JPH0616035B2 - Quantitative measurement method for surface adsorbed liquid of granular material or fiber material - Google Patents

Quantitative measurement method for surface adsorbed liquid of granular material or fiber material

Info

Publication number
JPH0616035B2
JPH0616035B2 JP60259865A JP25986585A JPH0616035B2 JP H0616035 B2 JPH0616035 B2 JP H0616035B2 JP 60259865 A JP60259865 A JP 60259865A JP 25986585 A JP25986585 A JP 25986585A JP H0616035 B2 JPH0616035 B2 JP H0616035B2
Authority
JP
Japan
Prior art keywords
powder
liquid
granular material
amount
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60259865A
Other languages
Japanese (ja)
Other versions
JPS62121360A (en
Inventor
靖郎 伊東
芳朗 樋口
幸和 辻
雄二 中村
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60259865A priority Critical patent/JPH0616035B2/en
Publication of JPS62121360A publication Critical patent/JPS62121360A/en
Publication of JPH0616035B2 publication Critical patent/JPH0616035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 「発明の目的」 本発明は粒状材又は繊維材の表面吸着液の定量測定方法
に係り、各種粒状材又は繊維材を用いた混合物における
所定作用力条件下の表面吸着液を定量化して的確に測定
することのできる方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION "Object of the Invention" The present invention relates to a method for quantitatively measuring an adsorbed liquid on the surface of a granular material or a fibrous material. It is intended to provide a method capable of quantifying a liquid and measuring it accurately.

産業上の利用分野 粒状材又は繊維材と液体を用い、或いはそれらと粉体と
の混合物における粒状材の表面吸着液についての定量的
測定。
Industrial application Quantitative measurement of surface adsorbed liquid of granular material using granular material or fibrous material and liquid, or in a mixture of them and powder.

従来の技術 天然に存在する土砂や各種の化学的ないし物理的工業用
原料として粉粒物集合体が広く存在し、これらの粉粒物
には水その他の液体が附着し或いは配合されることが多
い。例えば天然に存在する土砂などにおいてその表面に
水分などの附着していることが殆んどであり、全く附着
しない状態とするには特別な処理を必要とする。又化学
的或いは物理的に粒状材を用いて夫々の製品を得るに当
っては水その他の液体を添加混合(混練ないし混捏を含
む)することが多い。
2. Description of the Related Art As a raw material for natural earth and sand and various chemical or physical industrial purposes, there are a wide range of aggregates of powder and granules, and water or other liquids may be attached or blended with these powders and granules. Many. For example, it is almost the case that moisture or the like is attached to the surface of naturally occurring earth and sand, etc., and a special treatment is required to bring it into a state where it is not attached at all. Further, in obtaining each product chemically or physically using a granular material, water and other liquids are often added and mixed (including kneading or kneading).

ところでこのように粉粒体表面に附着した水などの液体
に関しては、粒子間にあって毛管的に保留停滞している
ものと、粒子表面に吸着されたものがあり、前者は振動
や空気圧変動などで比較的容易に離脱するのに対し後者
は安定した附着状態を示すものと言えるが、従来これら
の液分については端に附着ないし吸着液の如く理解され
ているのが一般であって、上記のように区分して考察さ
れるとしても定性的であり、特に前記吸着液などに対し
具体的定量的に測定する方法は皆無状態である。
By the way, regarding the liquid such as water attached to the surface of the granular material, there are those that are held between the particles and are retained in a capillary manner and those that are adsorbed on the surface of the particles, the former is due to vibration and air pressure fluctuations. Although the latter can be said to exhibit a stable adhering state while being relatively easily detached, conventionally, these liquid components are generally understood as adhering or adsorbing liquid at the end, and It is qualitative even if it is considered as described above, and there is no specific method for quantitatively measuring the adsorbed liquid.

なお上記のような従来一般の技術状態において、本発明
者等は曩に特願昭58−5216号(特開昭59−13
1164号)および特願昭58−245233号(特開
昭60−139407号)のような提案をなし、特にコ
ンクリートないしモルタルに用いられる細骨材表面にお
ける吸着液の定量化に関する試験測定ないしその利用に
関する1つの手法を提供した。即ちこの先願技術は上記
のような単に保留停滞したものと吸着されたものとを区
分し、特にその後者について定量的に試験測定しようと
するもので、前記コンクリートやモルタルの調整、混練
上画期的な改善を得しめている。
In addition, in the conventional general technical state as described above, the inventors of the present invention have disclosed in Japanese Patent Application No. 58-5216 (Japanese Patent Laid-Open No. 59-13).
1164) and Japanese Patent Application No. 58-245233 (Japanese Patent Application Laid-Open No. 60-139407), in particular, test measurement for quantification of adsorbed liquid on the surface of fine aggregate used for concrete or mortar or use thereof. One method was provided. That is, this prior application technology is to distinguish between the one that is simply retained and the one that has been adsorbed as described above, and in particular, to quantitatively test and measure the latter, adjusting the concrete or mortar, and improving the mixing stage. Has gained significant improvement.

発明が解決しようとする問題点 前記したような従来一般の技術にあっては定性的であっ
て、具体的に的確な液分の把握をなし、それによって制
御することは困難である。即ちこのような粉粒体に附着
含有された液分としてはそれぞれの粉粒材自体の性状な
どに原因して単に附着ないし含有とした理解ではその実
態を解明し得ないことが多い。又成程粒子表面に対し安
定して吸着された吸着水という概念があっても、例えば
コンクリート辞典275頁に示された表面乾燥飽水状態
の如く定性的理解であって、セメントなどの性質、骨材
の種類性質、打込み条件、型枠条件、気象条件などによ
り影響を受けるものとされた程度の定性的理解であって
は具体的なコンクリート等の調整、操業に際して的確な
指標を求め得ない。
Problems to be Solved by the Invention The conventional general techniques described above are qualitative, and it is difficult to accurately grasp the liquid content and control the liquid content accordingly. That is, it is often impossible to clarify the actual condition of the liquid content adhering to and contained in such a powder or granular material by simply adhering or containing the liquid due to the properties of the powder or granular material itself. Even if there is a concept of adsorbed water that is stably adsorbed on the surface of a particle, it is qualitatively understood, such as the surface dry saturated state shown in page 275 of the concrete dictionary, and the properties of cement, An accurate index cannot be sought for the concrete adjustment of concrete, etc., if it is qualitatively understood to the extent that it is considered to be affected by the type properties of aggregate, driving conditions, formwork conditions, weather conditions, etc. .

又降雨時の大量含水によるがけ崩れや地震時における土
砂流動化による崩壊その他の現象についても比較的僅少
な降雨でそれの発生する場合、相当の降雨含水によって
も発生しない場合があり、それぞれの場合において具体
的な崩壊ないしその発生防止施工条件を求め得ない。
In addition, landslides caused by a large amount of water during rainfall, collapse due to fluidization of earth and sand during an earthquake, and other phenomena may occur due to a relatively small amount of rainfall, or may not occur due to a considerable amount of rainfall. It is not possible to obtain concrete collapse or construction conditions to prevent its occurrence.

本発明者等による前記先願の技術は粒子表面における吸
着液とそうでないものとを区分するだけでなく、その吸
着液について定量的な解明を図るもので頗る有効と言え
るが、この技術の関し具体的な測定をなし、コンクリー
トやモルタルの調整をなした結果によると、夫々のセメ
ント、コンクリートなどの調整においてなおそれなりに
的確性を有し得ない嫌いが残る即ち、本発明者等が上記
のような測定結果について仔細な検討を重ねた結果とし
てその測定に当っては粒子の集合接触して堆積した状態
を形成することが不可欠であり、そうした集合堆積接触
状態においてはその接点部分における吸着滞留液が発生
することとなって目的の吸着液を的確に求め難いことと
なる。従って充分に精度を高めた制御を確保することが
困難である。
It can be said that the technique of the above-mentioned prior application by the present inventors is not only effective in distinguishing between the adsorbed liquid on the particle surface and that not adsorbed, but also for quantitatively elucidating the adsorbed liquid, which is very effective. According to the results of adjusting concrete and mortar, which are specifically measured, each cement, there is a dislike that can not have appropriate accuracy without adjustment in the adjustment of concrete, that is, the present inventors As a result of detailed examination of such measurement results, it is indispensable for the measurement to form a state in which particles are brought into collective contact with each other, and in such a collective deposition contact state, adsorption retention at the contact point is observed. Since liquid is generated, it is difficult to accurately obtain the target adsorption liquid. Therefore, it is difficult to secure the control with sufficiently high accuracy.

「発明の構成」 問題点を解決するための手段 フライアッシュ、セメント類、スラグ粉末、泥土、粘土
又はヘドロなどの所定粉体と水その他の所定液体に対し
当該粉体に対する比率を変えて測定すべく粒状材又は繊
維材をそれぞれ混合した複数の試料を準備し、それらの
試料に対し何れも一定の処理条件による脱液処理を夫々
行い、これらの脱液処理後における各試料の保液量を求
め、これらの保液量と前記した各試料における夫々の粉
体量から該粉体についての保液率を求め、これらの保液
率と前記各試料に対する粒状材又は繊維材零状態の粉体
保液率との差が夫々の試料における粒状材又は繊維材対
粉体比の変化によって変動する割合を該粒状材又は繊維
材の表面吸着液率として得ることを特徴とする粒状材又
は繊維材の表面吸着液率の定量的測定法。
"Structure of the invention" Means for solving the problems Measured by changing the ratio of a given powder such as fly ash, cements, slag powder, mud, clay or sludge to water and a given liquid to the said powder. Therefore, prepare a plurality of samples that are each mixed with granular materials or fibrous materials, perform dewatering treatment on each of these samples under constant processing conditions, and determine the liquid retention amount of each sample after these dewatering treatments. Obtained, the liquid retention rate of the powder from the respective liquid retention amount and the amount of each powder in each sample described above, the powder retention rate and the granular material or fibrous material zero state powder for each sample Granular material or fibrous material, characterized in that the ratio of the difference between the liquid retention rate and the granular material or fibrous material to the powder ratio in each sample is obtained as the surface adsorbed liquid rate of the granular material or fibrous material. Of surface adsorbed liquid Quantitative measurement method.

作 用 粉体を混合することにより粒状材間接点液が粉体に対す
る保液量となる。
By mixing the working powder, the indirect point liquid of the granular material becomes the liquid retention amount for the powder.

粉体に対する比率を変えた複数の試料について夫々脱液
処理後における各試料の保液量を求め、これらの保液量
と各試料における夫々の粉体量から該粉体についての保
液率が得られる。
The liquid holding amount of each sample after the liquid removal treatment was obtained for each of the plurality of samples with different ratios to the powder, and the liquid holding ratio for the powder was calculated from these liquid holding amounts and the respective powder amounts in each sample. can get.

上記各試料に対する粒状材零状態の粉体保液は粒子間接
点部における準安定保持液に相当し、前記各保液率とこ
のような粉体保持液率との差が夫々の試料における粒状
材又は繊維材対粉体比の変化によって変動する割合が該
粒状材又は繊維材の表面吸着率として得られる。
The powder retentate in the zero state of the granular material for each sample corresponds to the metastable retentate at the indirect point of the particles, and the difference between the retentivity and the powder retentate ratio is the granularity in each sample. The ratio that changes depending on the change in the material or fiber material to powder ratio is obtained as the surface adsorption rate of the granular material or fiber material.

実施例 上記したような本発明について更に説明すると、本発明
者等は前記したような先願技術についてその精度を向上
めしむべく検討と推考を重ねた結果、第4図の如く、前
述したような粒状材又は繊維材(以下代表的に粒状材と
いう)における附着液としては粒子間の空隙に保留され
たもの〔同図(a):以下単に(a)という〕と、粒子表面に
おいて安定状態に吸着されたもの〔同図(b):以下単に
(b)という〕の外、各粒子間における接合点部分におい
て2つの粒子間に股がって吸着液層より膨出した状態と
して準安定状態に保持される液分〔同図(c):以下単に
(c)という〕があり、実際の測定に当ってこのような接
合点部分の準安定保持液分(c)を除いたものとしなけれ
ばモルタルやコンクリートなどの如くセメントペースト
中に個々に存在している当該粒状材に関し精度の高い定
量的な吸着液量(b)を求めないものと推定された。
EXAMPLE The present invention as described above will be further explained. As a result of repeated studies and inferences made by the present inventors to improve the accuracy of the above-mentioned prior application technique, as shown in FIG. As a depositing liquid for various granular materials or fibrous materials (hereinafter typically referred to as granular materials), those retained in the voids between particles (Fig. (A): hereinafter simply referred to as (a)) and stable state on the particle surface Adsorbed on [Fig. (B):
In addition to (b)], the liquid component that is kept in a metastable state as a state in which two particles crotch between the particles and swell from the adsorbed liquid layer at the junction point between the particles [(c) in the figure: Simply
(c)), and in the actual measurement, unless the metastable retentate (c) at the junction is removed, it will be present individually in the cement paste such as mortar and concrete. It was presumed that a highly accurate quantitative adsorbent volume (b) was not required for the granular material.

そこで、このような接合点部分の準安定保持液分(c)を
除いた吸着液量(b)の測定をなすことについて研究を重
ねた結果、例えば砂のような細粒材に関して減圧処理や
遠心力などを作用させて脱水処理しても、特別に絶乾状
態まで脱水乾燥しない限り、上記したような接点部分に
おける準安定保持液分(c)を適切に除去することができ
ず、一方上記のように絶乾状態まで脱水乾燥したのでは
前記表面吸着液(b)を赤残留しないこととなって、結局
何れにしても上記安定吸着液(b)量を求め得ないことと
なる。従って更に研究推考を重ね、安定吸着液を除去し
なければ適切に除去することのできないことの解明され
た接点部準安定液分(c)については粒子間接点部分に残
したままで、前記安定吸着液(b)量を求めることについ
て検討し、即ち残留さぜるを得ない接点部液分(c)が残
留していてもこれを適切に除去した値として求めること
のできる手法について追求した結果、助材的に目的細粒
材よりも更に粒度の小さい粉体を用いることに想到し
た。つまり粒材と粉体との混合状態で形成されたスラリ
ー(或いはペースト)を用い、所定の脱液条件を付与し
た後の保液量を求めるもので、斯うして得られる保液量
には表面吸着液(b)と共に接点部液分(c)に相当したもの
も含まれることとなるが、この接点部液分(c)に相当し
た部分には助材的な粉体が存在することとなり、即ち粉
体および該粉体に対する表面吸着液を以て前記した粒材
間接点部液分(c)を置換した状態として求め得る。
Therefore, as a result of repeated research on measurement of the amount of adsorbent (b) excluding the metastable retentate (c) at such a junction part, for example, decompression treatment or fine grained material such as sand Even if dehydration treatment is performed by applying centrifugal force, etc., the metastable retentate (c) at the contact portion as described above cannot be properly removed unless it is dehydrated and dried to an absolutely dry state. If the surface-adsorbed liquid (b) does not remain in red when dehydrated and dried to an absolutely dry state as described above, the amount of the stable adsorbed liquid (b) cannot be obtained in any case. Therefore, after further study and research, it was clarified that the stable adsorption liquid could not be removed properly without removing the stable adsorption liquid. As a result of investigating how to obtain the amount of liquid (b), that is, pursuing a method that can be obtained as a value that appropriately removes the contact liquid component (c) As an auxiliary material, it was conceived to use a powder having a smaller particle size than the target fine-grained material. In other words, the slurry (or paste) formed in the mixed state of the granular material and the powder is used to determine the liquid holding amount after applying the predetermined liquid removing conditions. The liquid holding amount thus obtained is The surface adsorbed liquid (b) and the liquid equivalent to the contact liquid (c) will be included, but auxiliary material powder must be present in the part corresponding to the liquid contact (c). That is, it can be determined as a state in which the above-mentioned granular material indirect point portion liquid component (c) is replaced by the powder and the surface adsorption liquid for the powder.

ところで上記のようにして得られた結果についてはその
ままで目的の表面吸着液(b)量を求め得ないことは当然
であり、このため本発明においては液と粉体とによる同
じ混合系に該粉体に対する粒材の比率を変化させた複数
の試料を準備し、これらの試料に対し共に一定条件下の
脱液処理を行い、それぞれの処理後における保液量を求
め、それらの保液量を前記混合系における各粉体量で除
算して該粉体に対する保液率を算出し、これらの粉対に
対する保液率と前記した各試料における粉体対粒体比に
よって得られる勾配を前記粒体の上記脱液処理条件にお
ける表面吸着液として求めることを提案するものであ
る。
By the way, it is natural that the target surface adsorbed liquid (b) amount cannot be obtained as it is with respect to the results obtained as described above. Therefore, in the present invention, the same mixed system of liquid and powder is used. Prepare a plurality of samples with different ratios of granules to powder, perform dewatering treatment on these samples under certain conditions, and obtain the liquid retention amount after each treatment. Is divided by the amount of each powder in the mixed system to calculate the liquid retention rate for the powder, and the gradient obtained by the liquid retention rate for these powder pairs and the powder-to-particle ratio in each sample described above is It is proposed that the particle be obtained as a surface adsorbent under the above-mentioned liquid removal treatment conditions.

又上記の場合において前記混合系に対する粒材配合率が
零の試料についての同じ脱液処理後の保液率が該脱液処
理条件における該粉体の表面吸着液として求められるこ
とは明かである。
Further, in the above-mentioned case, it is apparent that the liquid retention rate after the same dewatering treatment for the sample in which the mixing ratio of the granular material with respect to the mixed system is zero is obtained as the surface adsorption liquid of the powder under the dewatering treatment condition. .

前記した粒材としては砂のような細骨材のみならず、各
種工業における粒状材が採用され得ることは当然である
が、又それなりの長さを有するシリカ繊維、炭素繊維、
金属繊維、ガラス繊維などの各種繊維材であってもよ
い。又粉体としてはコンクリート工業に関する分野にお
いてはポルトランドセメントその他のセメント類が用い
られるが、又石膏粉末、スラグ粉末などを用いることが
できるし、フライアッシュなどを用いてもよい。勿論天
然の土層などにおける性状を解明するような場合には泥
分、粘土分、ヘドロなどの採用することができる。上記
した粉材としてガラス球を採用することは頗る有意であ
って、このものは溶融状態で分散されることにより真球
状に形成されるだけでなく、例えば遠心力を利用したよ
うな脱液処理条件において表面吸着液零状態を簡易に形
成し得るものとして上記したような本発明方法を実施す
るに当っての基準的粒状体たる特性を有している。
As the above-mentioned granular material, not only fine aggregate such as sand, it is natural that granular materials in various industries can be adopted, but also silica fiber having a certain length, carbon fiber,
Various fiber materials such as metal fibers and glass fibers may be used. As the powder, Portland cement and other cements are used in the field of the concrete industry, but gypsum powder, slag powder, etc. may be used, and fly ash etc. may be used. Of course, mud, clay, sludge, etc. can be used to clarify the properties of natural soil layers. It is extremely significant to adopt glass spheres as the above-mentioned powder material, and this is not only formed into a true sphere by being dispersed in a molten state, but also liquid removal treatment using centrifugal force, for example. Under the conditions, it has the characteristic of being a standard granular material for carrying out the method of the present invention as described above, which can easily form the zero state of the surface adsorbed liquid.

上記した液体としては水が代表的であるが、水に対して
他の化学的成分が含有されてアルカリ化ないし酸性化し
たもの、分散剤、減水剤、空気連行剤、際面活性剤など
を添加したもの、粘性成分を含有したものなどがあり、
又油脂分やアルコール分あるいはアンモニア分などを含
有したもの、更には油脂、アルコールなどの常温におい
て液状を呈するものであれば何れでもよい。
Water is typically used as the above-mentioned liquid, but it may be alkalized or acidified by containing other chemical components in water, a dispersant, a water reducing agent, an air entraining agent, a surface-active agent, etc. There are those added, those containing viscous components, etc.,
Further, any substance containing an oil / fat component, an alcohol component, an ammonia component, or the like, and any substance such as an oil / fat component, an alcohol component, or the like that exhibits a liquid state at room temperature may be used.

脱液処理については重力、真空、遠心力の如きの何れを
採用してもよい。然し重力条件下によるものは相当の長
時間を必要とすると共に表層部と下層部の如きにおいて
処理結果に差異を生じ易く、このような不利を回避する
ものとしては強制的な処理法である減圧又は遠心力を採
用することが好ましい。本発明者等もこのような処理法
として減圧条件を採用する特願昭51−147180号
(特開昭53−71859号)や遠心力を採用した特願
昭58−245233号(特開昭60−139407
号)の如きを提案しており、これらの方法によることが
短時間内に的確な結果を得しめる上において有利な方法
と言える。
Any method such as gravity, vacuum, or centrifugal force may be adopted for the liquid removal processing. However, under the gravity condition, it takes a considerably long time, and the treatment result is likely to be different between the surface layer and the lower layer. Alternatively, it is preferable to employ centrifugal force. The inventors of the present invention have also adopted Japanese Patent Application No. 51-147180 (Japanese Patent Application Laid-Open No. 53-71859) which uses reduced pressure conditions and Japanese Patent Application No. 58-245233 (Japanese Patent Application Laid-Open No. 60-245233) which uses centrifugal force. -139407
No.) has been proposed, and it can be said that these methods are advantageous for obtaining accurate results in a short time.

又上記したような一定の水などの液体と粉体によって調
整されたペーストないしスラリー中に投入すべき粒状材
としては、特に表面に凹凸のある砂などに関して、その
表面に空気層が部分的に形成残留することは測定結果に
変動を来す。このように附着した空気層は特に粘性を有
するペースト中などであっては混練によっても除去困難
であって、投入前によく湿潤せしめ表面附着空気層を除
去することが精度の高い測定結果を得る上において好ま
しい。勿論斯うして表面附着空気層を除去した後の表面
附着液率については一定のものとして調整することが有
利であって、このような目的においては同じく本発明者
等の提案に係る速度エネルギーを利用した特願昭54−
147628号(特開昭56−73518号)、特願昭
58−167513号(特開昭60−58808号)の
ような方法を採用することが適切である。なおこのよう
な設備のの存しないような条件下にあっては例えば24
時間或いはそれ以上のように長時間に亘って重力を作用
せしめ脱水せしめてもよい。
Further, as the granular material to be added to the paste or slurry prepared by the liquid and powder such as a certain amount of water as described above, especially with respect to sand having irregularities on the surface, an air layer is partially present on the surface. Forming and remaining causes fluctuations in the measurement results. The air layer attached in this way is difficult to remove even by kneading, especially in a viscous paste, and it is possible to obtain a highly accurate measurement result by removing the air layer attached to the surface by moistening it well before charging. It is preferable above. Of course, it is advantageous to adjust the surface adhering liquid rate after removing the surface adhering air layer to be constant, and for this purpose, the velocity energy according to the present inventors' proposal is also adjusted. Japanese Patent Application Sho 54-
It is suitable to employ methods such as 147628 (JP-A-56-73518) and Japanese Patent Application No. 58-167513 (JP-A-60-58808). If there is no such equipment, for example, 24
You may make it dehydrat by making gravity act for a long time like time or more.

比較的短時間内において、しかも複数の試料に対し同一
の脱液処理条件を付与し得るものとして本発明者等の提
案した前記特願昭58−245233号(特開昭60−
19407号)の方法により、比重が2.90で、比表
面積が3790cm2/gの高炉スラグ粉末と比重が2.
19で比表面積が3080cm2/gのフライアツシュを
用い、各種の遠心力条件で夫々脱水処理した結果を要約
して示すと第5図の通りであって、脱水処理のための遠
心力が高くなるに従って処理後の表面吸着水膜厚(t)
は小となることが確認される。
The above-mentioned Japanese Patent Application No. 58-245233 proposed by the inventors of the present invention as being capable of imparting the same liquid removal treatment conditions to a plurality of samples within a relatively short time.
No. 19407), the specific gravity is 2.90, the specific surface area is 3790 cm 2 / g, and the specific gravity is 2.90.
The results of dehydration treatment under various centrifugal force conditions by using a fly ash with a specific surface area of 3080 cm 2 / g in No. 19 are summarized in Fig. 5, and the centrifugal force for the dehydration treatment is high. Adsorbed water film thickness (t) after treatment according to
Is confirmed to be small.

測定の精度についても遠心力の如何に比例し、なるべく
高い遠心力を作用させることが精度を高める所以である
が、一方においてこのように遠心力を高めることは測定
のための消費エネルギーを大となすことは明らかで、具
体的には夫々の場合において必要とする測定精度の如何
を考慮し、遠心力としては1g以上、好ましくは2g以
上で、時間的には1分以上、好ましくは2分以上のよう
な条件を用い脱液処理することが好ましい。
The accuracy of the measurement is proportional to the centrifugal force, and the reason why the centrifugal force as high as possible acts on it is to improve the accuracy. On the other hand, increasing the centrifugal force in this way increases the energy consumption for measurement. It is obvious that the centrifugal force is 1 g or more, preferably 2 g or more, and the time is 1 minute or more, preferably 2 minutes, taking into consideration the measurement accuracy required in each case. It is preferable to perform the liquid removal treatment using the above conditions.

本発明者等に行った前記高炉スラグ粉末と共に普通ポル
トランドセメント、中庸熱セメント、フライアッシュに
ついてその遠心力変化に伴う各30分の脱液処理後にお
ける測定結果は次の第1表にその物性と共に要約して示
す通りである。
The results of the measurements performed by the inventors on the ordinary blast furnace slag powder, the ordinary Portland cement, the medium heat cement, and the fly ash after the dewatering treatment for 30 minutes each due to the centrifugal force change are shown in Table 1 below together with the physical properties thereof. It is as summarized.

上記したような本発明方法についての具体的な処理に関
し、更に説明をなし、本発明によるものの工業的な作用
効果を明確にする。即ち今前記したような粒状材ないし
細骨材として表面吸着液が最も少く、前記したような遠
心力による脱液処理を実施した場合において殆ど零状態
となるものと推測されるガラス質球体と、表面吸着水が
それより多いことの明かな川砂の如き砂を採用し、上記
したような一定の遠心力を作用させて試験測定をなした
場合について考察すると、ガラス質球体の場体には、そ
の試料骨材(S)と粉体(F)の比を種々に変化させて
得られた水との混練物にあって、その一定容量の混練物
中においてそのガラス質球体のような表面吸着水率の少
い骨材(S)量が順次に増加するならば相対的に吸着水
をもっている粉体量(F)が少くなることは明かであ
る。即ちこのような場合には骨材対粉体比(S/F)に
当該混練物の保水量(W)が逆比例することとなり、
その保水量(W)を粉体量(F)で除した値である保
水率(W/F)としては一定状態となるべきである。
The specific processing of the method of the present invention as described above will be further described to clarify the industrial operation and effect of the method of the present invention. That is, the surface adsorbed liquid is the smallest as the granular material or the fine aggregate as described above, and the glassy spheres that are supposed to be almost zero when the liquid removal treatment by the centrifugal force as described above is performed, Adopting sand such as river sand, which is clear that surface adsorbed water is more than that, and considering the case where the test measurement is performed by applying the constant centrifugal force as described above, the vitreous sphere field is A kneaded product of water obtained by variously changing the ratio of the sample aggregate (S) to the powder (F), and the surface adsorption of the glassy spheres in the kneaded product having a certain volume. It is clear that the amount of powder (F) having adsorbed water is relatively small if the amount of aggregate (S) having a low water ratio is sequentially increased. That is, in such a case, the water retention amount (W Z ) of the kneaded material is inversely proportional to the aggregate-to-powder ratio (S / F),
The water retention rate ( WZ / F), which is a value obtained by dividing the water retention amount ( WZ ) by the powder amount (F), should be in a constant state.

これに対し表面吸着水をそれなりに有していることの明
かな各種砂のような細骨材が粒状材として用いられた場
合においては、その粉体についての保水率はその脱水処
理条件が同じであれば処理後の保水率も同じであるが、
その骨材表面においては当該骨材による吸着水が保持さ
れ、混合物としての脱水処理後における保水量は骨材の
量に比例して増量することになる。従って同じ粉体およ
びその量による試料において同じ脱水処理条件を経た後
の保水量を求めた場合において表面吸着水零状態のガラ
ス球の場合よりそれなりの表面吸着水をもった骨材の方
が大きい保水量を採ることとなり、斯うして得られた保
水量の差を当該混合物に配合された骨材の量で除するこ
とにより該骨材の表面吸着水率を求め得る。なおこのよ
うな骨材の表面吸着水率は用いられた混合物における骨
材、粉体比が変動しても一定であると推定される。
On the other hand, when fine aggregates such as various sands that have a certain amount of surface adsorbed water are used as granular materials, the water retention rate of the powder is the same under the dehydration treatment conditions. If so, the water retention rate after treatment is the same,
The water adsorbed by the aggregate is retained on the surface of the aggregate, and the water retention amount after the dehydration treatment as the mixture increases in proportion to the amount of the aggregate. Therefore, when the water retention after the same dehydration treatment conditions was calculated for the same powder and the same amount of sample, the aggregate with a certain amount of surface adsorbed water was larger than the case of glass spheres with zero surface adsorbed water. The water retention amount is taken, and the surface adsorbed water ratio of the aggregate can be obtained by dividing the difference in the water retention amount thus obtained by the amount of the aggregate compounded in the mixture. It is presumed that the surface adsorbed water rate of such an aggregate is constant even if the aggregate-powder ratio in the mixture used changes.

本発明によるものの具体的な測定例について説明する
と、以下の如くである。
A specific example of measurement according to the present invention is as follows.

測定例1. 径が0.3〜0.6mmで、単位容積重量が1563kg/
m3、容積率が63.8%と、これらの数値においては天
然に産出する砂に近い値をもったガラス球と、比重が
2.19で比表面積が3080cm2/gであるフライア
ッシュを用い、そのフライアッシュ(F)と水(W
によって調整された水、フライアッシュ比(W/F)
が35%としたペーストを準備し、このようなペースト
中に、フライアッシュ(F):ガラス球(B)の混合比
を1:0.5から1:2.5までの範囲で、混合比0.
5%毎に変えた5種類の混合物を準備した。
Measurement example 1. Diameter is 0.3-0.6mm, unit volume weight is 1563kg /
m 3 and volume ratio of 63.8%, glass spheres having values close to those of naturally occurring sand in these figures, and fly ash with a specific gravity of 2.19 and a specific surface area of 3080 cm 2 / g. Use the fly ash (F) and water (W 1 )
Adjusted water, fly ash ratio (W 1 / F)
Of 35% is prepared, and the mixture ratio of fly ash (F): glass spheres (B) is within the range of 1: 0.5 to 1: 2.5. 0.
Five types of mixtures were prepared, which were changed every 5%.

然してこれらの各混合物に関して前記したような本発明
者等の提案になり、短時間内にこの種細骨材を均等に脱
水し得る特願昭58−245233号(特開昭60−1
39407号公報)の手法により、回転半径17.7cm
で回転する回転体の周側にフィルターを介して脱脂綿を
収容した密閉容器を配設した機構を用い、即ちそれらの
密閉容器中に夫々の試料を収容せしめ、回転遠心力によ
って分離された液分をフィルターを介して区分された脱
脂綿に吸収させるようにした設備により脱水処理した。
つまりその回転を1488rpmとし、遠心力438g
(gは重力)による脱水処理を30分間実施した。前記
した5種類の試料はガラス球を混合しない試料と共に遠
心力の付与される容器内に封入されて全く同一の遠心力
脱水処理を受けたものであることは勿論である。又これ
とは別に相模川砂(単位容積重量1611kg/m実績
率64.3%、表乾比重2.58、絶乾比粒2.50、
FM3.2)を用い、上記ガラス球と同じに混合比を
1:0.5〜1:2.5の5種類とし、同じ条件で脱水
処理を行った。
However, the proposal by the inventors of the present invention as to each of these mixtures has been made, and Japanese Patent Application No. 245233/58 (Japanese Patent Application Laid-Open No. 60-1) capable of uniformly dehydrating this kind of fine aggregate within a short time.
39407), the radius of gyration is 17.7 cm.
Using a mechanism in which a closed container containing absorbent cotton is arranged on the peripheral side of a rotating body rotating with a filter, that is, each sample is stored in these closed containers, and the liquid components separated by the rotating centrifugal force are used. Was subjected to a dehydration treatment with equipment so that the absorbent cotton was absorbed through the filter.
That is, the rotation is 1488 rpm, and the centrifugal force is 438 g.
The dehydration treatment (g is gravity) was performed for 30 minutes. It goes without saying that the above-mentioned five types of samples are, together with the sample in which the glass spheres are not mixed, enclosed in a container to which centrifugal force is applied and subjected to exactly the same centrifugal force dehydration treatment. Separately from this, Sagami River sand (unit volume weight 1611 kg / m 3 actual rate 64.3%, surface dry specific gravity 2.58, absolute dry specific grain 2.50,
Using FM 3.2), the same mixing ratio as that of the above glass spheres was set to 5 types of 1: 0.5 to 1: 2.5, and dehydration treatment was performed under the same conditions.

なお初期含水率については次の第2表の如くである。The initial water content is shown in Table 2 below.

上記したような処理結果として遠心力脱水処理後の保水
量(g)についてのW(相模川砂の場合)およびW
(ガラス球の場合)と共にそれらの保水量(g)とそれ
ぞれの試料における各粉体量から該粉体(F)について
の保水率(W/FまたはW/F:%)を求めた結果
は次の第3表の如くである。即ちW値またはW値に
ついてはそれぞれ相当の変動が示され、粉体に対する保
水率についても、W/Fについては全般的な傾向を把
握できる程度で明確な数値を把握し得ないが、W/F
にといては何れの試料においても略13%という値が得
られている。
As a result of the treatment as described above, W S (in the case of Sagami River sand) and W B regarding the water retention amount (g) after centrifugal force dehydration treatment
Their water retention capacity with (case of the glass bulb) (g) and water retention rate of the powder (F) from the amount of powder in each sample (W S / F or W B / F:%) was determined The results are shown in Table 3 below. That W S value or W B values each corresponding variation for are shown, for the water retention rate to the powder, but not know the definite numerical value enough to grasp the general trend is for W S / F , W B / F
As a result, a value of about 13% was obtained for all the samples.

ところでこの第3表の結果を要約してグラフとしたのが
第1図であって、頗る整然とした結果が示され、この第
1図の結果からしてそれら保水率と各試料に関して粉体
零状態(砂およびガラス球の混合がないもの)の粉体保
水率との差をこの図表から13%程度と求めることがで
きる。なおこの13%程度は上記のようにガラス球を用
いた測定結果の場合においては該ガラス球についてのW
/Fの前述したような値に準ずることとなるが、これ
はガラス球が表面吸着水率の非常に少い(フローコーン
による吸水率は0.048%)ことに原因するものであ
る。しかし本発明によるものがこのように表面吸着水率
の著しく少いガラス球を用いるこを必須要件とするもの
でなく、異った砂などの細粒材を用いるならば第1図の
ような図表において混合重量比0の部分でW/Fの値
が、用いた粉体の同質である限り、略合致することは後
述する測定例において明確とされる通りのものである。
By the way, it is Fig. 1 that summarizes the results of Table 3 in the form of a graph, and shows a very orderly result. From the results of Fig. 1, the water retention rate and zero powder are shown for each sample. The difference from the powder water retention in the state (no mixing of sand and glass spheres) can be determined to be about 13% from this chart. It should be noted that about 13% is about W in the case of the measurement result using the glass sphere as described above.
Although it follows the above-mentioned value of B / F, this is because the glass sphere has a very small surface adsorbed water rate (the water absorption rate by the flow cone is 0.048%). However, the one according to the present invention does not necessarily require the use of glass spheres having a remarkably small surface adsorbed water ratio as described above, and if different fine particles such as sand are used, as shown in FIG. As long as the value of W S / F at the portion where the mixing weight ratio is 0 in the chart is the same as that of the powder used, it is as will be clarified in the measurement example described later that they substantially match.

然してこのようにして求められた第1図のような結果か
らして、前記した粒体零状態の粉体保水率と上記した夫
々の試料における粒体対粉体比(S/FまたはB/F)
によってこの第1図のような図表上形成される勾配θを
該粒状材の前述したような脱水処理条件下における表面
吸着水率として求めることができ、この測定例ではW
を以て前記した粒体零状態の粉体保水率とし、従ってそ
の粒状材(相持川砂)の表面吸着水率{(W−W
/S×100}は第2表の最も右側の欄に示すように求
められ、その平均値は3.60%である。
From the results shown in FIG. 1 thus obtained, the water retention of the powder in the zero particle state and the particle-to-powder ratio (S / F or B / F)
Thus, the gradient θ formed on the chart as shown in FIG. 1 can be obtained as the surface adsorbed water rate of the granular material under the above-described dehydration treatment condition. In this measurement example, W B
A powder water retention rate of the granules zero state of the with a, therefore the particulate material (Aiji river sand) surface adsorption of water ratio of {(W S -W B)
/ S × 100} is obtained as shown in the rightmost column of Table 2, and its average value is 3.60%.

測定例2. ポルトランドセメントを粉体として用い、測定例1にお
けると同じガラス球と共に硅砂(K)、山砂(H)、大
井川砂(O)および相模川砂(S)について、セメント
対砂比(C:S)が1:0から1:2.0にわたる0.
5毎の差を採った5種宛の試料を準備した。なおポルト
ランドセメントについては大井川砂と相模川砂は同じ袋
のものを使用したがその他のものについては別の袋のも
のを使用した。
Measurement Example 2. Portland cement was used as a powder, and the same glass sphere as in Measurement Example 1 was used together with silica sand (K), mountain sand (H), Oigawa sand (O) and Sagami river sand (S) with a cement-to-sand ratio ( C: S) ranges from 1: 0 to 1: 2.0.
Samples addressed to 5 types, each of which had a difference of 5, were prepared. As for Portland cement, the same bag was used for Oigawa sand and Sagamigawa sand, but other bags were used for different bags.

Wを水量とし、Wを脱水処理後の全保水量、Wを粉
体単位の脱水処理後の保水量、wzを粒状材が拘束して
いる脱水処理後の保水量とし、βを粒状材の表面吸着水
率となすと共にBFを脱水処理による分離水量となし、
第1図のようなθを用いると、以下の回帰式が得られ
る。
Let W be the amount of water, W Z be the total amount of water retained after the dehydration process, W o be the amount of water retained after the dehydration process in powder units, wz be the amount of water retained after the dehydration process in which the granular material is constrained, and β be the granularity The amount of water adsorbed on the surface of the material and the amount of water separated by dehydration treatment are used for BF.
Using θ as shown in FIG. 1, the following regression equation is obtained.

又水の分布式 は、 上記式を変形すると、 然してこの式より算出した脱水処理後の表面吸着水率
をβ′として、前記したような測定結果と共に示すと次
の第4表で如くである。
Further water distribution formula Is When the above formula is transformed, However, when the surface adsorbed water rate after dehydration treatment calculated by this equation is β'and it is shown together with the above measurement results, it is as shown in Table 4 below.

又このような結果を要約して示すと第2図の如くであっ
て、この測定例の場合においてはポルトランドセメント
を大井川砂、相模川砂とそれ以外のものを別の袋のもの
を用いた結果、それらのセメントの品質の差からしてS
/C=Oの位置におけるW/Cの値が2群となってい
るが、それにしても16.05%付近および18.5%
付近において略同じ値を採っていることは明かである。
Further, the results are summarized as shown in Fig. 2. In the case of this measurement example, the results obtained by using Portland cement with Oigawa sand and Sagamigawa sand with other bags in different bags , Because of the difference in the quality of their cement, S
Although the value of W Z / C at the position of / C = O is 2 groups, it is still around 16.05% and 18.5%.
It is clear that the values are almost the same in the vicinity.

測定例3 比重(ρs)が2.5で径0.3〜5mmに整粒された同
じ相模川砂を用い、この粒状材に対し、比重(ρc)が
3.16で比表面積(Sm)が3340cm2/gのポルトラ
ンドセメント、比重(ρ)が2.90で比表面積が3
790cm2/gの高炉スラグ粉末(エスメント)、比重
(ρ)が2.19で比表面積が3080cm2/gのフ
ライアッシュ(F)の3種類の粉体を用い、精度の高い
結果の得る438g(1488rpm)の遠心力で、30
分間の処理をなした後における測定結果は次の第5表の
通りである。
Measurement Example 3 Using the same Sagami River sand having a specific gravity (ρs) of 2.5 and a diameter adjusted to 0.3 to 5 mm, a specific gravity (ρc) of 3.16 and a specific surface area (Sm) of this granular material 3340 cm 2 / g Portland cement, specific gravity (ρ E ) 2.90 and specific surface area 3
Highly accurate results can be obtained by using three types of powder, 790 cm 2 / g blast furnace slag powder (Essent), and specific gravity (ρ F ) 2.19 and specific surface area 3080 cm 2 / g fly ash (F). With a centrifugal force of 438 g (1488 rpm), 30
The measurement results after the treatment for 1 minute are shown in Table 5 below.

又このような測定結果を要約して示したものが第3図で
あって、第3図における(A)は重量比、(B)は体積
比によったものを示すが、用いられた粉体によって結果
がそれなりに異なり、これは粉体と粒状材との間におけ
る親和性ないしなじみによるものと認められ、従って具
体的には夫々の場合に用いられる粒状材ないし粉体自体
を用いて測定することが好ましい。
Further, a summary of such measurement results is shown in FIG. 3. In FIG. 3, (A) shows the weight ratio and (B) shows the volume ratio. The results will vary depending on the body, and it is recognized that this is due to the affinity or familiarity between the powder and the granular material, and therefore, it is specifically measured using the granular material or the powder itself used in each case. Preferably.

「発明の効果」 以上説明したような本発明によるときは細骨材その他の
粒状材についてその表面吸着液を定量的にしかも接点液
の如くによる影響を適切に解消して的確に測定すること
ができるものであり、それによってこれらの粒状材を利
用した各種工業における配合関係を適正に決定し、ばら
つきが少く、又特性の優れた目的の製品を得しめるもの
であるから工業的にその効果の大きい発明である。
"Effects of the Invention" In the case of the present invention as described above, it is possible to accurately measure the surface adsorbed liquid of fine aggregates and other granular materials quantitatively and appropriately eliminate the influence of contact liquid. It is possible to appropriately determine the compounding relationship in various industries using these granular materials, and it is possible to obtain the target product with less variation and excellent characteristics, so that the industrial effect It is a great invention.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は本発明による測定例1による測定結果を要約した図
表、第2図は測定例2による結果を要約して示す図表、
第3図は測定例3による測定結果を要約した図表、第4
図は粒状材表面ないし周辺における液分の状態を段階別
に示した説明図、第5図は本発明者等が粒度を異にした
高炉スラグ粉末とフライアッシュを用い各種の遠心力条
件で脱水処理した結果を要約して示した図表である。
The drawings show the technical contents of the present invention. FIG. 1 is a chart summarizing the measurement results of Measurement Example 1 according to the present invention, and FIG. 2 is a chart summarizing the results of Measurement Example 2.
Fig. 3 is a chart summarizing the measurement results of Measurement Example 3, Fig. 4
The figure is an explanatory view showing the state of liquid components on the surface of the granular material or in the vicinity thereof in stages, and FIG. 5 is a dehydration treatment under various centrifugal force conditions by the present inventors using blast furnace slag powder and fly ash having different particle sizes. It is the chart which summarized and showed the result.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−139407(JP,A) 特開 昭56−51317(JP,A) 特開 昭59−131164(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-60-139407 (JP, A) JP-A-56-51317 (JP, A) JP-A-59-131164 (JP, A)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】フライアッシュ、セメント類、スラグ粉
末、泥土、粘土又はヘドロなどの所定粉体と水その他の
所定液体に対し当該粉体に対する比率を変えて測定すべ
き粒状材又は繊維材をそれぞれ混合した複数の試料を準
備し、それらの試料に対し何れも一定の処理条件による
脱液処理を夫々行い、これらの脱液処理後における各試
料の保液量を求め、これらの保液量と前記した各試料に
おける夫々の粉体量から該粉体についての保液率を求
め、これらの保液率と前記各試料に対する粒状材又は繊
維材零状態の粉対保液率との差が夫々の試料における粒
状材又は繊維材対粉体比の変化によって変動する割合を
該粒状材又は繊維材の表面吸着液率として得ることを特
徴とする粒状材又は繊維材の表面吸着液率の定量的測定
法。
1. A granular material or a fibrous material to be measured by changing a ratio of a predetermined powder such as fly ash, cements, slag powder, mud, clay or sludge and water or another predetermined liquid to the powder. Prepare a plurality of mixed samples, perform the dewatering treatment under constant processing conditions for each of these samples, and obtain the liquid retention amount of each sample after these liquid removal treatments. The liquid retention rate for each powder is obtained from the amount of each powder in each sample described above, and the difference between the liquid retention rate and the powder to liquid retention rate of the granular material or the fibrous material zero state for each sample is respectively. Quantitatively the surface adsorbed liquid ratio of the granular material or the fiber material, which is obtained as a ratio of the surface adsorbed liquid ratio of the granular material or the fiber material in the sample Measurement method.
【請求項2】脱液処理後に得られた各試料の保液量とそ
れら試料における粉体量から該粉体についての保液率を
求め、これらの保液率と前記各試料に対する粒状材又は
繊維材零状態の粉体保液率との差が夫々の試料における
粒状材又は繊維材対粉体比の変化に伴い形成される等間
隔目盛図表上の勾配を該粒状材又は繊維材の表面吸着液
率として得る特許請求の範囲第1項に記載の粒状材又は
繊維材の表面吸着液率の定量的測定法。
2. A liquid retention rate for each powder is obtained from the liquid retention amount of each sample obtained after the liquid removal treatment and the amount of powder in the sample, and the liquid retention rate and the granular material for each sample or The difference between the powder retention rate of the fibrous material zero state and the granular material or fibrous material in each sample is formed with the change of the powder-to-powder ratio. The method for quantitatively measuring the surface adsorbed liquid ratio of a granular material or a fibrous material according to claim 1, which is obtained as an adsorbed liquid ratio.
【請求項3】Wを水量とし、Cを粉体量、Sを粒状材又
は繊維材量となし、Woを粉体単位の脱液処理後におけ
る保液量とすると共に、BFを脱液処理による分離水量
として、粒状材又は繊維材の表面吸着液βを次式によっ
て求める特許請求の範囲第1項に記載の粒状材又は繊維
材の表面吸着液率の定量的測定法。
3. W is the amount of water, C is the amount of powder, S is the amount of granular material or fiber material, Wo is the liquid holding amount after the liquid removal treatment in powder units, and BF is the liquid removal treatment. The method for quantitatively measuring the surface adsorbed liquid ratio of the granular material or the fiber material according to claim 1, wherein the surface adsorbed liquid β of the granular material or the fiber material is obtained by the following equation as the amount of water separated.
【請求項4】脱水処理条件として遠心力を用いる特許請
求の範囲第1項に記載の粒状材又は繊維材の表面吸着液
率の定量的測定法。
4. The method for quantitatively measuring the surface adsorbed liquid ratio of a granular material or a fibrous material according to claim 1, wherein centrifugal force is used as the dehydration treatment condition.
【請求項5】粒状材又は繊維材の周面を充分に湿潤せし
め、表面に空気層を残留しない状態として粉体と液体に
よる混合系に混合する特許請求の範囲第1項に記載の粒
状材又は繊維材の表面吸着液率の定量的測定法。
5. The granular material according to claim 1, wherein the peripheral surface of the granular material or the fibrous material is sufficiently moistened, and the granular material or the fibrous material is mixed in a mixing system of powder and liquid so that an air layer does not remain on the surface. Alternatively, a quantitative measurement method of the surface adsorbed liquid ratio of the fiber material.
【請求項6】粒状材又は繊維材を混合しない粉体と液体
による混合系についても同じ脱液処理を行い、この脱液
処理後における該混合系の保液率を上記脱液処理条件に
おける混合系内粉体の表面吸着液率として得る特許請求
の範囲第1項に記載の粒状材又は繊維材の表面吸着液率
の定量的測定法。
6. The same deliquoring treatment is performed on a mixed system of a powder and a liquid in which no granular material or fibrous material is mixed, and the liquid retention rate of the mixed system after the deliquoring treatment is mixed under the above deliquoring treatment conditions. The method for quantitatively measuring the surface adsorbed liquid ratio of a granular material or a fibrous material according to claim 1, which is obtained as the surface adsorbed liquid ratio of the in-system powder.
【請求項7】粉体として夫々の場合に採用されるものと
同じ粉体を用いる特許請求の範囲第1項に記載の粒状材
又は繊維材の表面吸着液の定量的測定法。
7. The method for quantitatively measuring a surface adsorbed liquid of a granular material or a fibrous material according to claim 1, wherein the same powder as that used in each case is used as the powder.
JP60259865A 1985-11-21 1985-11-21 Quantitative measurement method for surface adsorbed liquid of granular material or fiber material Expired - Fee Related JPH0616035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259865A JPH0616035B2 (en) 1985-11-21 1985-11-21 Quantitative measurement method for surface adsorbed liquid of granular material or fiber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259865A JPH0616035B2 (en) 1985-11-21 1985-11-21 Quantitative measurement method for surface adsorbed liquid of granular material or fiber material

Publications (2)

Publication Number Publication Date
JPS62121360A JPS62121360A (en) 1987-06-02
JPH0616035B2 true JPH0616035B2 (en) 1994-03-02

Family

ID=17340032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259865A Expired - Fee Related JPH0616035B2 (en) 1985-11-21 1985-11-21 Quantitative measurement method for surface adsorbed liquid of granular material or fiber material

Country Status (1)

Country Link
JP (1) JPH0616035B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307737B (en) * 2020-02-27 2022-10-21 湖南科技大学 Test method for measuring adsorption characteristic of high liquid limit soil to heavy metal ions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651317A (en) * 1979-10-01 1981-05-08 Ito Yasuro Method of preparing castable mixture such as cement
JPH072329B2 (en) * 1983-12-28 1995-01-18 靖郎 伊東 Method for producing mortar or concrete

Also Published As

Publication number Publication date
JPS62121360A (en) 1987-06-02

Similar Documents

Publication Publication Date Title
Paiva et al. Effect of metakaolin dispersion on the fresh and hardened state properties of concrete
Henein et al. An experimental study of segregation in rotary kilns
JPH0616035B2 (en) Quantitative measurement method for surface adsorbed liquid of granular material or fiber material
Watson et al. Oil permeability of hardened cement pastes and concrete
Bonen et al. Robustness of SCC
CN114195436A (en) Recycled concrete replaced by brick-concrete recycled fine aggregate and preparation method thereof
JP3211006B2 (en) Mixing or adjusting a mixture of powder, granules and water
Kocatopce Fundamental study of clay: VII, Effect of particle size on properties of casting slips
Coelho et al. The effect of moisture on the equilibrium mixture quality of powders
Ahuja et al. Effect of Portland cement on soil aggregation and hydraulic properties
JP2704251B2 (en) Method for determining the characteristics of a mixture using liquids, powders and granules, and method for adjusting the mixture
Seng Workability and stability of lightweight aggregate concrete from rheology perspective
JPS63111014A (en) Method of measuring relative adsorbed-water rate of aggregate between powdered body and aggregate in presence of liquid and preparation of kneaded substance by result of measurement
JP2869663B2 (en) Method of measuring relative absorption liquid ratio of powder and granule and preparation of powder and granule mixture
Nutter et al. Fixed-bed drying of air using molecular sieves
JPH0521184B2 (en)
Yaqoob et al. Effect of adding Glenium 51 and styrene-butadiene rubber on mechanical and physical properties of Ordinary Portland cement
Clare et al. The use of cements of different fineness in soil-cement mixtures
Traxler et al. Experimental determination of void content of close-packed mineral powders
BR112019019433A2 (en) granulated sintering raw material manufacturing method and sintered ore manufacturing method
JPH072329B2 (en) Method for producing mortar or concrete
JPS60241930A (en) Moisture absorbent
RU2242438C2 (en) Microporous mineral clay powder and shortcut desiccation method for production thereof
Endo et al. Adhesion force arising from solid salt bridge formed after drying of liquid bridge
Davidson Soil stabilization with cement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees