JPH06160257A - Method for measuring orientation angle of fiber in continuous fiber reinforced plastic - Google Patents

Method for measuring orientation angle of fiber in continuous fiber reinforced plastic

Info

Publication number
JPH06160257A
JPH06160257A JP33357792A JP33357792A JPH06160257A JP H06160257 A JPH06160257 A JP H06160257A JP 33357792 A JP33357792 A JP 33357792A JP 33357792 A JP33357792 A JP 33357792A JP H06160257 A JPH06160257 A JP H06160257A
Authority
JP
Japan
Prior art keywords
fiber
frp
angle
section
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33357792A
Other languages
Japanese (ja)
Inventor
Hiromi Kimura
浩巳 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP33357792A priority Critical patent/JPH06160257A/en
Publication of JPH06160257A publication Critical patent/JPH06160257A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To determe orientation angle of fiber accurately by polishing a fiber reinforced plastic to provide a cross-section inclining at an angle within a predetermined range with respect to the reinforcing direction and measuring long and short diameters of fiber on the polished surface. CONSTITUTION:Reinforcing fiber 2 and basic material 3 may be combined arbitrarily so long as an FRP 1 is reinforced at least partially in one direction by continuous fibers. The fiber 2 has preferably right circular cross-section. The FRP 1 is polished to make an angle of 5-60 deg. with respect to the reinforcing direction. The FRP 1 may be polished solely or while being embedded in a resin. Polished FRP 1 is observed by means of a microscope. The microscope is selected from optical microscope, stereoscopic microscope, electronic microscope, etc., depending on the fiber diameter or sample profile. The fiber has elliptical cross-section and lond and short diameters (b), (a) thereof are measured. Assuming the inclination angle of the cross-section of the FRP 1 is theta, inclination angle (alpha) of the fiber with respect to the reinforcing direction can be determined according to the following formula alpha=¦theta-cos<-1>(a/b)¦. The angle alpha is measured for a plurality of fibers 2 and processed statistically thus determining the orientation angle of fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化プラスチック
中の繊維の配向角度の測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the orientation angle of fibers in a fiber reinforced plastic.

【0002】[0002]

【従来の技術】繊維強化プラスチック(FRP)は、軽
量、高強度、耐腐食性などの特性を生かし、様々な分野
で用いられている。強化繊維としては炭素繊維、ガラス
繊維、ボロン繊維などの無機繊維や、アラミド繊維、ポ
リエチレン繊維などの有機繊維などが用いられ、繊維の
強化形態としては短繊維強化、連続繊維強化などがあ
る。高性能のFRPを製造するためには、強化繊維を連
続的に、強化方向に配向させることが必要である。従っ
て最も高性能のFRPは、一方向連続繊維強化プラスチ
ック(以下、一方向FRP)である。
2. Description of the Related Art Fiber reinforced plastics (FRP) are used in various fields by taking advantage of characteristics such as light weight, high strength and corrosion resistance. As the reinforcing fibers, inorganic fibers such as carbon fibers, glass fibers and boron fibers, and organic fibers such as aramid fibers and polyethylene fibers are used, and the reinforcing forms of the fibers include short fiber reinforcement and continuous fiber reinforcement. In order to produce a high performance FRP, it is necessary to orient the reinforcing fibers continuously in the reinforcing direction. Therefore, the highest performance FRP is unidirectional continuous fiber reinforced plastic (hereinafter, unidirectional FRP).

【0003】しかしながら、繊維を厳密に一方向に配向
させることは困難であり、成形品には繊維のうねりや配
向角度のずれがしばしば見られ、これが物性低下の原因
となる。すなわち、うねりの部分は負荷の初期には荷重
を受け持たないため、繊維が順番に破断してしまい、思
いのほか低荷重で材料が破断してしまう。従って品質管
理の上からは、製造時にFRP中の繊維の配向度を調べ
ることが重要である。
However, it is difficult to precisely orient the fibers in one direction, and waviness of the fibers and deviation of the orientation angle are often found in the molded product, which causes deterioration of the physical properties. That is, since the swell portion does not receive the load in the initial stage of the load, the fibers are sequentially broken, and the material is unexpectedly broken at a low load. Therefore, from the viewpoint of quality control, it is important to examine the degree of orientation of the fibers in the FRP during manufacturing.

【0004】一方向FRP製造の中間原料であるプリプ
レグシートに関しては、X線などにより繊維のうねりを
測定する方法が開示されている。しかしながらこの方法
は、シート状の薄物の測定に限られているため、成形後
のFRPやプリプレグシートを用いない場合には測定す
ることはできなかった。また、測定結果を定量化するこ
とは困難であった。
Regarding the prepreg sheet, which is an intermediate raw material for the production of unidirectional FRP, a method of measuring the waviness of fibers by X-ray or the like is disclosed. However, since this method is limited to the measurement of a thin sheet, it cannot be measured without using FRP or prepreg sheet after molding. Moreover, it was difficult to quantify the measurement results.

【0005】成形後の一方向FRPに関して繊維のうね
りを測定する手段としては、一方向FRPの強化方向
(L方向)の断面を顕微鏡観察する方法が知られてい
る。しかしながらこの方法は、FRPの中のごく一部の
繊維しか評価できず、しかもうねりを定量的に評価する
ことはできなかった。
As a means for measuring the waviness of the fiber in the unidirectional FRP after molding, a method of observing a cross section of the unidirectional FRP in the strengthening direction (L direction) with a microscope is known. However, this method was able to evaluate only a small part of the fibers in FRP, and could only quantitatively evaluate the twist.

【0006】繊維の配向角度を定量的に評価する方法と
しては、射出成形品などのランダム方向短繊維強化プラ
スチックにおいて、例えばAdv. Polym. Technol.,10
(2),135(1990)に示されている様に、断面の顕微鏡写真
から求める方法がある。これは、例えば成形品の強度予
測をしたり、射出成形時のプラスチックの流れを推定す
るための手法である。繊維が真円の場合、繊維に対して
直角に切断しないかぎり、FRPの任意な断面上にあら
われる繊維の断面形状は楕円である。繊維の配向角は、
断面上に現れた楕円形の縦横比より求められる。すなわ
ち図2及び図3に示す様に、配向角度βは、長径b、短
径aより(1)式で表される。 β= cos-1(a/b)・・・(1)
As a method for quantitatively evaluating the orientation angle of the fibers, for example, Adv. Polym. Technol.
(2), 135 (1990), there is a method of obtaining from a micrograph of a cross section. This is a method for predicting the strength of a molded product or estimating the flow of plastic during injection molding, for example. When the fiber is a perfect circle, the cross-sectional shape of the fiber that appears on any cross section of the FRP is an ellipse unless it is cut at right angles to the fiber. The orientation angle of the fiber is
It is calculated from the aspect ratio of the ellipse appearing on the cross section. That is, as shown in FIGS. 2 and 3, the orientation angle β is represented by the formula (1) from the major axis b and the minor axis a. β = cos -1 (a / b) (1)

【0007】しかしながら上述の方法を一方向強化プラ
スチックに適用するのは困難である。即ち、一方向FR
Pは極限までその性能を高めたものであるから、ランダ
ム方向強化品のように繊維が0゜から90゜までランダ
ムに配向しているわけではない。一方向FRPはほとん
ど同一方向に繊維が配向しており、繊維にうねりがある
場合でも配向角度でせいぜい数度のずれでしかない。そ
のため、一方向FRPの直交断面の顕微鏡写真を測定し
ても、繊維の断面形状はほとんど真円であり、配向角度
のずれを検出することは困難であり、例えば、5゜のず
れがある場合、a/b は0.996 であり、その差を検知する
ことはほとんど不可能である。しかしながらこのわずか
な配向角のずれがFRP物性に影響を及ぼす場合があ
り、品質管理の上からは、この差を検出することが望ま
れる。即ち、この差を検出することができるならば、そ
れを品質管理基準の一つとすることにより、基準外品を
早期に発見し、手間や時間、コストのかかるFRPの物
性試験を省略することができる。
However, it is difficult to apply the above method to unidirectionally reinforced plastics. That is, one-way FR
Since P has its performance enhanced to the utmost limit, the fibers are not randomly oriented from 0 ° to 90 ° unlike the random direction reinforced product. In the unidirectional FRP, the fibers are oriented in almost the same direction, and even if the fibers have undulations, the orientation angle is deviated by at most several degrees. Therefore, even if a micrograph of a cross section orthogonal to one direction FRP is measured, the cross-sectional shape of the fiber is almost a perfect circle, and it is difficult to detect the deviation of the orientation angle. , A / b is 0.996, and it is almost impossible to detect the difference. However, this slight deviation in orientation angle may affect the physical properties of FRP, and it is desirable to detect this difference from the viewpoint of quality control. In other words, if this difference can be detected, it can be used as one of the quality control standards to detect non-standard products at an early stage, and to omit the time-consuming, time-consuming, and costly physical property test of FRP. it can.

【0008】[0008]

【発明が解決しようとする課題】本発明は、一方向連続
繊維強化プラスチックにおいて、繊維の配向角度を精確
に測定する方法を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a method for accurately measuring the orientation angle of fibers in a unidirectional continuous fiber reinforced plastic.

【0009】[0009]

【課題を解決するための手段】本発明は、一方向に強化
された連続繊維強化プラスチックにおいて、強化方向に
対して5°以上60°以下の角度の断面が得られるよう
に繊維強化プラスチックを加工し、その断面の研磨面を
観察して、該研磨面で観察された繊維の長径と短径を測
定することを特徴とする繊維強化プラスチックの配向角
度の測定方法である。
DISCLOSURE OF THE INVENTION According to the present invention, in a continuous fiber reinforced plastic reinforced in one direction, the fiber reinforced plastic is processed so as to obtain a cross section at an angle of 5 ° or more and 60 ° or less with respect to the reinforced direction. Then, the polishing surface of the cross section is observed, and the major axis and the minor axis of the fiber observed on the polishing surface are measured to measure the orientation angle of the fiber-reinforced plastic.

【0010】以下、図面を用いて本発明の方法を詳細に
説明する。
The method of the present invention will be described in detail below with reference to the drawings.

【0011】図1は、本発明の方法を説明する概念図で
ある。測定するFRP1は、一部または全部が一方向に
強化されたものである。全部が一方向に強化されたもの
としては、一方向プリプレグシート(繊維を一方向に引
き揃え、樹脂を含浸したシート状の中間素材)を同一方
向に積層した一方向材、引き抜き成形材、樹脂含浸スト
ランド材などがある。一部が一方向に強化されたものと
しては、一方向プリプレグシートを異種方向に積層した
擬似等方材、アングルプライ材などのほか、一方向材と
マット材やクロス(織物)材の混合品などがある。
FIG. 1 is a conceptual diagram for explaining the method of the present invention. The FRP1 to be measured is partially or wholly reinforced in one direction. As reinforced in one direction, unidirectional prepreg sheets (sheet-shaped intermediate material in which fibers are aligned in one direction and impregnated with resin) are laminated in the same direction, unidirectional material, pultrusion material, resin Impregnated strand material, etc. Partly reinforced in one direction includes quasi-isotropic materials in which unidirectional prepreg sheets are laminated in different directions, angle ply materials, etc., as well as mixed products of unidirectional materials and mat materials and cloth (woven fabric) materials. and so on.

【0012】FRPに用いられる強化繊維2は、通常の
一方向連続繊維強化プラスチックに用いられるものであ
ればどのようなものでも良い。例えば炭素繊維、ガラス
繊維、ボロン繊維などの無機繊維や、アラミド繊維、ポ
リエチレン繊維、ビニロン繊維、ポリアリレート繊維な
どの有機繊維、ステンレス繊維、アモルファス繊維など
の金属繊維や、それらの混合物等が挙げられる。
The reinforcing fiber 2 used in the FRP may be any as long as it is used in ordinary unidirectional continuous fiber reinforced plastic. Examples thereof include inorganic fibers such as carbon fiber, glass fiber and boron fiber, organic fibers such as aramid fiber, polyethylene fiber, vinylon fiber and polyarylate fiber, metal fibers such as stainless fiber and amorphous fiber, and a mixture thereof. .

【0013】母材3に使われる樹脂としては、通常の一
方向連続繊維強化プラスチックに用いられるものであれ
ばどのようなものでも良い。例えば、エポキシ樹脂、不
飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹
脂、ウレタン樹脂などの熱硬化性樹脂や、ポリアミド
(ナイロン)樹脂、ポリプロピレン樹脂、ポリエーテル
エーテルケトン(PEEK)樹脂、ポリフェニレンサル
ファイド(PPS)樹脂、ポリイミド樹脂、ウレタン樹
脂、ポリスチレン樹脂などの熱可塑性樹脂、ネオプレン
ゴム、イソプレンゴム、シリコンゴムなどのゴムや、そ
れらの混合、または改質品が用いられる。
The resin used for the base material 3 may be any resin used for ordinary unidirectional continuous fiber reinforced plastics. For example, thermosetting resin such as epoxy resin, unsaturated polyester resin, phenol resin, polyimide resin, urethane resin, polyamide (nylon) resin, polypropylene resin, polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) resin Thermoplastic resins such as polyimide resin, urethane resin and polystyrene resin, rubbers such as neoprene rubber, isoprene rubber and silicone rubber, and mixtures or modified products thereof are used.

【0014】FRPの一部が、連続繊維として一方向に
強化されていれば、強化繊維及び母材はどのような組み
合わせでも良い。但し、繊維の断面形状は、真円形であ
ることが好ましい。異形断面、特に楕円形の場合は、配
向角の測定が不正確になるため適当でない。
As long as a part of the FRP is unidirectionally reinforced as continuous fibers, any combination of the reinforcing fibers and the base material may be used. However, the cross-sectional shape of the fiber is preferably a perfect circle. An irregular cross section, especially an elliptical cross section, is not suitable because the measurement of the orientation angle becomes inaccurate.

【0015】FRPは、測定しようとする強化方向に対
して、5°以上60°以下の角度になるように加工した
後研磨される。この角度は、図1において角θに相当す
る。加工は、所定の角度になるように切断する方法や、
適当な角度に切断したFRPを所定の角度になるように
研削する方法などにより行われる。研磨は、回転研磨機
や振動研磨機など、通常用いられている装置により行な
えば良い。その際には、FRPのみで研磨しても、さら
にFRPを樹脂に埋め込んで研磨してもよい。FRPの
みで研磨する方が測定上は簡便であるが、研磨時にエッ
ジ部分のダレが生じ、それが測定上好ましくない場合
は、樹脂に埋め込んで研磨する方法が好ましい。
The FRP is polished after being processed into an angle of 5 ° or more and 60 ° or less with respect to the strengthening direction to be measured. This angle corresponds to the angle θ in FIG. Processing is a method of cutting to a predetermined angle,
It is carried out by a method of grinding FRP cut at an appropriate angle so as to have a predetermined angle. The polishing may be performed by a commonly used device such as a rotary polishing machine or a vibration polishing machine. At that time, polishing may be performed only with FRP or further by embedding FRP in a resin and polishing. Polishing only with FRP is easier in terms of measurement, but when the sagging of the edge portion occurs during polishing, which is not preferable in terms of measurement, a method of embedding in resin and polishing is preferable.

【0016】前記角度は、繊維の断面の長径と短径の比
率を大きくすることが目的であるから、角度は小さいほ
うが好ましいが、あまり小さい場合には長径が長すぎて
測定が困難になるため、5゜以上60゜以下、さらには
10゜以上40゜以下の角度が特に好ましい。
The above-mentioned angle is preferably a small angle because the purpose is to increase the ratio of the major axis and the minor axis of the cross section of the fiber. However, if the angle is too small, the major axis becomes too long and measurement becomes difficult. An angle of 5 ° or more and 60 ° or less, more preferably 10 ° or more and 40 ° or less is particularly preferable.

【0017】研磨後のFRPは、顕微鏡観察に供され
る。顕微鏡は、光学顕微鏡、実体顕微鏡、電子顕微鏡な
ど、繊維径やサンプル性状などに合わせて選択すれば良
い。また、特に顕微鏡である必要はなく、CCDカメラ
など、物体を拡大して観察するものであれば良い。
The FRP after polishing is subjected to microscopic observation. As the microscope, an optical microscope, a stereoscopic microscope, an electron microscope, or the like may be selected according to the fiber diameter, sample properties, and the like. Further, it is not particularly required to be a microscope, and any device such as a CCD camera which can magnify and observe an object may be used.

【0018】観察された繊維の断面は、楕円形をしてい
る。この楕円形の長径と短径の長さを測定する。長径の
長さをb、短径の長さをaとし、FRPの強化方向に対
する断面の傾きをθとすると、強化方向からの繊維の傾
きαは α=|θ− cos-1(a/b)| ・・・(2) で表される。αを全繊維、または一部の繊維について測
定し、統計処理を施すことにより、配向角度やうねりの
状態を測定することができる。
The cross section of the observed fibers is elliptical. The major and minor axes of this elliptical shape are measured. Assuming that the length of the major axis is b, the length of the minor axis is a, and the inclination of the cross section with respect to the reinforcing direction of the FRP is θ, the inclination α of the fiber from the reinforcing direction is α = | θ− cos −1 (a / b ) | Is represented by (2). The orientation angle and the state of waviness can be measured by measuring α for all fibers or a part of the fibers and performing statistical processing.

【0019】観察面の長さの測定は、例えば観察面を写
真やレーザープリンター等で撮影し、ノギス等でその長
さを実測する方法や、画像処理装置によりコンピュータ
ー上で長さを測定する方法などがある。
The length of the observation surface is measured by, for example, photographing the observation surface with a photograph or a laser printer and measuring the length with a caliper, or measuring the length on a computer by an image processing device. and so on.

【0020】統計処理に関しては、目的にあった方法を
採用すればよく、例えば標準偏差を算出する方法などが
行なわれる。また、θを正確に決定して研磨できない場
合には、式(1)に従ってβを算出し、その全平均をも
ってθとする方法などによることも可能である。
Regarding the statistical processing, a method suitable for the purpose may be adopted, for example, a method of calculating the standard deviation is performed. In addition, when θ cannot be accurately determined and polishing cannot be performed, β can be calculated according to the equation (1) and the average of all β can be used as θ.

【0021】[0021]

【作用】本発明の方法を用いることにより、一方向FR
Pの配向角度を精確に測定することが可能である。直交
断面の観察では10゜以内の微小な角度のずれを検知す
ることはほとんど不可能であったが、本方法の場合、予
め断面に角度を持たせることにより、角度のずれの検出
を容易にしている。例えば予め20゜に研磨した場合、
配向角0゜では短径1に対し長径は2.92である。±1゜
のずれは、短径1に対し長径が2.79(21゜)と3.07(19
゜)に変化するため、その角度の微小な変化も容易に検
出しうるものである。
By using the method of the present invention, one-way FR
It is possible to accurately measure the orientation angle of P. It was almost impossible to detect a slight angular deviation within 10 ° by observing an orthogonal cross section, but in the case of this method, it is easy to detect the angular deviation by giving an angle to the cross section in advance. ing. For example, if it was polished to 20 ° in advance,
At an orientation angle of 0 °, the minor axis is 1 and the major axis is 2.92. The deviation of ± 1 ° is 2.79 (21 °) and 3.07 (19
.Degree.), A minute change in the angle can be easily detected.

【0022】[0022]

【実施例】直径10μm、引張強度300kgf/mm2 の炭素
繊維を用い、母材としてエポキシ樹脂を用いて引き抜き
成形により製造したFRP ロッド(直径3mm, 繊維の体積
含有率60% )を、軸方向に対しおよそ20゜の角度に加工
し、研磨した。この断面を画像処理装置(東レエンジニ
アリング社製)で処理し、1000点の繊維について、楕円
形に観察された繊維の長径と短径の比率を求めて、前記
の式(1)にしたがって角度を算出した。1000点の全平
均角度をこのサンプルの研磨角θとし、各点の、θから
の偏差をその点の配向角度αとした。αの標準偏差と、
そのロッドの破断荷重を表1に示す。尚、破断荷重は、
ロッドの両端にFRP製のタブを取付け、引張り試験機
で引張試験をした結果における、破断時の荷重である。
Example: A carbon fiber having a diameter of 10 μm and a tensile strength of 300 kgf / mm 2 was used, and an FRP rod (diameter 3 mm, fiber volume content 60%) manufactured by pultrusion using an epoxy resin as a base material was used in the axial direction. Was processed and polished to an angle of about 20 °. This cross section was processed by an image processing device (manufactured by Toray Engineering Co., Ltd.), and the ratio of the major axis and the minor axis of the fiber observed in an elliptical shape was calculated for 1000 points of fiber, and the angle was calculated according to the above formula (1). It was calculated. The total average angle of 1000 points was taken as the polishing angle θ of this sample, and the deviation of each point from θ was taken as the orientation angle α of that point. the standard deviation of α,
The breaking load of the rod is shown in Table 1. The breaking load is
FRP tabs are attached to both ends of the rod, and the load at break is the result of a tensile test using a tensile tester.

【0023】[0023]

【表1】 [Table 1]

【0024】これより、αの標準偏差が10゜以上の場
合には引張強度が低下することが明かになったため、以
後の製造においては、αの標準偏差が10゜以上のサン
プルについては、引張試験を行なわずに規格外品とし
た。
From this, it was revealed that the tensile strength was lowered when the standard deviation of α was 10 ° or more. Therefore, in the subsequent manufacturing, the tensile strength was decreased for the samples having the standard deviation of α of 10 ° or more. It was made into a nonstandard product without performing a test.

【0025】比較例のために、サンプルの軸方向直交断
面について同様の測定を行なったが、角度を算出するこ
とはできなかった。
For the comparative example, the same measurement was carried out on the cross section orthogonal to the axial direction of the sample, but the angle could not be calculated.

【0026】[0026]

【発明の効果】本発明の方法を用いることにより、特殊
な装置を必要とせず、簡便且つ定量的に一方向FRPの
配向角度を測定することができる。本測定は、製造現場
での品質管理に役立たせ、場合によっては引張り試験等
を省略することも可能である。
By using the method of the present invention, it is possible to easily and quantitatively measure the orientation angle of the unidirectional FRP without requiring a special device. This measurement is useful for quality control at the manufacturing site, and in some cases, it is possible to omit the tensile test and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を示す概念図である。FIG. 1 is a conceptual diagram showing a method of the present invention.

【図2】配向角度の測定方法を概念的に示す斜視図であ
る。
FIG. 2 is a perspective view conceptually showing a method for measuring an orientation angle.

【図3】断面上に現われた繊維形状を示す概念図であ
る。
FIG. 3 is a conceptual diagram showing a fiber shape appearing on a cross section.

【符号の説明】[Explanation of symbols]

1 FRP 2 強化繊維 3 母材 1 FRP 2 Reinforcing fiber 3 Base material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方向に強化された連続繊維強化プラス
チックにおいて、強化方向に対して5°以上60°以下
の角度の断面が得られるように繊維強化プラスチックを
加工し、その断面の研磨面を観察して、該研磨面で観察
された繊維断面の長径と短径を測定することを特徴とす
る繊維強化プラスチックの配向角度の測定方法。
1. A continuous fiber reinforced plastic reinforced in one direction, the fiber reinforced plastic is processed so as to obtain a cross section at an angle of 5 ° or more and 60 ° or less with respect to the reinforced direction, and the polished surface of the cross section is processed. A method for measuring an orientation angle of a fiber-reinforced plastic, which comprises observing and measuring a major axis and a minor axis of a fiber cross section observed on the polished surface.
JP33357792A 1992-11-19 1992-11-19 Method for measuring orientation angle of fiber in continuous fiber reinforced plastic Withdrawn JPH06160257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33357792A JPH06160257A (en) 1992-11-19 1992-11-19 Method for measuring orientation angle of fiber in continuous fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33357792A JPH06160257A (en) 1992-11-19 1992-11-19 Method for measuring orientation angle of fiber in continuous fiber reinforced plastic

Publications (1)

Publication Number Publication Date
JPH06160257A true JPH06160257A (en) 1994-06-07

Family

ID=18267605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33357792A Withdrawn JPH06160257A (en) 1992-11-19 1992-11-19 Method for measuring orientation angle of fiber in continuous fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JPH06160257A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630438A (en) * 2013-12-11 2014-03-12 山东轻工业学院 Novel application of water to polishing stage of metallographical sample preparation method of leather sample and use method of water
JP2015049099A (en) * 2013-08-30 2015-03-16 大成建設株式会社 Fibrous state measuring device and fibrous state measuring method
JP2015124846A (en) * 2013-12-27 2015-07-06 トヨタ自動車株式会社 Fiber orientation inspection method
CN109506997A (en) * 2018-10-30 2019-03-22 航天材料及工艺研究所 The test method of fiber orientation degree in a kind of continuous fiber reinforced composite materials
JPWO2018079448A1 (en) * 2016-10-26 2019-09-19 ヤマハ株式会社 Instrument board and stringed instrument
JP2020180838A (en) * 2019-04-24 2020-11-05 株式会社トヨタプロダクションエンジニアリング Resin flow visualization method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049099A (en) * 2013-08-30 2015-03-16 大成建設株式会社 Fibrous state measuring device and fibrous state measuring method
CN103630438A (en) * 2013-12-11 2014-03-12 山东轻工业学院 Novel application of water to polishing stage of metallographical sample preparation method of leather sample and use method of water
JP2015124846A (en) * 2013-12-27 2015-07-06 トヨタ自動車株式会社 Fiber orientation inspection method
JPWO2018079448A1 (en) * 2016-10-26 2019-09-19 ヤマハ株式会社 Instrument board and stringed instrument
CN109506997A (en) * 2018-10-30 2019-03-22 航天材料及工艺研究所 The test method of fiber orientation degree in a kind of continuous fiber reinforced composite materials
JP2020180838A (en) * 2019-04-24 2020-11-05 株式会社トヨタプロダクションエンジニアリング Resin flow visualization method

Similar Documents

Publication Publication Date Title
EP1205507A2 (en) Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures
US9580568B2 (en) Fiber-reinforced composite material
Yaguchi et al. Measurement of planar orientation of fibers for reinforced thermoplastics using image processing
EP3120984A1 (en) Fiber-reinforced plastic and production method therefor
JPH06160257A (en) Method for measuring orientation angle of fiber in continuous fiber reinforced plastic
KR20150037883A (en) Random mat and molding of fiber-reinforced composite material
Faizal et al. Tensile property of hand lay-up plain-weave woven e-glass/polyester composite: Curing pressure and Ply arrangement effect
JP2019039124A (en) Chopped fiber bundle mat
Farhang Void evolution during processing of out-of-autoclave prepreg laminates
Sanei et al. Draft: Mechanical Properties of 3D Printed Fiber Reinforced Thermoplastic
US4255478A (en) Composite structures
Jian et al. Damage detection by piezoelectric patches in a free vibration method
Biswas et al. Influence of fiber areal density on mechanical behavior of basalt fiber/epoxy composites under varying loading rates: An experimental and statistical approach
JP2971432B2 (en) Inspection method of fiber reinforced plastic structure
Barwick et al. Identification of fiber misalignment in continuous fiber composites
Kumar et al. Understanding the mechanical response of glass and carbon fibres: Stress-strain analysis and modulus determination
CN217059707U (en) Measure axial tensile properties&#39;s of combined material pipe test device that structural engineering used
Harris et al. The thermal conductivity of Kevlar fibre-reinforced composites
Pace et al. Analysis of the manufacturing porosity in fused filament fabricated onyx/long fiber reinforced composites using X-ray computed tomography
JP2016090259A (en) Method, program, device and system for calculating degree of fiber orientation
JPWO2018235512A1 (en) Fiber reinforced plastic
Ciriscioli et al. A technique for determining mechanical properties of thick composite laminates
Durai Prabhakaran et al. Effect of polymer form and its consolidation on mechanical properties and quality of glass/PBT composites
ALHaidri Characterization of carbon-fiber reinforced polyetherimide thermoplastic composites using mechanical and ultrasonic methods
JP2006003244A (en) Test piece for evaluating interfacial adhesiveness, molding method thereof and testing method for evaluating interfacial adhesiveness of reinforcing fiber and resin

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201