JPH06159606A - Drain pump-up equipment for feed water heater - Google Patents

Drain pump-up equipment for feed water heater

Info

Publication number
JPH06159606A
JPH06159606A JP33684292A JP33684292A JPH06159606A JP H06159606 A JPH06159606 A JP H06159606A JP 33684292 A JP33684292 A JP 33684292A JP 33684292 A JP33684292 A JP 33684292A JP H06159606 A JPH06159606 A JP H06159606A
Authority
JP
Japan
Prior art keywords
signal
water level
control valve
flow rate
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33684292A
Other languages
Japanese (ja)
Inventor
Yasutaka Morikawa
安貴 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33684292A priority Critical patent/JPH06159606A/en
Publication of JPH06159606A publication Critical patent/JPH06159606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To prevent a desalting function from lowering when an inlet temp. signal of a desalting device exceeds a temp. setting signal by opening or closing a flow control valve to lower the inlet temp. of the device below a given value. CONSTITUTION:When the flow rate of feed water from a condenser decreases, an inlet temp. signal of a desalting device 6 rises and exceeds a setting temp. signal of a temp. controller 16, a normal water level control valve opening signal 13a is less than 100%, and is less than a normal water level control valve opening signal 13b of a normal water level controller 12. Therefore, a low value prefering device 17 selects the opening signal 13a of the temp. controller 16, so that a normal water level control valve 1 1 is in a closed position according to the inlet temp. signal of the desalting device 6, the rate of drain feeding into the condenser system decreases and the inlet temp. is lowered. Thus, the inlet temp. of the desalting device can be lowered below the setting temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、給水加熱器ドレンポン
プアップ設備を有する沸騰水型原子力発電プラントに係
わり、特に復水系統におけるに給水加熱器ドレンポンプ
アップ設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling water nuclear power plant having a feed water heater drain pump up facility, and more particularly to a feed water heater drain pump up facility in a condensate system.

【0002】[0002]

【従来の技術】沸騰水型原子力発電プラントにおける給
水加熱器ドレンポンプアップ設備は、国内ではまだ運転
実績のない設備である。この設備は、蒸気タービンから
の抽気と復水器からの給水とが給水加熱器において熱交
換が行われ、加熱された給水は原子炉へ送られ、他方、
給水加熱器で冷却されて凝縮したドレンは、ドレンタン
クに回収・蓄積しドレンポンプにより昇圧されて復水系
統へ注入するものである。
2. Description of the Related Art A feed water heater drain pump up facility in a boiling water nuclear power plant is a facility that has not yet been operated in Japan. In this equipment, the extracted water from the steam turbine and the feed water from the condenser undergo heat exchange in the feed water heater, and the heated feed water is sent to the reactor, while
The drain cooled and condensed by the feed water heater is collected and accumulated in the drain tank, pressurized by the drain pump, and injected into the condensate system.

【0003】上記設備の概要を図7を参照して説明する
と、復水系統では、復水器1からの給水は、低圧復水ポ
ンプ2で昇圧され、空気抽出器3、グラント蒸気復水器
4、中空糸膜による復水濾過装置5から脱塩装置6に流
入する。次に、脱塩装置6からの給水は、高圧復水ポン
プ7から低圧給水加熱器8に流入し、その後、給水は図
示省略するが、高圧ドレンタンクからのドレンと合流
し、給水ポンプ、高圧給水加熱器を経由して原子炉へ流
入する。
The outline of the above equipment will be described with reference to FIG. 7. In the condensate system, the water supplied from the condenser 1 is boosted by the low pressure condensate pump 2, the air extractor 3 and the grant steam condenser. 4. Flows from the condensate filtration device 5 using a hollow fiber membrane into the desalination device 6. Next, the feed water from the desalination device 6 flows into the low pressure feed water heater 8 from the high pressure condensate pump 7, and then the feed water merges with the drain from the high pressure drain tank, although not shown in the drawing. It flows into the reactor via the feed water heater.

【0004】低圧給水加熱器8では、低圧タービンから
の抽気が流入して給水と熱交換がされ、抽気が冷却され
て凝縮したドレンが低圧給水加熱器ドレンタンク9に回
収される。低圧給水加熱器ドレンタンク9に回収された
ドレンは、低圧ドレンポンプ10によって昇圧され、通
常水位調節弁11を介して復水濾過装置5と脱塩装置6
との間の復水系統に注入される。これによって、給水加
熱器ドレンポンプアップ設備では、熱回収による熱効率
を向上させることができる。
In the low-pressure feed water heater 8, the bleed air from the low-pressure turbine flows in and exchanges heat with the feed water, and the drain that has cooled the bleed air and condensed is recovered in the low-pressure feed water heater drain tank 9. The drain collected in the low-pressure feed water drain tank 9 is increased in pressure by the low-pressure drain pump 10 and is usually fed through the water level control valve 11 to the condensate filtration device 5 and the desalination device 6.
Is injected into the condensate system between. As a result, in the feedwater heater drain pump up facility, it is possible to improve the thermal efficiency by heat recovery.

【0005】図8に、上記した低圧給水加熱器ドレンタ
ンクからの排水ドレンを復水系統へ注入する制御部の概
要を示す。
FIG. 8 shows an outline of a control unit for injecting the drainage drain from the drain tank of the low-pressure feed water heater described above into the condensate system.

【0006】図において、低圧給水加熱器8より排出さ
れたドレンは、低圧給水加熱器ドレンタンク9に蓄積さ
れ、低圧ドレンポンプ10の2台のポンプにより復水系
統へ送られて脱塩装置6に流れる。なお、低圧ドレンポ
ンプ10の3台の内1台は、通常運転時に停止してい
る。
In the figure, the drain discharged from the low-pressure feed water heater 8 is accumulated in the low-pressure feed water heater drain tank 9, and is sent to the condensate system by two pumps of the low-pressure drain pump 10 and the desalination device 6 Flow to. Note that one of the three low pressure drain pumps 10 is stopped during normal operation.

【0007】通常時、通常水位制御器12から送られる
通常水位調節弁開度信号13は低圧ドレンポンプ吐出口
に設けられた通常水位調節弁11を操作し、低圧給水加
熱器ドレンタンク9から排出されるドレン量を制御する
ことにより低圧給水加熱器ドレンタンク9内水位を制御
している。
At normal times, the normal water level control valve opening signal 13 sent from the normal water level controller 12 operates the normal water level control valve 11 provided at the discharge port of the low pressure drain pump to discharge from the low pressure feed water heater drain tank 9. The water level in the low pressure feed water heater drain tank 9 is controlled by controlling the amount of drain that is generated.

【0008】何らかの原因により低圧給水加熱器ドレン
タンク9内の水位の増加が大きくなり、通常水位調節弁
11を全開しても低圧給水加熱器ドレンタンク9内水位
の上昇が続く場合には、高側水位制御器14が高側水位
調節弁開度信号14eにより高側水位調節弁15を操作
して排水ドレンを復水器1に戻す。
If the water level in the low-pressure feed water heater drain tank 9 increases for some reason, and the water level in the low-pressure feed water heater drain tank 9 continues to rise even if the normal water level control valve 11 is fully opened, a high The side water level controller 14 operates the high side water level control valve 15 by the high side water level control valve opening signal 14e to return the drainage drain to the condenser 1.

【0009】このように、復水系統へ流れるドレン量
は、復水系統の給水流量によらず、低圧給水加熱器ドレ
ンタンク9内水位制御によって決定されている。
As described above, the amount of drainage flowing into the condensate system is determined by the water level control in the low pressure feedwater heater drain tank 9 regardless of the feedwater flow rate of the condensate system.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、図8で
説明した構成では、高温の水が脱塩装置6に流入して脱
塩機能を損なうことがあるという問題がある。
However, the structure described with reference to FIG. 8 has a problem that hot water may flow into the desalination device 6 and impair the desalination function.

【0011】すなわち、脱塩装置6には、低温の給水と
高温のドレンが流入するから、低温の給水流量と高温の
ドレン量の割合によって脱塩装置6の入口温度が定ま
り、高温のドレン量の割合が大きければ、高温の水が脱
塩装置6に流れる。この高温の水が脱塩装置6に流れる
と、脱塩エレメントから塩分が放出されて脱塩機能を損
なうことがあるという問題がある。
That is, since the low-temperature feed water and the high-temperature drain flow into the desalination unit 6, the inlet temperature of the desalination unit 6 is determined by the ratio of the low-temperature feed water flow rate and the high-temperature drain amount, and the high-temperature drain amount. If the ratio is high, hot water flows to the desalination device 6. When this high-temperature water flows into the desalination device 6, there is a problem that salt content may be released from the desalination element, impairing the desalination function.

【0012】そこで、本発明は脱塩装置の入口温度を所
定値以下とし、脱塩機能を損なうことのない給水加熱器
ドレンポンプアップ設備を提供することを目的とする。
[0012] Therefore, an object of the present invention is to provide a feed water heater drain pump-up facility in which the inlet temperature of the desalination device is set to a predetermined value or less and the desalination function is not impaired.

【0013】[0013]

【課題を解決するための手段】請求項1の発明は、原子
炉からの発生蒸気によってタービンを駆動して仕事をし
た後の蒸気を復水器に導入し、この復水器からの給水を
復水系統に設けられた低圧給水加熱器でタービンの抽気
と熱交換して加熱すると共に、抽気による排水ドレンを
低圧給水加熱器ドレンタンクに回収蓄積し、この低圧給
水加熱器ドレンタンクから排水ドレンをドレンポンプに
よって流量調節弁を介して復水系統に設けられる脱塩装
置の入口側に注入する構成の給水加熱器ドレンポンプア
ップ設備において、低圧給水加熱器ドレンタンクの水位
測定信号と水位設定信号との偏差信号を制御演算して第
1の水位調節弁開度信号を出力する水位制御器と、脱塩
装置の入口温度信号と温度設定信号との偏差信号を制御
演算して第2の水位調節弁開度信号を出力する温度制御
器と、第1の水位調節弁開度信号と第2の水位調節弁開
度信号とのいずれか低値の信号を選択してこの信号によ
って流量調節弁を開閉制御する低値優先器を設けるよう
にしたものである。
According to a first aspect of the present invention, steam generated by a nuclear reactor is used to drive a turbine to perform work, and then the steam is introduced into a condenser, and water supplied from the condenser is supplied. The low-pressure feed water heater provided in the condensate system heats the turbine by exchanging heat with the extraction air of the turbine, and the drainage drained by the extraction air is collected and accumulated in the drain tank of the low-pressure feed water heater drainage drain. In the feed water heater drain pump up equipment configured to inject water into the inlet side of the desalination device provided in the condensate system via the flow control valve by the drain pump, the water level measurement signal and water level setting signal of the low pressure water heater heater drain tank And a water level controller that outputs a first water level control valve opening signal and a deviation signal between the inlet temperature signal and the temperature setting signal of the desalination device, and the second water. A temperature controller that outputs a control valve opening signal, a low value signal of the first water level control valve opening signal and the second water level control valve opening signal is selected, and the flow control valve is selected by this signal. A low-value priority device for controlling opening and closing is provided.

【0014】請求項2の発明は、原子炉からの発生蒸気
によってタービンを駆動して仕事をした後の蒸気を復水
器に導入し、この復水器からの給水を復水系統に設けら
れた低圧給水加熱器で前記タービンの抽気と熱交換して
加熱すると共に、抽気による排水ドレンを低圧給水加熱
器ドレンタンクに回収蓄積し、この低圧給水加熱器ドレ
ンタンクから排水ドレンをドレンポンプによって流量調
節弁を介して復水系統に設けられる脱塩装置の入口側に
注入する構成の給水加熱器ドレンポンプアップ設備にお
いて、低圧給水加熱器ドレンタンクの水位測定信号と水
位設定信号との偏差信号を制御演算して第1の水位調節
弁開度信号を出力する水位制御器と、脱塩装置の入口流
量測定信号と低圧給水加熱器の圧力測定信号とに基づい
て復水系統に注入する排水ドレンの上限値を演算し、上
限流量設定信号を出力する上限流量設定器と、上限流量
設定信号と排出ドレン信号との偏差信号を制御演算して
第2の水位調節弁開度信号を出力する流量制御器と、第
1の水位調節弁開度信号と第2の水位調節弁開度信号と
のいずれか低値の信号を選択して、この信号によつて流
量調節弁を開閉制御する低値優先器を設けるようにした
ものである。
According to a second aspect of the present invention, the steam generated by the nuclear reactor is used to drive the turbine to perform the work, and then the steam is introduced into the condenser, and the water supplied from the condenser is provided in the condenser system. The low-pressure feed water heater heats the turbine by exchanging heat with the bleed air, and the drainage drain from the bleed air is collected and stored in the low-pressure feed water heater drain tank. In the feed water heater drain pump up equipment configured to inject into the inlet side of the desalination device provided in the condensate system via the control valve, the deviation signal between the water level measurement signal and the water level setting signal of the low pressure feed water heater drain tank is sent. Injection into the condensate system based on the water level controller that performs control calculation and outputs the first water level control valve opening signal, and the inlet flow rate measurement signal of the desalination device and the pressure measurement signal of the low pressure feed water heater The upper limit value of the drainage drain is calculated and the upper limit flow rate setter that outputs the upper limit flow rate setting signal and the deviation signal between the upper limit flow rate setting signal and the discharge drain signal are control-calculated to obtain the second water level control valve opening signal. A low-value signal of the output flow controller, the first water level control valve opening signal and the second water level control valve opening signal is selected, and the flow control valve is opened / closed by this signal. A low value priority device is provided.

【0015】[0015]

【作用】請求項1の発明は、低圧給水加熱器ドレンタン
クの水位測定信号と水位設定信号との偏差信号が制御演
算され第1の水位調節弁開度信号として出力される。一
方、脱塩装置の入口温度信号と温度設定信号との偏差信
号が制御演算され第2の水位調節弁開度信号として出力
される。第1の水位調節弁開度信号と第2の水位調節弁
開度信号とは低値優先器に入力して、この低値優先器で
いずれか低値の信号が選択され、この信号によって流量
調節弁が開閉制御される。これにより、通常時、第1の
水位調節弁開度信号によって流量調節弁が開閉して低圧
給水加熱器ドレンタンクの水位を一定とするが、脱塩装
置の入口温度信号が温度設定信号を超えた場合、脱塩装
置の入口温度信号に基づく第2の水位調節弁開度信号に
よって流量調節弁が開閉され、脱塩装置の入口温度信号
の上昇を防ぐ。従って、高温の水が脱塩装置に流入する
ことがなく、脱塩機能を損なうことがない。
According to the present invention, the deviation signal between the water level measuring signal and the water level setting signal of the drain tank of the low-pressure feed water heater is control-calculated and output as the first water level control valve opening signal. On the other hand, the deviation signal between the inlet temperature signal of the desalination device and the temperature setting signal is control-calculated and output as the second water level control valve opening signal. The first water level control valve opening signal and the second water level control valve opening signal are input to a low value priority device, and the low value priority device selects either of the low value signals, and this signal causes the flow rate to change. The control valve is controlled to open and close. As a result, normally, the flow control valve is opened and closed by the first water level control valve opening signal to keep the water level of the drain tank of the low-pressure feed water heater constant, but the inlet temperature signal of the desalination device exceeds the temperature setting signal. In this case, the flow control valve is opened / closed by the second water level control valve opening signal based on the inlet temperature signal of the desalination device, and the rise of the inlet temperature signal of the desalination device is prevented. Therefore, hot water does not flow into the desalination apparatus, and the desalination function is not impaired.

【0016】請求項2の発明は、低圧給水加熱器ドレン
タンクの水位測定信号と水位設定信号との偏差信号が制
御演算され、第1の水位調節弁開度信号として出力され
る。一方、脱塩装置の入口流量測定信号と低圧給水加熱
器の圧力測定信号とに基づいて復水系統に注入する排水
ドレンの上限値が演算され、上限流量設定信号として出
力される。上限流量設定信号と排出ドレン流量信号との
偏差信号が制御演算され、第2の水位調節弁開度信号と
して出力される。第1の水位調節弁開度信号と第2の水
位調節弁開度信号とは低値優先器に入力して、いずれか
低値の信号が選択され、この信号によつて流量調節弁が
開閉制御される。これにより、通常時、第1の水位調節
弁開度信号によって流量調節弁が開閉して低圧給水加熱
器ドレンタンクの水位を一定とするが、排出ドレン流量
信号が上限流量設定信号より大きくなった場合、第2の
水位調節弁開度信号よって流量調節弁が開閉して排出ド
レン流量信号が上限流量設定信号以上となることを防
ぐ。従って、脱塩装置の入口温度信号の上昇が防止さ
れ、高温の水が脱塩装置に流入することがなく、脱塩機
能を損なうことがない。
According to the second aspect of the present invention, the deviation signal between the water level measurement signal of the low pressure feed water heater drain tank and the water level setting signal is control-calculated and output as the first water level control valve opening signal. On the other hand, the upper limit value of the drainage to be injected into the condensate system is calculated based on the inlet flow rate measurement signal of the desalination device and the pressure measurement signal of the low pressure feed water heater, and is output as the upper limit flow rate setting signal. A deviation signal between the upper limit flow rate setting signal and the discharge drain flow rate signal is control-calculated and output as a second water level control valve opening signal. The first water level control valve opening signal and the second water level control valve opening signal are input to the low value priority device, and one of the low value signals is selected, and the flow control valve is opened and closed by this signal. Controlled. As a result, normally, the flow control valve is opened and closed by the first water level control valve opening signal to keep the water level of the drain tank of the low-pressure feed water heater constant, but the drain flow rate signal becomes larger than the upper limit flow rate setting signal. In this case, the flow control valve is prevented from opening and closing by the second water level control valve opening signal, and the discharge drain flow rate signal becomes equal to or higher than the upper limit flow rate setting signal. Therefore, the rise of the inlet temperature signal of the desalination device is prevented, high temperature water does not flow into the desalination device, and the desalination function is not impaired.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明の第1実施例を示す脱塩装
置入口温度制御装置を備えた給水加熱器ドレンポンプア
ップシステムの構成図である。従来技術を示す図8と同
一符号は、同一部分または相当部分を示す。図1が図8
と異なる点は、温度制御器16と低値優先器17とを追
設していることである。
FIG. 1 is a block diagram of a feed water heater drain pump up system equipped with a desalination device inlet temperature control device showing a first embodiment of the present invention. The same reference numerals as those in FIG. 8 showing the prior art indicate the same or corresponding portions. FIG. 1 is FIG.
2 is that the temperature controller 16 and the low value priority device 17 are additionally provided.

【0019】ここで、温度制御器16は、脱塩装置6の
入口温度信号が設定温度信号を越えないように第1の通
常水位調節弁開度信号13aを低値優先器17に出力す
る。低値優先器17は、通常水位制御器12の通常水位
調節弁開度信号13bと温度制御器16の通常水位調節
弁開度信号13aとを入力して低値の信号を通常水位調
節弁開度信号13cとして通常水位調節弁11に出力す
る。
Here, the temperature controller 16 outputs the first normal water level control valve opening signal 13a to the low value priority device 17 so that the inlet temperature signal of the desalination device 6 does not exceed the set temperature signal. The low value priority device 17 inputs the normal water level control valve opening signal 13b of the normal water level controller 12 and the normal water level control valve opening signal 13a of the temperature controller 16 and outputs a low value signal to the normal water level control valve opening. It is output to the normal water level control valve 11 as a degree signal 13c.

【0020】次に、本発明の作用を図2乃至図4を参照
して説明する。
Next, the operation of the present invention will be described with reference to FIGS.

【0021】通常水位制御器12は、図2に示す制御ブ
ロック図で構成され、まず、水位検出器12aからの水
位測定信号が、偏差演算器12bに入力し、通常水位設
定信号12cと比較され、両者の偏差信号が比例積分微
分演算器12dに入力し、制御演算がされ通常水位調節
弁開度信号13bが出力される。
The normal water level controller 12 is constituted by the control block diagram shown in FIG. 2. First, the water level measurement signal from the water level detector 12a is input to the deviation calculator 12b and compared with the normal water level setting signal 12c. , The deviation signals of both are input to the proportional-plus-integral-derivative calculator 12d, the control calculation is performed, and the normal water level control valve opening signal 13b is output.

【0022】一方、温度制御器16は、図3に示す制御
ブロック図の如く、温度検出器16aからの温度測定信
号が偏差演算器16bに入力し、温度設定信号16cと
比較され、両者の偏差信号が比例積分微分演算器16d
に入力し、制御演算がされ、通常水位調節弁開度信号1
3aが出力される。
On the other hand, in the temperature controller 16, as shown in the control block diagram of FIG. 3, the temperature measurement signal from the temperature detector 16a is input to the deviation calculator 16b and compared with the temperature setting signal 16c, and the deviation between the two is detected. Signal is proportional to integral differential calculator 16d
To the control signal, and the normal water level control valve opening signal 1
3a is output.

【0023】低値優先器17では、通常水位制御器12
の通常水位調節弁開度信号13bと、温度制御器16の
通常水位調節弁開度信号13aとが入力され、これらの
信号内で低値を選択して、通常水位調節弁開度信号13
cを通常水位調節弁11へ出力する。
In the low value priority device 17, the normal water level controller 12
The normal water level control valve opening signal 13b and the normal water level control valve opening signal 13a of the temperature controller 16 are input, and a low value is selected from these signals to select the normal water level control valve opening signal 13
c is output to the normal water level control valve 11.

【0024】すなわち、通常水位調節弁開度信号13a
をA、通常水位調節弁開度信号13bをB、選択された
通常水位調節弁開度信号13cをCとすると次の(1)
の処理がされる。
That is, the normal water level control valve opening signal 13a
Is A, the normal water level control valve opening signal 13b is B, and the selected normal water level control valve opening signal 13c is C, the following (1)
Is processed.

【0025】[0025]

【数1】C=min(A,B)……………(1)[Equation 1] C = min (A, B) …………… (1)

【0026】上記の場合に、低値優先器17で選択され
た信号Cにより通常水位調節弁11が開閉制御される。
In the above case, the normal water level control valve 11 is controlled to be opened / closed by the signal C selected by the low value priority device 17.

【0027】一方、低圧給水加熱器ドレンタンク9内の
水位は、通常水位制御器12の他に、高側水位制御器1
4によって制御される。
On the other hand, the water level in the drain tank 9 of the low-pressure feed water heater is not limited to the normal water level controller 12, but the high-side water level controller 1
Controlled by 4.

【0028】高側水位制御器14は、図4に示す制御ブ
ロック図で構成され、水位検出器14aからの水位測定
信号は、偏差演算器14bに入力し、高側水位設定信号
14cと比較され、両者の偏差信号が比例積分微分演算
器14dに入力し、制御演算がされ、高側水位調節弁開
度信号14eが高側水位調節弁15に出力される。
The high-side water level controller 14 is constructed by the control block diagram shown in FIG. 4. The water level measurement signal from the water level detector 14a is input to the deviation calculator 14b and compared with the high side water level setting signal 14c. The deviation signals of the both are input to the proportional-plus-integral-derivative calculator 14d, control calculation is performed, and the high-side water level control valve opening signal 14e is output to the high-side water level control valve 15.

【0029】これにより、実際の水位が設定されている
高側水位を超えないように高側水位調節弁15が操作さ
れ、ここを流れるドレンは、復水器1へ直接戻される。
As a result, the high-side water level control valve 15 is operated so that the actual water level does not exceed the set high-side water level, and the drain flowing therethrough is directly returned to the condenser 1.

【0030】プラントの通常運転時には、脱塩装置6の
入口温度信号は、脱塩装置6の設定温度信号よりも低
く、通常水位調節弁開度信号13aが100%より大き
くなっている。そのため通常水位制御器12の通常水位
調節弁開度信号13bが低値優先器17で選択され、通
常水位調節弁開度信号13cとして通常水位調節弁11
が操作される。
During normal operation of the plant, the inlet temperature signal of the desalination device 6 is lower than the set temperature signal of the desalination device 6, and the normal water level control valve opening signal 13a is larger than 100%. Therefore, the normal water level control valve opening signal 13b of the normal water level controller 12 is selected by the low value priority device 17, and the normal water level control valve 11 is selected as the normal water level control valve opening signal 13c.
Is operated.

【0031】この結果、通常水位制御器12の通常水位
設定信号12cを維持する通常水位調節弁開度信号13
cが通常水位調節弁11に出力され、通常水位調節弁1
1を開閉制御して低圧給水加熱器ドレンタンク9の水位
を所定値に保つ。一方、復水器1からの給水流量が減少
して脱塩装置6の入口温度信号が上昇し温度制御器16
の設定温度信号を超えると、通常水位調節弁開度信号1
3aは、100%よりも小さくなる。さらに、脱塩装置
6の入口温度信号の上昇が大きいと、通常水位制御器1
2の通常水位調節弁開度信号13bよりも通常水位調節
弁開度信号13aの方が小さくなる。このため、低値優
先器17では温度制御器16の通常水位調節弁開度信号
13aが選択される。
As a result, the normal water level control valve opening signal 13 for maintaining the normal water level setting signal 12c of the normal water level controller 12 is obtained.
c is output to the normal water level control valve 11, and the normal water level control valve 1
1 is controlled to open and close to maintain the water level in the low-pressure feed water heater drain tank 9 at a predetermined value. On the other hand, the feed water flow rate from the condenser 1 is decreased, the inlet temperature signal of the desalination device 6 is increased, and the temperature controller 16
When the set temperature signal of is exceeded, the normal water level control valve opening signal 1
3a is smaller than 100%. Further, if the rise in the temperature signal at the inlet of the desalination device 6 is large, the normal water level controller 1
The normal water level control valve opening signal 13a is smaller than the normal water level control valve opening signal 13b of 2. Therefore, in the low value priority device 17, the normal water level control valve opening signal 13a of the temperature controller 16 is selected.

【0032】これにより、通常水位調節弁11は、脱塩
装置6の入口温度信号に応じて閉方向とされて、復水系
統に注入するドレン量が減少して入口温度を降下させ
る。
As a result, the normal water level control valve 11 is closed in accordance with the inlet temperature signal of the desalination device 6, the amount of drain injected into the condensate system is reduced, and the inlet temperature is lowered.

【0033】この場合、低圧給水加熱器ドレンタンク9
内水位が増加してしまうため、高側水位制御器14の制
御によりドレンが排出され、低圧給水加熱器ドレンタン
ク9内の水位上昇を防止する。
In this case, the low-pressure feed water heater drain tank 9
Since the internal water level increases, the drain is discharged under the control of the high-side water level controller 14 to prevent the water level in the low-pressure feed water heater drain tank 9 from rising.

【0034】このように、脱塩装置6の入口温度を検出
し、その温度が設定温度を超えた場合には、通常水位調
節弁11を開閉制御して、復水系統に注入されるドレン
量を調整することにより、脱塩装置6の入口温度を設定
温度以下にすることができる。
As described above, when the inlet temperature of the desalination device 6 is detected, and when the temperature exceeds the set temperature, the normal water level control valve 11 is controlled to open and close, and the drain amount injected into the condensate system. The inlet temperature of the desalination device 6 can be made equal to or lower than the set temperature by adjusting the.

【0035】次に、本発明の第2実施例を図5を参照し
て説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0036】図1に示す第1実施例と異なる点は、温度
制御器16を削除し、流量測定器28と圧力測定器29
と上限流量設定器30と流量測定器31と流量制御器3
2を追設した点である。
The difference from the first embodiment shown in FIG. 1 is that the temperature controller 16 is omitted and the flow rate measuring device 28 and the pressure measuring device 29 are used.
And upper limit flow rate setting device 30, flow rate measuring device 31, and flow rate controller 3
This is the point where 2 was added.

【0037】ここで、流量測定器28は、脱塩装置6に
設けられ、脱塩装置6に流入する流量を測定し流量測定
信号F1を出力する。圧力測定器29は、低圧給水加熱
器ドレンタンク9内の圧力を測定し、圧力測定信号Pを
出力する。上限流量設定器30は、流量測定信号F3と
圧力測定信号Pと予め設定された温度設定値T3とから
所定の演算式に基づいて低圧給水加熱器ドレンタンク9
から復水系統に注入されるドレン流量上限値を求め上限
流量設定信号F2を出力する。流量測定器31は、低圧
ドレンポンプ10の出口側から復水系統への流量を測定
し、流量測定信号F1を出力する。流量制御器32は、
前記上限流量設定信号F2と前記流量測定信号F1との
偏差信号を比例積分微分演算処理して通常水位調節弁開
度信号13aを出力する。
Here, the flow rate measuring device 28 is provided in the desalination apparatus 6, measures the flow rate flowing into the desalination apparatus 6, and outputs a flow rate measurement signal F1. The pressure measuring device 29 measures the pressure in the low-pressure feed water heater drain tank 9 and outputs a pressure measurement signal P. The upper limit flow rate setter 30 uses the flow rate measurement signal F3, the pressure measurement signal P, and a preset temperature set value T3 based on a predetermined calculation formula to form the low-pressure feed water heater drain tank 9
Then, the upper limit value of the drain flow rate injected into the condensate system is obtained, and the upper limit flow rate setting signal F2 is output. The flow rate measuring device 31 measures the flow rate from the outlet side of the low-pressure drain pump 10 to the condensate system, and outputs a flow rate measurement signal F1. The flow rate controller 32 is
The deviation signal between the upper limit flow rate setting signal F2 and the flow rate measurement signal F1 is subjected to proportional-plus-integral-derivative calculation processing and a normal water level control valve opening signal 13a is output.

【0038】上記第2実施例の具体的作用を図6を参照
して説明すると、まず、上限流量設定器30では、演算
器30aが次の式(2)に上限流量設定信号F2を演算
する。
The specific operation of the second embodiment will be described with reference to FIG. 6. First, in the upper limit flow rate setting unit 30, the calculator 30a calculates the upper limit flow rate setting signal F2 according to the following equation (2). .

【0039】[0039]

【数2】 F2=(T3・F3−T1・F3)/(T2−T1)……………(2)[Formula 2] F2 = (T3 · F3-T1 · F3) / (T2-T1) ……………… (2)

【0040】ここで、T1:復水器から脱塩装置6に入
る給水温度(一定) T2:低圧給水加熱器ドレンタンク9から復水系統に注
入されるドレン温度(低圧給水加熱器ドレンタンク9内
飽和圧力より飽和温度として求めることができる) F3:脱塩装置6入口流量 T3:脱塩装置6入口温度設定値(一定)
Here, T1: feed water temperature (constant) that enters the desalination apparatus 6 from the condenser T2: drain temperature injected from the low pressure feed water heater drain tank 9 into the condensate system (low pressure feed water heater drain tank 9 It can be calculated as the saturation temperature from the internal saturation pressure) F3: Desalination device 6 inlet flow rate T3: Desalination device 6 inlet temperature set value (constant)

【0041】一方、流量制御器32では、流量測定器3
1からのドレンの流量測定信号F1と上限流量設定信号
F2とが偏差演算器32aに入力し、両者の偏差信号が
比例積分微分演算器32bに入力して制御演算され、通
常水位調節弁開度信号13aを出力する。
On the other hand, in the flow rate controller 32, the flow rate measuring device 3
The drain flow rate measurement signal F1 from 1 and the upper limit flow rate setting signal F2 are input to the deviation calculator 32a, and the deviation signals of both are input to the proportional-integral-derivative calculator 32b for control calculation, and the normal water level control valve opening The signal 13a is output.

【0042】次に、低値優先器17では、通常水位制御
器12の通常水位調節弁開度信号13bと流量制御器3
2の通常水位調節弁開度信号13aを入力して、低値の
信号を通常水位調節弁開度信号13cとして通常水位調
節弁11に出力する。すなわち、通常水位調節弁開度信
号13aをA、通常水位調節弁開度信号13bをB、選
択された通常水位調節弁開度信号13cをCとすると、
次の(3)の処理がされる。
Next, in the low value priority device 17, the normal water level control valve opening signal 13b of the normal water level controller 12 and the flow rate controller 3 are supplied.
The second normal water level control valve opening signal 13a is input, and a low value signal is output to the normal water level control valve 11 as a normal water level control valve opening signal 13c. That is, when the normal water level control valve opening signal 13a is A, the normal water level control valve opening signal 13b is B, and the selected normal water level control valve opening signal 13c is C,
The following process (3) is performed.

【0043】[0043]

【数3】C=min(A,B)…………(3)[Equation 3] C = min (A, B) ………… (3)

【0044】この結果、上記処理で低値優先器17で選
択された通常水位調節弁開度信号13cによって通常水
位調節弁11が開閉制御される。
As a result, the normal water level control valve 11 is opened / closed by the normal water level control valve opening signal 13c selected by the low value priority device 17 in the above process.

【0045】上記した作用を具体的に説明すると、プラ
ント通常運転時には、低圧給水加熱器ドレンタンク9よ
り排出されるドレンの流量測定信号F1は、上限流量設
定器30で算出した上限流量設定信号F2よりも低く、
通常水位調節弁11を全閉させようとするために通常水
位調節弁開度信号13aが100%よりも大きくなる。
そのため低値優先器17で通常水位制御器12の通常水
位調節弁開度信号13bが選択され、通常水位調節弁1
1が操作される。
Explaining the above operation in detail, during normal operation of the plant, the flow rate measurement signal F1 of the drain discharged from the low pressure feed water heater drain tank 9 is the upper limit flow rate setting signal F2 calculated by the upper limit flow rate setting unit 30. Lower than
In order to fully close the normal water level control valve 11, the normal water level control valve opening signal 13a becomes larger than 100%.
Therefore, the normal water level control valve opening signal 13b of the normal water level controller 12 is selected by the low value priority device 17, and the normal water level control valve 1 is selected.
1 is operated.

【0046】一方、復水器1からの給水流量が減少する
と、脱塩装置6の入口流量のドレン流量の割合が増加し
上限流量設定信号F2が小さくなる。従って、実際のド
レンの流量測定信号F1が上限流量設定信号F2の値を
超えた場合には、通常水位調節弁11を閉じようとする
ため通常水位調節弁開度信号13aは100%よりも小
さくなる。この結果、復水器1からの給水流量の減少が
大きく、通常水位調節弁開度信号13bよりも通常水位
調節弁開度信号13aの方が小さくなると、低値優先器
17では、流量制御器32の通常水位調節弁開度信号1
3aが選択される。そして、復水系統に注入するドレン
量を減少させて給水のドレン量の割合を降下させる。
On the other hand, when the flow rate of water supplied from the condenser 1 decreases, the ratio of the drain flow rate to the inlet flow rate of the desalination device 6 increases and the upper limit flow rate setting signal F2 decreases. Therefore, when the actual drain flow rate measurement signal F1 exceeds the value of the upper limit flow rate setting signal F2, the normal water level control valve opening signal 13a is smaller than 100% in order to close the normal water level control valve 11. Become. As a result, when the water supply flow rate from the condenser 1 is greatly reduced and the normal water level control valve opening signal 13a is smaller than the normal water level control valve opening signal 13b, the low value priority device 17 causes the flow rate controller to operate. 32 normal water level control valve opening signal 1
3a is selected. Then, the amount of drain injected into the condensate system is reduced to reduce the ratio of the amount of drain of the supply water.

【0047】この場合、低圧給水加熱器ドレンタンク9
内水位は増加してしまうため、高側水位制御器14の制
御によりドレンが排出され、低圧給水加熱器ドレンタン
ク9内の水位上昇を防止する。
In this case, the low-pressure feed water heater drain tank 9
Since the internal water level increases, the drain is discharged under the control of the high-side water level controller 14 to prevent the water level in the low-pressure feed water heater drain tank 9 from rising.

【0048】このように、脱塩装置6入口流量を測定
し、その流量と低圧給水加熱器ドレンタンク9内圧力か
ら復水系統に注入するドレン量上限値を求め、ドレン量
がこの上限値を超えた場合には、通常水位調節弁11の
操作により復水系統に注入するドレン量を調節して、脱
塩装置6の入口温度を設定温度以下にすることができ
る。このようにすれば、復水器1からの給水流量の減少
による脱塩装置6の入口流量変化の応答性は非常に良い
ので、この手段による制御効果は大きい。従って、脱塩
装置6の入口温度を保護することにより脱塩機能を損な
うことなく給水加熱器ドレンポンプアップ設備の運用が
できる。
In this manner, the inlet flow rate of the desalination device 6 is measured, and the upper limit value of the drain amount to be injected into the condensate system is obtained from the flow rate and the internal pressure of the drain tank 9 of the low-pressure feed water heater. When it exceeds, the amount of drain to be injected into the condensate system can be adjusted by operating the normal water level control valve 11 so that the inlet temperature of the desalination apparatus 6 can be set to the set temperature or lower. In this way, the response of the change in the inlet flow rate of the desalination device 6 due to the decrease in the flow rate of the water supplied from the condenser 1 is very good, so the control effect by this means is great. Therefore, by protecting the inlet temperature of the desalination device 6, the feed water heater drain pump up facility can be operated without impairing the desalination function.

【0049】[0049]

【発明の効果】以上説明したように請求項1の発明によ
れば、脱塩装置の入口温度信号が温度設定信号を超えた
場合、脱塩装置の入口温度信号に基づく第2の水位調節
弁開度信号によって流量調節弁が開閉され、脱塩装置の
入口温度信号の上昇を防ぐ。従って、高温の水が脱塩装
置に流入することがなく、脱塩機能を損なうことがな
い。
As described above, according to the invention of claim 1, when the inlet temperature signal of the desalination device exceeds the temperature setting signal, the second water level control valve based on the inlet temperature signal of the desalination device. The flow rate control valve is opened / closed by the opening signal to prevent the inlet temperature signal of the desalination apparatus from rising. Therefore, hot water does not flow into the desalination apparatus, and the desalination function is not impaired.

【0050】また、請求項2の発明によれば、排出ドレ
ン流量信号が脱塩装置の入口温度信号に相当するプロセ
ス量としての上限流量設定信号より大きくなった場合、
第2の水位調節弁開度信号よって流量調節弁が開閉して
排出ドレン流量信号が上限流量設定信号以上となること
を防ぐ。従って、脱塩装置の入口温度信号の上昇が防止
され、高温の水の流入により脱塩機能を損なうことがな
い。
According to the second aspect of the present invention, when the discharge drain flow rate signal becomes larger than the upper limit flow rate setting signal as the process amount corresponding to the inlet temperature signal of the demineralizer,
The flow control valve is prevented from opening and closing by the second water level control valve opening signal and the discharge drain flow rate signal becomes equal to or higher than the upper limit flow rate setting signal. Therefore, the rise of the inlet temperature signal of the desalination device is prevented, and the desalination function is not impaired by the inflow of high-temperature water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す給水加熱器ドレンポ
ンプアップ設備の構成図である。
FIG. 1 is a configuration diagram of a feed water heater drain pump up facility showing a first embodiment of the present invention.

【図2】図1に適用される通常水位制御器の構成図であ
る。
FIG. 2 is a configuration diagram of a normal water level controller applied to FIG.

【図3】図1に適用される温度制御器の構成図である。FIG. 3 is a configuration diagram of a temperature controller applied to FIG.

【図4】図1に適用される高側水位制御器の構成図であ
る。
FIG. 4 is a configuration diagram of a high-side water level controller applied to FIG.

【図5】本発明の第2実施例を示す給水加熱器ドレンポ
ンプアップ設備の構成図である。
FIG. 5 is a configuration diagram of a feed water heater drain pump-up facility showing a second embodiment of the present invention.

【図6】図5に適用される制御ブロックの構成図であ
る。
6 is a configuration diagram of a control block applied to FIG.

【図7】給水加熱器ドレンポンプアップ設備の概略系統
図である。
FIG. 7 is a schematic system diagram of a feed water heater drain pump up facility.

【図8】従来の給水加熱器ドレンポンプアップ設備の構
成図である。
FIG. 8 is a configuration diagram of a conventional feed water heater drain pump up facility.

【符号の説明】[Explanation of symbols]

8 低圧給水加熱器 9 低圧給水加熱器ドレンタンク 10 低圧ドレンポンプ 11 通常水位調節弁 12 通常水位制御器 12a 水位検出器 12b 偏差演算器 12c 通常水位設定信号 12d 比例積分微分演算器 13a,13b,13c 通常水位調節弁開度信号 14 高側水位制御器 14a 水位検出器 14b 偏差演算器 14c 高側水位設定信号 14d 比例積分微分演算器 15 高側水位調節弁 16 温度制御器 16a 温度検出器 16b 偏差演算器 16c 温度設定信号 16d 比例積分微分演算器 17 低値優先器 28 流量測定器 29 圧力測定器 30 上限流量設定器 30a 演算器 31 流量測定器 32 流量制御器 32a 偏差演算器 32b 比例積分微分演算器 8 Low Pressure Feed Water Heater 9 Low Pressure Feed Water Heater Drain Tank 10 Low Pressure Drain Pump 11 Normal Water Level Control Valve 12 Normal Water Level Controller 12a Water Level Detector 12b Deviation Calculator 12c Normal Water Level Setting Signal 12d Proportional Integral Derivative Calculator 13a, 13b, 13c Normal water level control valve opening signal 14 High side water level controller 14a Water level detector 14b Deviation calculator 14c High side water level setting signal 14d Proportional integral derivative calculator 15 High side water level control valve 16 Temperature controller 16a Temperature detector 16b Deviation calculator 16c Temperature setting signal 16d Proportional integral differential calculator 17 Low value priority device 28 Flow rate measuring instrument 29 Pressure measuring instrument 30 Upper limit flow rate setting device 30a Calculator 31 Flow rate measuring instrument 32 Flow rate controller 32a Deviation calculator 32b Proportional integral differential calculator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子炉からの発生蒸気によってタービン
を駆動して仕事をした後の蒸気を復水器に導入し、この
復水器からの給水を復水系統に設けられた低圧給水加熱
器で前記タービンの抽気と熱交換して加熱すると共に、
前記抽気による排水ドレンを低圧給水加熱器ドレンタン
クに回収蓄積し、この低圧給水加熱器ドレンタンクから
前記排水ドレンをドレンポンプによって流量調節弁を介
して前記復水系統に設けられる脱塩装置の入口側に注入
する構成の給水加熱器ドレンポンプアップ設備におい
て、 前記低圧給水加熱器ドレンタンクの水位測定信号と水位
測定信号との偏差信号を制御演算して第1の水位調節弁
開度信号を出力する水位制御器と、 前記脱塩装置の入口温度信号と温度設定信号との偏差信
号を制御演算して第2の水位調節弁開度信号を出力する
温度制御器と、 第1の水位調節弁開度信号と第2の水位調節弁開度信号
とのいずれか低値の信号を選択してこの信号によって前
記流量調節弁を開閉制御する低値優先器を備えたことを
特徴とする給水加熱器ドレンポンプアップ設備。
1. A low-pressure feed water heater provided with a condensate system by introducing steam into the condenser after driving the turbine by steam generated from the nuclear reactor to perform work. In addition to heating by exchanging heat with the extraction air of the turbine,
The drainage drainage by the extraction is collected and accumulated in the low-pressure feedwater heater drain tank, and the drainage drain from the low-pressure feedwater heater drain tank is connected to the condensate system through a flow rate control valve by a drain pump. In a feed water heater drain pump up facility configured to inject into the side, a deviation signal between the water level measurement signal and the water level measurement signal of the low pressure water feed heater drain tank is controlled and calculated to output a first water level control valve opening signal. A water level controller for controlling the deviation signal between the inlet temperature signal and the temperature setting signal of the desalination device and outputting a second water level control valve opening signal, and a first water level control valve A water supply unit characterized by comprising a low value priority device for selecting a low value signal from the opening signal and the second water level control valve opening signal and controlling the opening and closing of the flow rate control valve by this signal. Vessel drain pump up equipment.
【請求項2】 原子炉からの発生蒸気によってタービン
を駆動して仕事をした後の蒸気を復水器に導入し、この
復水器からの給水を復水系統に設けられた低圧給水加熱
器で前記タービンの抽気と熱交換して加熱すると共に、
前記抽気による排水ドレンを低圧給水加熱器ドレンタン
クに回収蓄積し、この低圧給水加熱器ドレンタンクから
前記排水ドレンをドレンポンプによって流量調節弁を介
して前記復水系統に設けられる脱塩装置の入口側に注入
する構成の給水加熱器ドレンポンプアップ設備におい
て、 前記低圧給水加熱器ドレンタンクの水位測定信号と水位
設定信号との偏差信号を制御演算して第1の水位調節弁
開度信号を出力する水位制御器と、 前記脱塩装置の入口流量測定信号と前記低圧給水加熱器
の圧力測定信号とに基づいて前記復水系統に注入する排
水ドレンの上限流量設定値を演算し、この上限流量設定
信号を出力する上限流量設定器と、 前記上限流量設定信号と排出ドレン流量信号との偏差信
号を制御演算して第2の水位調節弁開度信号を出力する
流量制御器と、 前記第1の水位調節弁開度信号と前記第2の水位調節弁
開度信号とのいずれか低値の信号を選択して、この信号
によつて前記流量調節弁を開閉制御する低値優先器を備
えたことを特徴とする給水加熱器ドレンポンプアップ設
備。
2. A low-pressure feed water heater provided with a condenser system in which steam after driving a turbine by steam generated from a nuclear reactor to perform work is introduced into the condenser, and water supplied from the condenser is provided in a condensate system. In addition to heating by exchanging heat with the extraction air of the turbine,
The drainage drainage by the extraction is collected and accumulated in the low-pressure feedwater heater drain tank, and the drainage drain from the low-pressure feedwater heater drain tank is connected to the condensate system through a flow rate control valve by a drain pump. In the feed water heater drain pump up facility configured to inject into the side, a deviation signal between the water level measurement signal and the water level setting signal of the low pressure water heater heater drain tank is control-calculated and a first water level control valve opening signal is output. A water level controller, and calculates the upper limit flow rate set value of the drainage to be injected into the condensate system based on the inlet flow rate measurement signal of the desalination device and the pressure measurement signal of the low pressure feed water heater, and the upper limit flow rate is calculated. An upper limit flow rate setting device that outputs a setting signal, and a control signal for the deviation signal between the upper limit flow rate setting signal and the discharge drain flow rate signal to output a second water level control valve opening signal A low-value signal of the flow controller, the first water level control valve opening signal or the second water level control valve opening signal is selected, and the flow control valve is opened / closed by this signal. A water heater drain pump up facility that is equipped with a low-priority device that is controlled.
JP33684292A 1992-11-25 1992-11-25 Drain pump-up equipment for feed water heater Pending JPH06159606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33684292A JPH06159606A (en) 1992-11-25 1992-11-25 Drain pump-up equipment for feed water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33684292A JPH06159606A (en) 1992-11-25 1992-11-25 Drain pump-up equipment for feed water heater

Publications (1)

Publication Number Publication Date
JPH06159606A true JPH06159606A (en) 1994-06-07

Family

ID=18303167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33684292A Pending JPH06159606A (en) 1992-11-25 1992-11-25 Drain pump-up equipment for feed water heater

Country Status (1)

Country Link
JP (1) JPH06159606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315213A (en) * 2006-05-24 2007-12-06 Mitsubishi Heavy Ind Ltd Intake air heating system of combined cycle plant
US8001760B2 (en) 2008-10-09 2011-08-23 Mitsubishi Heavy Industries, Ltd. Intake air heating system of combined cycle plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315213A (en) * 2006-05-24 2007-12-06 Mitsubishi Heavy Ind Ltd Intake air heating system of combined cycle plant
US8001760B2 (en) 2008-10-09 2011-08-23 Mitsubishi Heavy Industries, Ltd. Intake air heating system of combined cycle plant
US8181439B2 (en) 2008-10-09 2012-05-22 Mitsubishi Heavy Industries, Ltd. Intake air heating system of combined cycle plant

Similar Documents

Publication Publication Date Title
JPS5830560B2 (en) Water supply control equipment for nuclear reactor power plants
JPS6310321B2 (en)
US4400343A (en) System and method for controlling operation of boiling water reactor
JPH06159606A (en) Drain pump-up equipment for feed water heater
JPH0629035A (en) Co-operative control device of fuel cell power-generation plant and waste heat collection system
KR860000505B1 (en) Method for regulating the pressure of the primary circuit during the shut-down phases of a pressurized water nuclear reactor
JPS6124679B2 (en)
JPS6239646B2 (en)
JPS6032082B2 (en) Feed water temperature control device
JP7303554B2 (en) hot water system
JP2758245B2 (en) Drain water level control device for feed water heater
JP2558700B2 (en) Plant warming controller
JP2588243B2 (en) Reheat steam stop valve operation test controller for steam turbine plant
JP7459615B2 (en) water treatment equipment
JP3112579B2 (en) Pressure control device
JP2765637B2 (en) Steam turbine power generation equipment
JP3067053B2 (en) Condenser
JP2519282B2 (en) Deaerator water level control system
JPH06129605A (en) Condensate recoverying device
JPH0443996A (en) Steam flow rate controller for fast reactor plant
JPH07174304A (en) Water level controller for feed water heater
JPH01248098A (en) Operating device for small and short ranged load following of boiling water nuclear reactor
JPH0223929Y2 (en)
JP2650477B2 (en) Water hammer prevention method for deaerator water supply piping and piping equipment therefor
JP2000081203A (en) Water supply device