶縁紙、プレスボードのような高
分子材料より成る油浸絶縁物の劣化に伴って生成されて
絶縁油中に溶存状態となるCO+CO2 の量を測定し、
測定されたCO+CO2 の量や発生速度に基づいて経年
劣化状態を診断する方法が考えられている。
2. Description of the Related Art The life of oil-filled electrical equipment such as oil-filled transformers and oil-filled reactors is most greatly affected by the deterioration of insulating materials such as insulating oil, insulating paper and pressboard. For this reason, in recent years, the amount of CO + CO 2 that is generated in association with the deterioration of an oil-immersed insulating material made of a polymeric material such as insulating paper or pressboard and becomes dissolved in the insulating oil is measured,
A method of diagnosing an aged deterioration state based on the measured amount of CO + CO 2 and the generation rate has been considered.

【0003】[0003]

【発明が解決しようとする課題】一般に油入電気機器に
おいて、内部で局部過熱や放電等の異常が発生したとき
には、種々の分解ガスが生成され、その分解ガスは絶縁
油中に溶存する。特に、油浸絶縁物の放電や過熱等が発
生したときには、主としてH2 (水素)、CO(一酸化
炭素)、CH4 (メタン)、C2 2 (アセチレン)、
2 4 (エチレン)等の可燃性ガスが生成され絶縁油
中に溶存するようになる。
Generally, in an oil-filled electric device, when an abnormality such as local overheating or discharge occurs inside, various decomposed gases are generated, and the decomposed gases are dissolved in the insulating oil. In particular, when discharge or overheating of the oil-immersed insulator occurs, mainly H 2 (hydrogen), CO (carbon monoxide), CH 4 (methane), C 2 H 2 (acetylene),
Combustible gas such as C 2 H 4 (ethylene) is generated and becomes dissolved in the insulating oil.

【0004】このため、油入電気機器の経年劣化を前述
のようにCO+CO2 の生成量に基づいて行なっていた
のでは、内部異常が発生したときに生成されるCOが経
年劣化状態の診断に悪影響を及ぼすことにより、その診
断結果が不正確になる虞が存在する。
Therefore, if aging of the oil-filled electrical equipment is performed based on the amount of CO + CO 2 produced as described above, the CO produced when an internal abnormality occurs can be diagnosed for aging deterioration. There is a risk that the diagnostic result will be inaccurate due to the adverse effect.

【0005】本発明は上述の点を考慮してなされたもの
で、内部異常が発生したときに生成されるCOの悪影響
を受けることなく油浸絶縁物の経年劣化状態を診断でき
る油入電気機器の経年劣化診断方法を得ることを目的と
する。
The present invention has been made in consideration of the above points, and an oil-filled electrical device capable of diagnosing aged deterioration state of an oil-immersed insulator without being adversely affected by CO generated when an internal abnormality occurs. The purpose is to obtain a method for aging deterioration diagnosis.

【0006】[0006]

【課題を解決するための手段】本発明の油入電気機器の
経年劣化診断方法は、絶縁油中に溶存するケトン類を検
出し、その検出結果に基づいて油浸絶縁物の経年劣化診
断を行なう方法において、ケトン類の検出は、油入電気
機器本体から絶縁油をサンプリングし、この絶縁油中に
溶存している劣化生成物を水溶液中に抽出し、ケトン類
に感度を有する水溶液用センサを用いるか、または油入
電気機器本体から絶縁油をサンプリングし、この絶縁油
を気相状態にして、ケトン類に感度を有する合成2分子
膜センサを用いて油入電気機器本体と非接触状態で行な
うことを特徴とする。
A method for diagnosing aging deterioration of oil-filled electrical equipment according to the present invention detects ketones dissolved in insulating oil and diagnoses aging deterioration of oil-impregnated insulation based on the detection result. In the method to be performed, ketones are detected by sampling insulating oil from the oil-filled electrical equipment main body, extracting deterioration products dissolved in the insulating oil into an aqueous solution, and detecting the ketones with an aqueous solution sensor. , Or by sampling the insulating oil from the oil-filled electrical equipment body, putting this insulating oil in the gas phase, and using a synthetic bilayer membrane sensor sensitive to ketones, in a non-contact state with the oil-filled electrical equipment body. It is characterized by performing in.

【0007】[0007]

【作用】本発明の油入電気機器の経年劣化診断方法によ
れば、油浸絶縁物が経年劣化するに伴い発生する劣化生
成物のうち、ケトン類(例えばアセトン)は経年劣化時
のみ発生し、放電などの内部異常では発生しにくいの
で、これを検出することにより、内部異常が発生したと
きに生成されるCOの悪影響を受けることなく、より正
確な油浸絶縁物の経年劣化診断を行なうことができる。
According to the method for diagnosing aging of oil-filled electrical equipment of the present invention, among the degradation products generated as the oil-immersed insulation deteriorates with age, ketones (eg, acetone) are generated only during aging. Since it is unlikely to occur due to an internal abnormality such as electric discharge, by detecting this, more accurate aging deterioration diagnosis of the oil-immersed insulator can be performed without being adversely affected by CO generated when the internal abnormality occurs. be able to.

【0008】なお、これら劣化生成物は、油入電気機器
の実質使用年数と強い相関性を有するので、劣化生成物
と実質使用年数を比較することにより、機器の異常が発
生しているのか、或いは一般的な経年特性を示している
のかをも診断できる。
Since these deteriorated products have a strong correlation with the actual years of use of the oil-filled electrical equipment, by comparing the deteriorated products with the actual years of use, is it possible to determine whether the equipment is abnormal? Alternatively, it can be diagnosed whether it exhibits general aging characteristics.

【0009】[0009]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は、水溶液用センサを用いて絶縁油中
の劣化生成物を測定する場合の概要を示す。実際に使用
された油入電気機器である変圧器から絶縁油を所要量サ
ンプリングし、この絶縁油を水溶液と混合して容器1内
に注入しサンプル2とする。そしてこのサンプル2を注
入した容器1内にセンサヘッド3に取付けた水溶液用セ
ンサ4を曝し、水溶液用センサ4の出力の変化を測定器
5で測定する。
FIG. 1 shows an outline of the case where a deterioration product in insulating oil is measured using an aqueous solution sensor. A required amount of insulating oil is sampled from a transformer, which is an oil-filled electrical device that is actually used, and this insulating oil is mixed with an aqueous solution and poured into the container 1 to obtain a sample 2. Then, the aqueous solution sensor 4 attached to the sensor head 3 is exposed in the container 1 into which the sample 2 is injected, and the change in the output of the aqueous solution sensor 4 is measured by the measuring device 5.

【0011】ここで使用する水溶液用センサ4は、セン
サヘッド3が水晶振動子3b上に人間の鼻の粘膜と同じ
機能成分を応用して作成された合成2分子膜フィルム3
aを取付けて構成されたものであり、例えばニオイセン
サとして市販されている相互薬工株式会社製SF−10
5を使用することができる。この水溶液用センサ4は、
大気中でも水溶液中でも同様の測定が可能である。
The aqueous solution sensor 4 used here is a synthetic bilayer film 3 in which the sensor head 3 is formed by applying the same functional component as the mucous membrane of the human nose on the crystal oscillator 3b.
SF-10 manufactured by Mutual Yakuko Co., Ltd., which is configured by attaching a, and is commercially available as, for example, an odor sensor.
5 can be used. This aqueous solution sensor 4
The same measurement can be performed in the air or in an aqueous solution.

【0012】図2は合成2分子膜フィルム3aの斜視図
を示す。水溶液用センサ3は、合成2分子膜フィルムが
水晶振動子上に形成されている為、測定対象の劣化生成
物等がセンサ上に付着すると、発信周波数が変化するこ
とを利用し測定するものである。従って油浸絶縁物の劣
化生成物を測定する場合は、絶縁油中の劣化生成物を水
溶液中に抽出すると良い。
FIG. 2 shows a perspective view of the synthetic bilayer film 3a. Since the aqueous solution sensor 3 has a synthetic bilayer film formed on a quartz oscillator, it is measured by utilizing the fact that when a deterioration product to be measured adheres to the sensor, the oscillation frequency changes. is there. Therefore, when measuring the degradation products of the oil-immersed insulation, it is advisable to extract the degradation products in the insulating oil into the aqueous solution.

【0013】油浸絶縁物の劣化生成物は、水溶液中では
イオン化しやすいので、図3(a)に示すように、油浸
絶縁物の劣化生成物を含んだ絶縁油6を劣化生成物を含
まない水溶液7に注入し、同図(b)のように混合する
と、絶縁油中の劣化生成物のみがイオン化し水溶液7中
に溶け、その後同図(c)のように絶縁油6と水溶液7
自体は分離する。従って測定対象の絶縁油を水溶液と撹
拌後、絶縁油のみを取り除けば、油浸絶縁物の劣化生成
物のみ水溶液中に抽出できる。
Since the deterioration product of the oil-immersed insulation is easily ionized in the aqueous solution, as shown in FIG. 3A, the insulation oil 6 containing the deterioration product of the oil-immersed insulation is converted into the deterioration product. When it is poured into the aqueous solution 7 that does not contain it and mixed as shown in FIG. 7B, only the deterioration product in the insulating oil is ionized and dissolved in the aqueous solution 7, and then the insulating oil 6 and the aqueous solution are mixed as shown in FIG. 7
It separates itself. Therefore, if the insulating oil to be measured is stirred with the aqueous solution and then only the insulating oil is removed, only the deterioration product of the oil-immersed insulating material can be extracted into the aqueous solution.

【0014】図4は、実際に使用されている油入変圧器
において、ケトン類(例えばアセトン)等の劣化生成物
に感度を有する水溶液センサを用いて測定した結果と、
変圧器の実質使用年数(使用年数×平均負荷率)との関
係を示した図である。この図4から明らかなように油浸
絶縁物の劣化生成物を水溶液中に抽出し水溶液センサを
用いて測定する方法は、油浸絶縁物の経年劣化特性と相
関性の存在することが判る。
FIG. 4 shows the results of measurement using an aqueous solution sensor having sensitivity to deterioration products such as ketones (eg acetone) in an oil-filled transformer actually used,
It is the figure which showed the relationship with the years of actual use of a transformer (years of use x average load factor). As is clear from FIG. 4, the method of extracting the degradation product of the oil-immersed insulator into an aqueous solution and measuring it with an aqueous solution sensor has a correlation with the deterioration characteristics of the oil-immersed insulator over time.

【0015】尚、変圧器A、変圧器Bは図4に示したよ
うに実質使用年数とセンサ出力との相関性から逸脱した
データとなっている。この原因を明らかにするために変
圧器A及びBの油中ガス分析を行った。その結果を表1
に示す。表1から明らかなように変圧器Aと変圧器Bは
可燃性ガスが多く発生しており、経年劣化以外の異常が
発生していたことが分かる。
As shown in FIG. 4, the transformers A and B have data that deviates from the correlation between the actual service life and the sensor output. In order to clarify the cause, gas analysis in oil of the transformers A and B was performed. The results are shown in Table 1.
Shown in. As is clear from Table 1, in transformers A and B, a large amount of combustible gas was generated, and it was found that abnormalities other than deterioration over time had occurred.

【0016】[0016]

【表1】 更に発明者らは、上述の測定結果が従来方法に比べ経年
劣化の診断結果に対して優れていることを確かめるた
め、次のようなデータを測定している。
[Table 1] Further, the inventors have measured the following data in order to confirm that the above-mentioned measurement result is superior to the diagnosis result of aged deterioration as compared with the conventional method.

【0017】図5(a)及び(b)は、絶縁油を実験室
で加熱エージングし、絶縁物の存在の有無でどのような
劣化生成物が生成するかをガスクロマトグラフとガスク
ロクトー質量分析計で調べた結果である。図5から明ら
かなように、絶縁油中に絶縁紙が存在した場合は、絶縁
油のみで加熱エージングした場合に比較して、アセトン
(ケトン類)が特徴的に生成していることが分かる。こ
れはケトン類(例えばアセトン)を検出すれば劣化診断
を行なえることを意味する。
FIGS. 5 (a) and 5 (b) show that the insulating oil is heated and aged in the laboratory, and what kind of deterioration product is produced depending on the presence or absence of the insulating material is shown by a gas chromatograph and a gas chromato mass spectrometer. It is the result of the investigation. As is clear from FIG. 5, when the insulating paper is present in the insulating oil, acetone (ketones) is characteristically produced as compared with the case where the insulating oil is heated and aged alone. This means that if a ketone (for example, acetone) is detected, deterioration diagnosis can be performed.

【0018】図6は、絶縁油を実験室で加熱エージング
し、絶縁物の存在の有無でケトン類等の劣化生成物に感
度を有する水溶液センサの出力にどのような影響を与え
るかを調べた結果である。図6から分るように、ケトン
類(例えばアセトン)等の劣化生成物に感度を有する水
溶液センサは油浸絶縁物が劣化した場合のみセンサ出力
が著しく反応し、絶縁油のみが劣化した場合には殆ど変
化しないことが分かる。 図7は、油浸絶縁物を加熱エ
ージングした場合の油浸絶縁物の平均重合度保持率とセ
ンサ出力の関係を示す。この図から油浸絶縁物の平均重
合度保持率もケトン類(例えばアセトン)等の劣化生成
物に感度を有する水溶液センサ出力値と良い相関性を有
することが分かる。油浸絶縁物の劣化診断基準の1つと
して絶縁物の平均重合度の測定が利用され、その50%
値を寿命とする方法が用いられている。平均重合度保持
率が初期の50%に低下したときケトン類(例えばアセ
トン)等の劣化生成物に感度を有する水溶液センサ出力
が4〜5に成る。このとき油浸絶縁物はその寿命に至っ
ていると考えて良い。
FIG. 6 shows how the insulating oil was heated and aged in a laboratory to examine how the presence or absence of an insulating material affects the output of an aqueous solution sensor having sensitivity to deterioration products such as ketones. The result. As can be seen from FIG. 6, an aqueous solution sensor having sensitivity to deterioration products such as ketones (for example, acetone) reacts remarkably only when the oil-immersed insulator deteriorates, and when only the insulating oil deteriorates. It can be seen that is almost unchanged. FIG. 7 shows the relationship between the average degree of polymerization retention of the oil-immersed insulator and the sensor output when the oil-immersed insulator is heated and aged. From this figure, it can be seen that the average retention rate of the degree of polymerization of the oil-immersed insulator also has a good correlation with the output value of the aqueous solution sensor that is sensitive to degradation products such as ketones (eg, acetone). As one of the criteria for diagnosing the deterioration of oil-immersed insulation, the measurement of the average degree of polymerization of the insulation is used.
A method in which the value is the life is used. When the average degree of polymerization retention falls to 50% of the initial value, the output of the aqueous solution sensor having sensitivity to deterioration products such as ketones (for example, acetone) becomes 4 to 5. At this time, the oil-immersed insulator may be considered to have reached the end of its life.

【0019】このように、ケトン(例えば、アセトン)
等の劣化生成物に感度を有する水溶液用センサで絶縁油
中の劣化生成物を測定することにより油浸絶縁物の寿
命、即ち、油入機器の寿命が機器外部より間接的に測定
できる。
Thus, a ketone (eg acetone)
The life of the oil-immersed insulation, that is, the life of the oil-filled device can be indirectly measured from outside the device by measuring the deterioration product in the insulating oil with an aqueous solution sensor having sensitivity to the deterioration product.

【0020】また、油浸絶縁物の平均重合度保持率が初
期の50%に低下した場合にケトン類(例えばアセト
ン)等の劣化生成物に感度を有する水溶液センサ出力
は、図4に示すように4〜5である。一方、実質使用年
数とセンサ出力の相関関係から外挿されるセンサ出力値
が4〜5に対する実質使用年数は25〜30年になり、
変圧器の寿命とほぼ一致する。このことは、ケトン類
(例えばアセトン)等の劣化生成物に感度を有する水溶
液センサが油入電気機器の経年劣化診断センサとして有
効であり、更に実質使用年数と比較することにより機器
の異常も診断できることを示す。
FIG. 4 shows the output of an aqueous solution sensor having sensitivity to deterioration products such as ketones (for example, acetone) when the average retention rate of the degree of polymerization of the oil-immersed insulator is reduced to 50% of the initial value. It is 4-5. On the other hand, when the sensor output value extrapolated from the correlation between the actual use years and the sensor output is 4 to 5, the actual use years is 25 to 30 years,
It is almost the same as the life of the transformer. This means that an aqueous solution sensor that is sensitive to degradation products such as ketones (eg acetone) is effective as a sensor for aging deterioration diagnosis of oil-filled electrical equipment, and it also diagnoses equipment abnormalities by comparing it with the actual number of years of use. Show what you can do.

【0021】以上の説明は水溶液用センサを用いた場合
について説明したが、絶縁油から揮発してくる劣化生成
物を合成2分子膜センサを用いて測定することもでき
る。図8はその実施例を示し、サンプリングした絶縁油
6を容器1内に入れ、攪拌して蒸発してくるガス成分を
気相状態にし、そのガス成分の中から可燃性ガス以外の
有機酸化合物などの劣化生成物に感度を有する合成2分
子膜フィルム3aを有する合成2分子膜センサ14を用
いて測定器5により劣化生成物を測定する。
In the above description, the case of using the aqueous solution sensor has been described, but the deterioration product volatilized from the insulating oil can also be measured using the synthetic bilayer membrane sensor. FIG. 8 shows an example thereof, in which the sampled insulating oil 6 is put in the container 1 and the gas component evaporating by stirring is made into a gas phase state, and organic acid compounds other than flammable gas are selected from the gas components. The degradation product is measured by the measuring instrument 5 using the synthetic bilayer membrane sensor 14 having the synthetic bilayer membrane 3a sensitive to the degradation product such as.

【0022】[0022]

【発明の効果】以上説明のように本発明によれば、絶縁
油中に溶存するケトン類を、油入電気機器本体から絶縁
油をサンプリングし、この絶縁油中に溶存している劣化
生成物を水溶液中に抽出し、ケトン類に感度を有する水
溶液センサを用いて検出するか、またはサンプリングし
た絶縁油を気相状態にして、ケトン類に感度を有する合
成2分子膜センサを用いて検出するようにしたので、内
部異常が発生したときに生成されるCOの悪影響を受け
ることなく、油入電気機器に対して非接触状態で油浸絶
縁物の経年劣化診断を行なうことができる。
As described above, according to the present invention, the ketones dissolved in the insulating oil, the insulating oil is sampled from the oil-filled electric device body, and the degradation product dissolved in the insulating oil is sampled. Is extracted in an aqueous solution and is detected using an aqueous solution sensor that is sensitive to ketones, or the sampled insulating oil is placed in the gas phase and is detected using a synthetic bilayer membrane sensor that is sensitive to ketones. Since this is done, the secular deterioration diagnosis of the oil-immersed insulator can be performed in a non-contact state with the oil-filled electrical device without being adversely affected by CO generated when an internal abnormality occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示し、水溶液用センサを用
いた方法を示す概略図
FIG. 1 is a schematic view showing an embodiment of the present invention and showing a method using an aqueous solution sensor.

【図2】合成2分子膜フィルムを用いた水溶液用センサ
を示す概略図
FIG. 2 is a schematic view showing an aqueous solution sensor using a synthetic bilayer film.

【図3】(a)乃至(d)は絶縁油中に溶存した劣化生
成物を水溶液中に抽出する方法を示す工程図
3 (a) to 3 (d) are process diagrams showing a method of extracting a degradation product dissolved in insulating oil into an aqueous solution.

【図4】ケトン等の劣化生成物に感度を有する水溶液用
センサの出力と油入電気機器の実質使用年数との関係を
示すグラフ
FIG. 4 is a graph showing the relationship between the output of an aqueous solution sensor having sensitivity to degradation products such as ketones and the actual service life of oil-filled electrical equipment.

【図5】(a)は絶縁紙を有する絶縁油に対する加熱エ
ージングによる劣化生成物の分析結果を示すグラフ、
(b)は絶縁紙なしの絶縁油に対する加熱エージングに
よる劣化生成物の分析結果を示すグラフ
FIG. 5 (a) is a graph showing analysis results of deterioration products due to heat aging with respect to insulating oil having insulating paper;
(B) is a graph showing the analysis results of deterioration products due to heat aging for insulating oil without insulating paper

【図6】加熱エージング時間とセンサ出力との関係を示
すグラフ
FIG. 6 is a graph showing the relationship between heating aging time and sensor output.

【図7】油浸絶縁物の平均重合度保持率とセンサ出力の
関係を示すグラフ
FIG. 7 is a graph showing the relationship between the average degree of polymerization retention of the oil-immersed insulator and the sensor output.

【図8】本発明の他の実施例を示す概略図FIG. 8 is a schematic view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1は容器、2はサンプル、3はセンサヘッド、3aは合
成2分子膜フィルム、4は水溶液用センサ、5は測定
器、14は合成2分子膜センサを示す。
1 is a container, 2 is a sample, 3 is a sensor head, 3a is a synthetic bilayer membrane film, 4 is an aqueous solution sensor, 5 is a measuring instrument, and 14 is a synthetic bilayer membrane sensor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁油中に溶存するケトン類を検出し、
その検出結果に基づいて油浸絶縁物の経年劣化診断を行
なう油入電気機器の経年劣化診断方法において、ケトン
類の検出は、油入電気機器本体から絶縁油をサンプリン
グし、この絶縁油中に溶存している劣化生成物を水溶液
中に抽出し、ケトン類に感度を有する水溶液用センサを
用いて油入電気機器本体と非接触状態で行なうことを特
徴とする油入電気機器の経年劣化診断方法。
1. Detecting ketones dissolved in insulating oil,
In the method for aging deterioration diagnosis of oil-filled electrical equipment that performs aging deterioration diagnosis of oil-immersed insulation based on the detection result, ketones are detected by sampling insulating oil from the oil-filled electrical equipment main body. Diagnosis of aged deterioration of oil-filled electrical equipment characterized by extracting dissolved degradation products into an aqueous solution and using a sensor for aqueous solutions that is sensitive to ketones without contacting the oil-filled electrical equipment body Method.
【請求項2】 絶縁油中に溶存するケトン類を検出し、
その検出結果に基づいて油浸絶縁物の経年劣化診断を行
なう油入電気機器の経年劣化診断方法において、ケトン
類の検出は、油入電気機器本体から絶縁油をサンプリン
グし、この絶縁油を気相状態にして、ケトン類に感度を
有する合成2分子膜センサを用いて油入電気機器本体と
非接触状態で行なうことを特徴とする油入電気機器の経
年劣化診断方法。
2. Detecting ketones dissolved in insulating oil,
In the secular deterioration diagnosis method for oil-filled electrical equipment, which performs secular deterioration diagnosis of oil-immersed insulation based on the detection results, ketones are detected by sampling the insulation oil from the oil-filled electric equipment body. A method for diagnosing secular deterioration of oil-filled electrical equipment, which is performed in a phase state in a non-contact state with a main body of the oil-filled electrical equipment using a synthetic bilayer membrane sensor having sensitivity to ketones.
JP4305785A 1992-11-17 1992-11-17 Aging deterioration diagnosis method for oil-filled electrical equipment Expired - Lifetime JP3011556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4305785A JP3011556B2 (en) 1992-11-17 1992-11-17 Aging deterioration diagnosis method for oil-filled electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4305785A JP3011556B2 (en) 1992-11-17 1992-11-17 Aging deterioration diagnosis method for oil-filled electrical equipment

Publications (2)

Publication Number Publication Date
JPH06160379A true JPH06160379A (en) 1994-06-07
JP3011556B2 JP3011556B2 (en) 2000-02-21

Family

ID=17949324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4305785A Expired - Lifetime JP3011556B2 (en) 1992-11-17 1992-11-17 Aging deterioration diagnosis method for oil-filled electrical equipment

Country Status (1)

Country Link
JP (1) JP3011556B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018106A (en) * 2012-07-13 2014-02-03 Chikuno Shokuhin Kogyo Kk Method for evaluating flavor of food products
JP2019045466A (en) * 2017-09-04 2019-03-22 日清オイリオグループ株式会社 Method for determining amount of dialkyl ketone in fat
CN111047210A (en) * 2019-12-21 2020-04-21 西南交通大学 Method for evaluating aging state of insulating oil of traction transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389554B2 (en) * 2002-12-19 2009-12-24 日本精工株式会社 Super finishing equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018106A (en) * 2012-07-13 2014-02-03 Chikuno Shokuhin Kogyo Kk Method for evaluating flavor of food products
JP2019045466A (en) * 2017-09-04 2019-03-22 日清オイリオグループ株式会社 Method for determining amount of dialkyl ketone in fat
WO2019167390A1 (en) * 2017-09-04 2019-09-06 日清オイリオグループ株式会社 Method for quantifying dialkyl ketone in oil and fat
CN111047210A (en) * 2019-12-21 2020-04-21 西南交通大学 Method for evaluating aging state of insulating oil of traction transformer

Also Published As

Publication number Publication date
JP3011556B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
US8616045B2 (en) Method and device for deriving the concentration of a gas dissolved in an electrical insulation oil
AU2002211746A1 (en) Method and apparatus for analyzing mixtures of gases
CA1126879A (en) Trace water measurement
Tsukioka et al. Niew Apparatus for Detecting Transformer Faults
Aliev et al. Simple technique for temperature calibration of a MAS probe for solid‐state NMR spectroscopy
JP2010010439A (en) Method of estimating copper sulfide formation in oil-filled electric equipment, and method of diagnosing abnormality
JPH06160379A (en) Diagnosing method for aging deterioration of oil-filled electric apparatus
JPH04241407A (en) Deterioration diagnosing method for insulating paper of oil-immersed electric apparatus
JPH08128980A (en) Method and device for measuring deterioration of insulating oil
CA1201767A (en) Portable sf.sub.6 decomposition sensor
US5258310A (en) Method of diagnosing aged degradation of oil-filled electrical equipments
Hassan et al. Detection of oil-pressboard insulation aging with dielectric spectroscopy in time and frequency domain measurements
JP2004520600A (en) Method for measuring the total concentration of carbon monoxide and hydrocarbons in oxygen by ion mobility spectrometry
CN107064239A (en) A kind of method that transformer insulating paper conductance property is analyzed based on differential charge
Bosworth et al. Pulsed amperometric detection of furan compounds in transformer oil
JPS6159242A (en) Method for diagnosing deterioration of insulating material
WO1998056017A1 (en) Method for evaluating deterioration of insulating paper
Yuen et al. An automated system for simultaneous thermal analysis and mass spectrometry. Part 1
JP3663079B2 (en) Cellulose-based material degradation detection method and oil-filled electrical equipment life diagnosis method
Tsuchie Recent diagnostic technology on oil-immersed power transformers in Japan
JP3325220B2 (en) Life diagnosis method for gas insulated electrical equipment
Kim et al. Study on decomposition gas characteristics and condition diagnosis for gas-insulated transformer by chemical analysis
JPS59163552A (en) Thermal deterioration detecting method
Zylka et al. Rapid dissolved gas analysis by means of electrochemical gas sensors
JPH0472556A (en) Method for diagnosing aged deterioration of oil-immersed electric equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13

EXPY Cancellation because of completion of term