JPH06154934A - Working method for metallic die for microlens - Google Patents

Working method for metallic die for microlens

Info

Publication number
JPH06154934A
JPH06154934A JP30992392A JP30992392A JPH06154934A JP H06154934 A JPH06154934 A JP H06154934A JP 30992392 A JP30992392 A JP 30992392A JP 30992392 A JP30992392 A JP 30992392A JP H06154934 A JPH06154934 A JP H06154934A
Authority
JP
Japan
Prior art keywords
punch
lens
curvature
radius
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30992392A
Other languages
Japanese (ja)
Inventor
Norihiko Indo
憲彦 印藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HIKYUMEN LENS KK
Original Assignee
NIPPON HIKYUMEN LENS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HIKYUMEN LENS KK filed Critical NIPPON HIKYUMEN LENS KK
Priority to JP30992392A priority Critical patent/JPH06154934A/en
Publication of JPH06154934A publication Critical patent/JPH06154934A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To form a microlens die after correcting a shape of a punch so that an interference of adjacent lens die elements can be obviated. CONSTITUTION:A relation of a radius of curvature R1 of a punch 10 and an approximate radius of curvature R2 of a lens die element 16 is derived experientally in advance. The punch 10 is constituted of a sintered hard alloy, and in the tip of this punch 10, the convex face of the radius of curvature R1 corresponding to the radius of curvature R2 is formed, based on this relation. By cutting experientally this punch 10 into the surface of a metallic die base metal 14, plural lens die elements 16 are formed adjacently in a lattice-like array. Subsequently, a face height deviation in a measuring line running along the radial direction of an arbitrary lens die element 16 whose periphery is surrounded by the lens die element 16 is measured, and by replacing this deviation with a correction amount, the punch 10 is subjected to correction working, and by using the punch 10 subjected to correction working, a metallic die of a microlens is worked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロレンズの金型加
工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microlens mold working method.

【0002】[0002]

【従来の技術】CCD(電子結合素子)やアクティブマ
トリックス方式の液晶ディスプレイは、高精細になるに
従い画素の開口率の低下をいかにして避けるかが大きな
課題となっている。これを解決する手段として、画素の
開口部に光源からの光を集光する方法が提案されてい
る。この方法はマイクロレンズを格子状配列で多数形成
した透明板を液晶ディスプレイの光源側に配置するもの
であるが、透明板の表面に非常に多数のマイクロレンズ
を規則正しく形成するのが極めて難しい。
2. Description of the Related Art In CCD (Electronic Coupling Device) and active matrix type liquid crystal displays, how to avoid a decrease in pixel aperture ratio has become a major issue as the resolution becomes higher. As a means for solving this, a method of condensing light from a light source in the opening of a pixel has been proposed. According to this method, a transparent plate having a large number of microlenses formed in a grid arrangement is arranged on the light source side of a liquid crystal display, but it is extremely difficult to form a very large number of microlenses regularly on the surface of the transparent plate.

【0003】しかし、最新の技術では、例えば特開平3
−288802号公報に、光学研磨したガラス基板上
に、微小な低融点ガラス球をレンズ材料とし、該ガラス
球を凹球面状の多数のマイクロレンズ型要素を有するプ
レス成形用金型で熱間成形し、規則正しい格子状凸レン
ズアレーを成形する方法が提案されている。
However, in the latest technology, for example, Japanese Patent Laid-Open No. Hei 3
JP-A-288802 discloses a glass substrate that has been optically polished and is made of fine low melting point glass spheres as a lens material, and the glass spheres are hot-molded by a press molding die having a large number of concave spherical microlens-type elements. However, there has been proposed a method of forming a regular lattice-shaped convex lens array.

【0004】前記プレス成形用金型は超硬合金を母材と
して使用し、その表面を超微細ダイヤモンド粉末を使用
してラッピング及びポリッシングして鏡面とし、この鏡
面に、ダイヤモンドポンチの半球面状先端を、高精度に
数値制御した押し込み装置によりストロークさせて当接
(切り込み)させ、凹球面状のマイクロレンズ型要素を
格子状配列で隣接させて形成する。
The press-molding die uses a cemented carbide as a base material, the surface of which is lapped and polished with ultrafine diamond powder to form a mirror surface, and a hemispherical tip of a diamond punch is attached to the mirror surface. Are stroked and brought into contact (cut) by a pushing device which is numerically controlled with high precision, and concave spherical microlens-type elements are formed adjacent to each other in a grid-like arrangement.

【0005】[0005]

【発明が解決しようとする課題】本発明者は、従来技術
ではダイヤモンドポンチの先端形状がそのまま正確に金
型母材に転写されないという課題を発見した。この原因
は、一つはポンチの転写率によるもので、他の一つは隣
接するレンズ型要素の干渉によるものである。
The inventor of the present invention has found a problem in the prior art that the tip shape of the diamond punch is not accurately transferred to the die base material as it is. This is due in part to the transfer rate of the punch and the other is due to the interference of adjacent lens-type elements.

【0006】すなわち特開平3−288802号公報の
場合、プレス成形用金型の母材に超硬合金(WC−5T
iC−8Co)又はオーステナイト鋼(SUS316)
を使用するが、これらはダイヤモンドポンチによる転写
率、すなわち図5のように金型母材2に転写される凹球
面のマイクロレンズ型要素4の近似曲率半径(R2)
と、ダイヤモンドポンチ6の凸球面6aの曲率半径(R
1)との比(R2)/(R1)が、金型母材2の弾性の
ために図6(A)のように100%よりも大きな値にな
っている。
That is, in the case of Japanese Patent Laid-Open No. 3-288802, a cemented carbide (WC-5T) is used as the base material of the press-molding die.
iC-8Co) or austenitic steel (SUS316)
These are the transfer rates by the diamond punch, that is, the approximate radius of curvature (R2) of the concave spherical microlens type element 4 transferred to the mold base material 2 as shown in FIG.
And the radius of curvature of the convex spherical surface 6a of the diamond punch 6 (R
The ratio (R2) / (R1) to 1) is larger than 100% as shown in FIG. 6A because of the elasticity of the die base material 2.

【0007】すなわちポンチ6を金型母材2に向けてス
トロークさせ、ポンチ6の先端で母材2に切り込んで凹
球面のマイクロレンズ型要素4を形成しても、ポンチ6
を引くと前記レンズ型要素4の底部4aが弾性による復
元作用で隆起し、その分だけ曲率半径が増大するのであ
る。なおこの曲率半径はレンズ型要素4の半径方向で一
定ではなく、正確には近似曲率半径と呼ばれる。
That is, even when the punch 6 is stroked toward the die base material 2 and the tip of the punch 6 is cut into the base material 2 to form the microlens type element 4 having the concave spherical surface, the punch 6 is formed.
When is pulled, the bottom portion 4a of the lens-type element 4 is raised by the restoring action by elasticity, and the radius of curvature is increased accordingly. It should be noted that this radius of curvature is not constant in the radial direction of the lens-type element 4, and is accurately called an approximate radius of curvature.

【0008】図6(A)は、周囲に隣接するレンズ型要
素がない単一のレンズ型要素4の転写率の測定結果であ
って、ポンチ6を20μm程度まで切り込ませるとほぼ
100%の転写率となる。転写率は金型母材2に対する
ポンチ6形状の転写の忠実度を表すから、100%に近
いほどよい。しかし、実際は後述するように隣接するレ
ンズ型要素への影響を軽微に止めるため、20μmまで
は切り込み量を増やせない。そこで切り込み量は10μ
m程度に抑え、図7のように曲率半径(R1)と(R
2)の関係を予め実験的に求めておいて、所望の曲率半
径(R2)に対応する(R1)のポンチ6を使用して金
型母材2の加工を行うことが提案される。これによれば
転写率が100%以上でも所望の曲率半径のレンズ型要
素を得ることができる。
FIG. 6 (A) shows the result of measurement of the transfer rate of a single lens-type element 4 having no lens-type elements adjacent to the periphery thereof, which is almost 100% when the punch 6 is cut to a depth of about 20 μm. Transfer rate. Since the transfer rate represents the fidelity of transfer of the punch 6 shape to the die base material 2, the transfer rate is preferably closer to 100%. However, in actuality, as will be described later, since the influence on the adjacent lens-type element is slightly stopped, the cut amount cannot be increased up to 20 μm. Therefore, the cutting depth is 10μ
The radius of curvature (R1) and (R
It is proposed that the relationship 2) is obtained experimentally in advance and the die base material 2 is processed using the punch 6 of (R1) corresponding to the desired radius of curvature (R2). According to this, a lens type element having a desired radius of curvature can be obtained even when the transfer rate is 100% or more.

【0009】図7のように曲率半径(R1)と(R2)
の関係を求めておけば、転写率の問題は一応克服できる
が、隣接するレンズ型要素の干渉の問題が残る。すなわ
ちレンズ型要素は実際は格子状配列で隣接して形成され
るため、例えば図8でレンズ型要素4を左から右に順に
形成する場合、右側のレンズ型要素4を形成するとき
に、ポンチ6の切り込みの影響により中央の既形成のレ
ンズ型要素4の底部4aが押し上げられ、当該レンズ型
要素4の曲率半径(非球面になるので、正確には近似曲
率半径)(R2)を逆に増大させてしまう。これがレン
ズ型要素の干渉の一つの類型である。
As shown in FIG. 7, the radii of curvature (R1) and (R2)
If the relationship of (1) is sought, the problem of transfer rate can be overcome, but the problem of interference between adjacent lens-type elements remains. That is, since the lens type elements are actually formed adjacent to each other in a grid-like arrangement, for example, when the lens type elements 4 are sequentially formed from left to right in FIG. 8, when the lens type elements 4 on the right side are formed, the punch 6 is formed. The bottom portion 4a of the lens-shaped element 4 formed in the center is pushed up by the influence of the notch and the radius of curvature of the lens-shaped element 4 (because it becomes an aspherical surface, to be exact, the approximate radius of curvature) (R2) is increased conversely. I will let you. This is one type of interference of lens-type elements.

【0010】図6(B)はレンズ型要素4が隣接した状
態での切り込み量と転写率との関係を示すもので、図6
(A)に比べてレンズ型要素4の干渉のため転写率が全
般的に大きな値となっていることが分かる。また図9
は、図8の曲率中心Pからレンズ型要素4の表面までの
距離(R2’)の、レンズ型要素4の半径方向に沿った
測定ラインでの面高誤差を示したもので、所望する曲率
半径を(R2)とし、横軸から(R2)の高さ位置に破
線Hを水平に引いている。同図から、レンズ型要素4の
中央部及び周辺部では距離(R2’)が曲率半径(R
2)よりも若干長くなっているのがわかる。前記干渉の
ため、レンズ型要素4の中央部での曲率半径は大きくな
るが、形状的には極端にいえばV字型となる。
FIG. 6B shows the relationship between the cut amount and the transfer rate when the lens elements 4 are adjacent to each other.
It can be seen that the transfer rate is generally larger than that in (A) due to the interference of the lens-type element 4. Also in FIG.
Shows the surface height error at the measurement line along the radial direction of the lens type element 4 at the distance (R2 ′) from the center of curvature P to the surface of the lens type element 4 in FIG. The radius is (R2), and the broken line H is drawn horizontally at the height position of (R2) from the horizontal axis. From the figure, in the central part and the peripheral part of the lens type element 4, the distance (R2 ′) is the radius of curvature (R2).
You can see that it is slightly longer than 2). Due to the interference, the radius of curvature at the center of the lens-shaped element 4 becomes large, but the shape is extremely V-shaped.

【0011】レンズ型要素4の干渉の別の類型は、レン
ズ型要素4間に形成される稜線の歪みである。すなわ
ち、切り込み量を大きくすると前記の如く既形成のレン
ズ型要素4に悪影響がでるので、切り込み量はできるだ
け浅く設定される。しかし、このように浅い切り込み量
だと、本来直線であるべき隣接レンズ型要素4間の稜線
がポンチ6の切り込み時に歪みやすくなり、マイクロレ
ンズの各レンズ要素間で集光性能にバラツキが生じるお
それがある。
Another type of interference of lenticular elements 4 is the distortion of the ridges formed between lenticular elements 4. That is, if the cut amount is increased, the already formed lens-type element 4 is adversely affected as described above, so the cut amount is set as shallow as possible. However, with such a shallow cut amount, the ridge line between the adjacent lens-type elements 4 which should originally be a straight line is likely to be distorted when the punch 6 is cut, so that the condensing performance may vary among the lens elements of the microlens. There is.

【0012】このように、切り込み量は浅過ぎても深過
ぎてもよくないが、中間の切り込み量でもレンズ型要素
4の干渉の問題は発生する。図6(B)で切り込み量が
5〜10μmのとき転写率は150%程度で、この転写
率の問題は図7のように曲率半径(R1)と(R2)の
関係を求めて所望の曲率半径(R2)に対応する(R
1)のポンチ6を選択すれば克服できるが、R2の面を
完全な球面にするにはポンチ6を非球面に加工する必要
がある。このようにレンズ型要素4の干渉の問題はポン
チ6の先端形状を補正加工、すなわち所定の非球面に加
工する以外に解決方法がない。しかし、従来のポンチ6
はダイヤモンド製であって、以下の理由によりポンチ6
の非球面加工が極めて困難であった。
As described above, the cut amount may not be too shallow or too deep, but the problem of interference of the lens-type element 4 occurs even with an intermediate cut amount. In FIG. 6B, when the cut amount is 5 to 10 μm, the transfer rate is about 150%, and the problem of this transfer rate is that the desired curvature is obtained by obtaining the relationship between the curvature radii (R1) and (R2) as shown in FIG. Corresponds to the radius (R2) (R
This can be overcome by selecting the punch 6 of 1), but it is necessary to process the punch 6 into an aspherical surface in order to make the surface of R2 a perfect spherical surface. As described above, there is no solution to the problem of interference of the lens-type element 4 except for correcting the tip shape of the punch 6, that is, processing it into a predetermined aspherical surface. However, the conventional punch 6
Is made of diamond and is punch 6 for the following reasons.
It was extremely difficult to process the aspherical surface.

【0013】(1)ダイヤモンドは硬度及び耐磨耗性が
高いため、自由に加工することが困難である。
(1) Since diamond has high hardness and abrasion resistance, it is difficult to process it freely.

【0014】(2)ダイヤモンドの特性で、結晶方向に
よって硬度が異なるため(異方性)、ポンチの全面にわ
たって形状を揃えるのが困難である。
(2) In the characteristics of diamond, the hardness differs depending on the crystal direction (anisotropic), so that it is difficult to make the shape uniform over the entire surface of the punch.

【0015】(3)球面加工でも精度を上げようとする
と時間とコストが非常にかかるが、これが非球面となる
と球面以上に時間とコストがかかる。
(3) It takes much time and cost to improve accuracy even in spherical surface processing, but if it is an aspherical surface, it takes more time and cost than a spherical surface.

【0016】本発明の目的は、形状補正が可能なポンチ
を提供すると共に、レンズ型要素の干渉を解消できるポ
ンチの形状補正方法を用いた、新規なマイクロレンズの
金型加工法を提供することにある。
An object of the present invention is to provide a punch capable of shape correction and a novel microlens die machining method using a punch shape correction method capable of eliminating interference of lens-type elements. It is in.

【0017】[0017]

【課題を解決するための手段】本発明は、ポンチの凸状
面の曲率半径(R1)と、前記曲率半径(R1)で形成
される前記レンズ型要素の凹状面の近似曲率半径(R
2)との関係を実験的に求め、ポンチを超硬合金で構成
すると共に、その先端に、曲率半径(R1)と(R2)
の前記関係に基づき、所望の曲率半径(R2)のレンズ
型要素を形成するための凸状面を形成し、前記ポンチ
を、試験的に金型母材表面に切り込ませて複数のレンズ
型要素を格子状配列で隣接して形成し、周囲をレンズ型
要素で囲まれた任意のレンズ型要素の凹状面の、半径方
向に沿った測定ラインでの面高誤差を測定し、前記面高
誤差を補正量に置換えて前記ポンチの凸状面を補正加工
し、該補正加工したポンチを使用してマイクロレンズの
金型を加工することを特徴とする。
SUMMARY OF THE INVENTION The present invention is directed to a radius of curvature (R1) of the convex surface of the punch and an approximate radius of curvature (R) of the concave surface of the lens-shaped element formed by the radius of curvature (R1).
2) was obtained experimentally, the punch was made of cemented carbide, and the radius of curvature (R1) and (R2)
Based on the above relationship, a convex surface for forming a lens mold element having a desired radius of curvature (R2) is formed, and the punch is experimentally cut into the surface of the mold base material to form a plurality of lens molds. Elements are formed adjacent to each other in a grid-like arrangement, and the surface height error of a concave surface of an arbitrary lens-shaped element surrounded by lens-shaped elements at a measurement line along the radial direction is measured. It is characterized in that an error is replaced with a correction amount, the convex surface of the punch is subjected to correction processing, and the die of the microlens is processed using the punch subjected to the correction processing.

【0018】[0018]

【作用】超硬合金製のポンチは、ダイヤモンド製ポンチ
に比べて硬度及び耐磨耗性は劣るが、その分だけ研磨機
などによる補正加工が容易である。本発明の金型加工法
では、曲率半径(R1)と(R2)の関係に基づき、レ
ンズ型要素の所望曲率半径(R2)に対応するポンチの
曲率半径(R1)を求め、このポンチで試験的にレンズ
型要素を格子状配列で隣接して形成し、周囲をレンズ型
要素で囲まれた任意のレンズ型要素の半径方向の測定ラ
インでの面高誤差を測定し、この誤差を補正量に置換え
てポンチの曲率半径(R1)を数値制御(NC)研磨機
などで形状補正し、この補正したポンチを使用してマイ
クロレンズ金型を加工する。従ってレンズ型要素の干渉
に拘らず、球面又は非球面の所望形状のマイクロレンズ
型が正確に形成される。
The punch made of cemented carbide is inferior in hardness and abrasion resistance to the punch made of diamond, but the punch can be easily corrected by a polishing machine. In the die machining method of the present invention, the radius of curvature (R1) of the punch corresponding to the desired radius of curvature (R2) of the lens type element is determined based on the relationship between the radiuses of curvature (R1) and (R2), and the punch is used for testing. The lens-shaped elements are formed adjacent to each other in a grid-like arrangement, and the surface height error at the radial measurement line of any lens-shaped element surrounded by the lens-shaped elements is measured, and this error is corrected. The radius of curvature (R1) of the punch is corrected by a numerical control (NC) polishing machine or the like, and the microlens mold is processed using the corrected punch. Therefore, a microlens mold having a desired spherical or aspherical shape is accurately formed regardless of the interference of the lens mold elements.

【0019】[0019]

【実施例】以下に本発明の好適一実施例を図に基づき説
明する。図1において8はポンチ10を数値制御(N
C)にて上下方向にストロークさせる押し込み装置、1
2はポンチ10の下方に水平に配設されX及びY方向に
移動可能なXYテーブル、14はXYテーブル12上の
定位置に水平に固定された金型母材であって、この金型
母材14は、例えば13%クローム鋼を矩形に切り出
し、表面にニッケルリンメッキを施し、従来手法により
鏡面の平面に加工されている。ポンチ10は超硬合金、
例えば超硬合金(W−C)で構成され、図2(A)
(B)に示すポンチ10の先端凸状面10aは、後述す
るように所望のマイクロレンズ型要素16を形成するた
めに形状補正されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, numeral 8 is a numerical control of the punch 10 (N
Pushing device to make a vertical stroke in C), 1
2 is an XY table horizontally arranged below the punch 10 and movable in the X and Y directions, and 14 is a mold base material fixed horizontally at a fixed position on the XY table 12. The material 14 is obtained by cutting out, for example, 13% chrome steel into a rectangular shape, plating the surface with nickel phosphorus, and processing the surface into a mirror surface by a conventional method. Punch 10 is cemented carbide,
For example, it is made of cemented carbide (WC), and is shown in FIG.
The tip convex surface 10a of the punch 10 shown in (B) is shape-corrected to form a desired microlens type element 16 as described later.

【0020】レンズ型要素16は、ポンチ10を上下
(Z)方向に連続ストロークさせながら、金型母材14
をX又はY方向に所定のピッチで、又は連続的に走査移
動させることにより格子状配列で隣接して形成される。
このレンズ型要素16を形成した金型母材12を射出成
形機に装着し、レンズ用樹脂を射出することにより、図
2(C)のようなマイクロレンズ18が得られる。
The lens-type element 16 is formed by continuously punching the punch 10 in the vertical (Z) direction while the die base material 14 is pressed.
Are formed so as to be adjacent to each other in a lattice-like arrangement by moving the X in the X or Y direction at a predetermined pitch or continuously.
The mold base material 12 on which the lens mold element 16 is formed is mounted on an injection molding machine, and a resin for a lens is injected to obtain a microlens 18 as shown in FIG. 2C.

【0021】ポンチ10のストロークはNC制御により
増減可能であるので、金型母材14表面が平面以外の球
面ないし非球面でも、レンズ型要素16を形成可能であ
る。ただし、金型母材14の表面が平面の場合は、ポン
チ14の下降ストロークの下限は適当なストッパで規制
すれば済むから、必ずしも高価なNC制御式の押し込み
装置8を必要とせず、単に上下運動するだけの単純な加
工機で十分である。
Since the stroke of the punch 10 can be increased or decreased by NC control, the lens type element 16 can be formed even if the surface of the die base material 14 is a spherical surface or an aspherical surface other than a flat surface. However, when the surface of the die base material 14 is a flat surface, the lower limit of the downward stroke of the punch 14 can be restricted by an appropriate stopper, so that the expensive NC control type pushing device 8 is not necessarily required, and only the vertical movement is required. A simple machine that only exercises is sufficient.

【0022】次に前記ポンチ10の形状補正について説
明する。前記ポンチ10の下端面は、最初に図7の(R
1)と(R2)の関係に基づき、所望の曲率半径(R
2)のレンズ型要素16を形成する曲率半径(R1)の
球面(又は非球面)の凸状面10bに加工しておく。そ
してレンズ型要素16の本格加工の前に、金型母材14
と同様の構成の図4(A)(B)の試験用の金型母材2
0に押し込み装置8を使用してポンチ10で試験的に切
り込み、格子状配列で隣接した複数のレンズ型要素Lを
形成する。図中の1−25の番号はレンズ型要素Lの形
成順序を示す。
Next, the shape correction of the punch 10 will be described. The lower end surface of the punch 10 is initially (R) in FIG.
Based on the relationship between 1) and (R2), the desired radius of curvature (R
The spherical (or aspherical) convex surface 10b having the radius of curvature (R1) forming the lens type element 16 of 2) is processed. And before the full-scale processing of the lens mold element 16, the mold base material 14
4A and 4B having the same configuration as that of the test die base material 2
A punch 10 is used to test-cut into the 0 using a punching device 8 to form a plurality of adjacent lens-shaped elements L in a grid-like arrangement. The number 1-25 in the drawing indicates the order of forming the lens-type element L.

【0023】次に、周囲をレンズ型要素Lで囲まれた任
意のレンズ型要素L(形成順序の番号で示すと7−9な
どのレンズ型要素Lである)を測定対象として選び、当
該レンズ型要素Lの半径方向に沿った測定ラインでの面
高、すなわちレンズ型要素Lの曲率中心からレンズ型要
素Lの表面までの距離(R2’)を測定する。曲率半径
(R2)を基準とし、距離(R2’)が(R2)よりど
れだけ増減変化しているかをグラフにプロットすると、
図9と同様のグラフが得られる。このグラフを破線Hを
中心として正負(上下)反転させると、図3(B)のグ
ラフが得られる。このグラフは、ポンチ10の曲率半径
(R1)の凸状面10aの、補正加工すべき部分と補正
量を表している。
Next, an arbitrary lens type element L surrounded by the lens type element L (which is a lens type element L such as 7-9 in the order of formation order) is selected as a measurement target, and the lens concerned is selected. The surface height at the measurement line along the radial direction of the mold element L, that is, the distance (R2 ′) from the center of curvature of the lens mold element L to the surface of the lens mold element L is measured. When plotting how much the distance (R2 ') increases or decreases from (R2) based on the radius of curvature (R2),
A graph similar to that of FIG. 9 is obtained. By inverting this graph positively and negatively (up and down) about the broken line H, the graph of FIG. 3B is obtained. This graph shows the portion of the convex surface 10a having the radius of curvature (R1) of the punch 10 to be corrected and the correction amount.

【0024】次に、ポンチ10を押し込み装置8から一
旦取り外し、NC制御方式の自動研磨機などを使用し
て、この自動研磨機に図3(B)の補正データを入力
し、破線Hよりも上側のグラフに対応するポンチ10の
凸状面10a1,10a2は、縦線長さに対応して曲率
中心Qから凸状面10a1,10a2までの距離(R
1’)を減少させ、反対に下側のグラフに対応するポン
チ10の凸状面10a3は、縦線長さに対応して曲率中
心Qから凸状面10a3までの距離(R1’)を増大さ
せる補正加工を行う。こうして補正加工したポンチ10
を再び押し込み装置8に取り付け、レンズ型要素16の
本格加工を開始する。
Next, the punch 10 is once removed from the pushing device 8, and the correction data of FIG. 3 (B) is input to this automatic polishing machine using an NC control type automatic polishing machine or the like. The convex surfaces 10a1 and 10a2 of the punch 10 corresponding to the upper graph indicate the distance (R from the center of curvature Q to the convex surfaces 10a1 and 10a2 corresponding to the vertical line length).
1 ′) is decreased, and conversely, the convex surface 10a3 of the punch 10 corresponding to the lower graph increases the distance (R1 ′) from the center of curvature Q to the convex surface 10a3 corresponding to the vertical line length. Perform correction processing. Punch 10 corrected in this way
Is attached to the pushing device 8 again, and full-scale processing of the lens type element 16 is started.

【0025】ポンチ10の凸状面10aを前記の如く補
正することにより、図9のレンズ型要素の中心Pからの
距離(R2’)で、曲率半径(R2)より大きい部分
E,Fは、対応するポンチ10の凸状面10a1,10
a2の距離(R1’)が減少補正されるので曲率半径
(R2)に一致し、また曲率半径(R2)より小さい部
分Gは、対応するポンチ10の凸状面10a3の距離
(R1’)が増大補正されるので曲率半径(R2)に一
致する。従って半径方向での曲率半径の変化がない所望
の曲率半径(R2)のレンズ型要素16が形成される。
なお、非球面のレンズ型要素を形成する場合は、曲率半
径(R2)を非球面式で表す。このとき図3(B)の破
線J及び図9の破線Hは、当該非球面式に従った曲線と
なる。
By correcting the convex surface 10a of the punch 10 as described above, the portions E and F larger than the radius of curvature (R2) at the distance (R2 ') from the center P of the lens type element of FIG. The corresponding convex surfaces 10a1 and 10a of the punch 10
Since the distance (R1 ′) of a2 is reduced and corrected, the radius G matches the radius of curvature (R2), and the portion G smaller than the radius of curvature (R2) has the distance (R1 ′) of the corresponding convex surface 10a3 of the punch 10 of Since the correction is increased, it matches the radius of curvature (R2). Therefore, the lens-shaped element 16 having a desired radius of curvature (R2) is formed without any change in the radius of curvature in the radial direction.
When forming an aspherical lens type element, the radius of curvature (R2) is represented by an aspherical expression. At this time, the broken line J in FIG. 3B and the broken line H in FIG. 9 are curves according to the aspherical expression.

【0026】以上、本発明の一実施例につき説明した
が、本発明は前記実施例に限定されることなく種々の変
形が可能である。例えばポンチ10の材質は超硬合金
(W−C)以外の合金でもよいし、金型母材の材質は1
3%クローム鋼以外の合金でもよい。また金型母材は固
定とし、押し込み装置8をXYテーブル12又は類似の
移動装置に載せて、ポンチ10をストロークさせつつ該
ストローク方向と直角に走査移動させてもよい。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment and various modifications can be made. For example, the material of the punch 10 may be an alloy other than cemented carbide (WC), and the material of the die base material is 1
Alloys other than 3% chrome steel may be used. Alternatively, the die base material may be fixed, the pushing device 8 may be placed on the XY table 12 or a similar moving device, and the punch 10 may be stroked while being scanned and moved at a right angle to the stroke direction.

【0027】[0027]

【発明の効果】本発明は前記の如く、レンズ型要素の干
渉を解消して精密なマイクロレンズ型を加工するために
は、ポンチの形状補正が不可欠であることを見出し、こ
の形状補正を研磨機などで簡単かつ低コストで行えるよ
うに従来のダイヤモンド製ポンチを超硬合金製に変更
し、試験的に金型母材に形成したレンズ型要素の誤差に
基づき、この誤差を解消すべくポンチを形状補正した上
でマイクロレンズ型を加工するようにしたので、隣接す
るレンズ型要素の干渉に拘らず、所望形状のレンズ型を
正確に形成することができる。
As described above, the present invention has found that the punch shape correction is indispensable in order to eliminate the interference of the lens-type elements and process a precise microlens shape, and the shape correction is polished. The conventional diamond punch was changed to cemented carbide so that it could be done easily and at low cost with a machine, etc., and based on the error of the lens type element experimentally formed on the die base material, the punch was made to eliminate this error. Since the microlens mold is processed after shape correction, the lens mold having a desired shape can be accurately formed regardless of the interference of the adjacent lens mold elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】 押し込み装置及びXYテーブルの側面図。FIG. 1 is a side view of a pushing device and an XY table.

【図2】 (A)は加工前の金型母材及びポンチの斜視
図、(B)は加工中の金型母材及びポンチの斜視図、
(C)はマイクロレンズの斜視図。
2A is a perspective view of a die base material and a punch before processing, FIG. 2B is a perspective view of a die base material and a punch during processing, FIG.
(C) is a perspective view of a microlens.

【図3】 (A)はポンチの凸状面の側面図、(B)は
ポンチの凸状面の形状補正量を示す図。
FIG. 3A is a side view of a convex surface of a punch, and FIG. 3B is a diagram showing a shape correction amount of the convex surface of the punch.

【図4】 (A)は試験用の金型母材の平面図、(B)
は同金型母材の断面図。
FIG. 4A is a plan view of a test die base material, and FIG.
Is a cross-sectional view of the mold base material.

【図5】 従来のダイヤモンド製ポンチとレンズ型要素
の側面図。
FIG. 5 is a side view of a conventional diamond punch and lens-type element.

【図6】 (A)は単一のレンズ型要素の切り込み量と
転写率との関係を示すグラフ図、(B)は格子状配列で
隣接した複数のレンズ型要素での切り込み量と転写率と
の関係を示すグラフ図。
FIG. 6A is a graph showing the relationship between the cut amount and the transfer rate of a single lens-type element, and FIG. 6B is the cut amount and the transfer rate of a plurality of lens-type elements adjacent to each other in a grid array. The graph figure which shows the relationship with.

【図7】 ポンチの曲率半径(R1)と、レンズ型要素
の曲率半径(R2)との関係を表すグラフ。
FIG. 7 is a graph showing the relationship between the radius of curvature of the punch (R1) and the radius of curvature of the lens-type element (R2).

【図8】 ポンチとレンズ型要素の側面図。FIG. 8 is a side view of the punch and lens-type element.

【図9】 レンズ型要素の半径方向に沿った測定ライン
での面高誤差を示すグラフ図。
FIG. 9 is a graph showing the surface height error at the measurement line along the radial direction of the lens-type element.

【符号の説明】[Explanation of symbols]

2 金型母材 4 マイクロレンズ型 6 ダイヤモンド製ポンチ 8 押し込み装置 10 超硬合金製ポンチ 12 XYテーブル 14 金型母材 16 マイクロレンズ型要素 18 マイクロレンズ 20 試験用の金型母材 2 Mold base material 4 Micro lens type 6 Diamond punch 8 Pushing device 10 Cemented carbide punch 12 XY table 14 Mold base material 16 Micro lens type element 18 Micro lens 20 Mold base material for test

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金型母材の表面を鏡面加工し、該鏡面に
対し、先端が微小な凸状面とされたポンチを押し込み装
置により垂直に連続ストロークさせると共に、前記金型
母材を前記ストローク方向と直角方向に多数回走査移動
させ、金型母材表面に多数の凹状面のマイクロレンズ型
要素を格子状配列で隣接して形成するマイクロレンズの
金型加工法において、 前記ポンチの凸状面の曲率半径(R1)と、前記曲率半
径(R1)で形成される前記レンズ型要素の凹状面の近
似曲率半径(R2)との関係を実験的に求め、 ポンチを超硬合金で構成すると共に、その先端に、曲率
半径(R1)と(R2)の前記関係に基づき、所望の曲
率半径(R2)のレンズ型要素を形成するための凸状面
を形成し、 前記ポンチを、試験的に金型母材表面に切り込ませて複
数のレンズ型要素を格子状配列で隣接して形成し、 周囲をレンズ型要素で囲まれた任意のレンズ型要素の凹
状面の、半径方向に沿った測定ラインでの面高誤差を測
定し、 前記面高誤差を補正量に置換えて前記ポンチの凸状面を
補正加工し、 該補正加工したポンチを使用してマイクロレンズの金型
を加工することを特徴とするマイクロレンズの金型加工
法。
1. A surface of a die base material is mirror-finished, and a punch having a fine convex tip is continuously stroked vertically with respect to the mirror surface by a pushing device, and the die base material is aforesaid. In the microlens mold working method, in which a plurality of concave microlens elements are formed adjacent to each other in a lattice-like array on the surface of the mold base material by scanning and moving a plurality of times in the direction perpendicular to the stroke direction, the convex of the punch The relationship between the radius of curvature (R1) of the curved surface and the approximate radius of curvature (R2) of the concave surface of the lens type element formed by the radius of curvature (R1) is experimentally determined, and the punch is made of cemented carbide. At the same time, a convex surface for forming a lens-shaped element having a desired radius of curvature (R2) is formed at the tip of the punch based on the relationship between the radiuses of curvature (R1) and (R2). Cut into the surface of the die base material Then, a plurality of lens-shaped elements are formed adjacent to each other in a grid-like array, and the surface height error of the concave surface of any lens-shaped element surrounded by lens-shaped elements is measured at the measurement line along the radial direction. A microlens mold characterized by measuring, correcting the convex surface of the punch by replacing the surface height error with a correction amount, and processing the microlens mold using the corrected punch. Mold processing method.
JP30992392A 1992-11-19 1992-11-19 Working method for metallic die for microlens Withdrawn JPH06154934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30992392A JPH06154934A (en) 1992-11-19 1992-11-19 Working method for metallic die for microlens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30992392A JPH06154934A (en) 1992-11-19 1992-11-19 Working method for metallic die for microlens

Publications (1)

Publication Number Publication Date
JPH06154934A true JPH06154934A (en) 1994-06-03

Family

ID=17998971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30992392A Withdrawn JPH06154934A (en) 1992-11-19 1992-11-19 Working method for metallic die for microlens

Country Status (1)

Country Link
JP (1) JPH06154934A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752949A1 (en) * 1996-09-05 1998-03-06 Anizan Paul Microlens array fabrication method for optical communications
JP2003098313A (en) * 2001-09-20 2003-04-03 Optonix Seimitsu:Kk Aspheric lens array, method for manufacturing die and method for manufacturing aspheric lens array
US6653705B2 (en) 2000-10-13 2003-11-25 Canon Kabushiki Kaisha Aspherical microstructure, and method of fabricating the same
CN1297826C (en) * 2001-08-07 2007-01-31 株式会社日立制作所 Method for mfg. micro lens array and transfer starting mould, concave-convex mould, lamination, diffusion board and LCD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752949A1 (en) * 1996-09-05 1998-03-06 Anizan Paul Microlens array fabrication method for optical communications
US6653705B2 (en) 2000-10-13 2003-11-25 Canon Kabushiki Kaisha Aspherical microstructure, and method of fabricating the same
US6876051B2 (en) 2000-10-13 2005-04-05 Canon Kabushiki Kaisha Aspherical microstructure, and method of fabricating the same
CN1297826C (en) * 2001-08-07 2007-01-31 株式会社日立制作所 Method for mfg. micro lens array and transfer starting mould, concave-convex mould, lamination, diffusion board and LCD
JP2003098313A (en) * 2001-09-20 2003-04-03 Optonix Seimitsu:Kk Aspheric lens array, method for manufacturing die and method for manufacturing aspheric lens array
JP4744749B2 (en) * 2001-09-20 2011-08-10 株式会社オプトニクス精密 Aspheric lens array, mold manufacturing method, and aspheric lens array manufacturing method

Similar Documents

Publication Publication Date Title
US5405652A (en) Method of manufacturing a die for use in molding glass optical elements having a fine pattern of concavities and convexities
JPH11223708A (en) Indentator and production of micro-optical element array
JP2007519020A (en) LENS HAVING AT LEAST ONE LENS CENTRATION MARK AND METHOD FOR MANUFACTURING AND USING THE SAME
US11833721B2 (en) Resin molding, printer, and method for manufacturing resin molding
CN102180585B (en) Pressing mold for optical lenses, glass optical lens and method for manufacturing glass optical lenses
KR100407874B1 (en) Mold manufacturing method for optical element manufacturing and apparatus for performing same
JPH06154934A (en) Working method for metallic die for microlens
US5094796A (en) Elastically deformable die and method of die forming using the die
EP2749543A1 (en) Optical element manufacturing method and manufacturing device
KR101597520B1 (en) producing method for forming mold of optical lens, optical lens of the same producing method and producing method for optical lens using the same mold
WO2020197912A1 (en) Mould pair having aligment surfaces
US7771815B2 (en) Molding glass lens and mold thereof
JP3191447B2 (en) Method of manufacturing resin-bonded aspheric lens
JP3969697B2 (en) Manufacturing method of mold for microlens array
TW568807B (en) Apparatus for forming a microlens mold
JP2008180970A (en) Optical component with ruled line
CN111983735A (en) Light diffuser
RU2245852C1 (en) Method of production of optical pieces with aspheric surfaces
JP2661450B2 (en) Aspheric lens mold
JP5495529B2 (en) Manufacturing method of lens mold and manufacturing method of lens
JP2661449B2 (en) Manufacturing method of aspherical molded lens
JP2002326230A (en) Method and apparatus for manufacturing mold, and mold and molding
JPH06115955A (en) Mold for optical element molding and its production
JPH04330403A (en) Glass optical element
JPH11236224A (en) Method for forming optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201