JPH06153965A - Microbial strain of genus pseudomonas having recombinant dna and production of lipase using the microorganism - Google Patents
Microbial strain of genus pseudomonas having recombinant dna and production of lipase using the microorganismInfo
- Publication number
- JPH06153965A JPH06153965A JP4341226A JP34122692A JPH06153965A JP H06153965 A JPH06153965 A JP H06153965A JP 4341226 A JP4341226 A JP 4341226A JP 34122692 A JP34122692 A JP 34122692A JP H06153965 A JPH06153965 A JP H06153965A
- Authority
- JP
- Japan
- Prior art keywords
- lipase
- pseudomonas
- ala
- strain
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はリパーゼ遺伝子、リパー
ゼ遺伝子を含む組換えDNA、それを含むシュードモナ
ス属菌及びそれを用いたリパーゼの製造法に関する。TECHNICAL FIELD The present invention relates to a lipase gene, a recombinant DNA containing the lipase gene, a Pseudomonas bacterium containing the same, and a method for producing lipase using the same.
【0002】リパーゼは脂質を加水分解する酵素で、医
薬、食品の分野のみならず、油脂の加工、臨床診断薬、
洗剤、有機化合物の不斉合成及び分解等の医薬、食品以
外の工業分野でも広く利用されている。[0002] Lipase is an enzyme that hydrolyzes lipids, and is used not only in the fields of medicine and food, but also in the processing of fats and oils, clinical diagnostic agents,
It is also widely used in industrial fields other than pharmaceuticals and foods such as detergents, asymmetric synthesis and decomposition of organic compounds.
【0003】[0003]
【従来の技術】これまで、医薬、食品以外の工業分野で
リパーゼを利用するに際しては、主としてシュードモナ
ス(Pseudomonas)属の産生するリパーゼが用いられて
おり、更に又、例えば、特開平3-87187号記載のシュー
ドモナス・セパシア(Pseudomonas cepacia)M-12-33、
特開平3-47079号記載のシュードモナス・エスピー(Ps
eudomonas sp.)KWI-56及びJ. Bacteriol.,173巻、559-
567(1991)記載のシュードモナス・セパシア(Pseudom
onas cepacia)DSM-3959等のシュードモナス(Pseudomo
nas)属の産生するリパーゼにおいては、組換えDNA
技術を利用してその生産性が高められている。2. Description of the Related Art Hitherto, when utilizing lipase in industrial fields other than medicine and food, a lipase produced by the genus Pseudomonas has been mainly used, and further, for example, JP-A-3-87187. Pseudomonas cepacia M-12-33, as described
Pseudomonas sp (Ps) described in JP-A-3-47079
eudomonas sp.) KWI-56 and J. Bacteriol., 173, 559-
567 (1991) described Pseudomonas cepacia (Pseudom
onas cepacia) Pseudomonas such as DSM-3959
recombinant DNA in the lipase produced by
Its productivity is enhanced by using technology.
【0004】[0004]
【発明が解決しようとする課題】しかし、これらの既存
のリパーゼは、界面活性剤に対して影響を受け易いとい
う欠点があり、界面活性剤の共存下でリパーゼを使用す
る洗剤用、臨床検査用、不斉合成及び分解等の工業分野
においては、より優れたリパーゼ、即ち、界面活性剤に
対する耐性の高いリパーゼの安価な供給が望まれてい
る。However, these existing lipases have a drawback that they are easily affected by a surfactant, and therefore, they are used for detergents and clinical examinations in which lipase is used in the presence of a surfactant. In the industrial fields such as asymmetric synthesis and decomposition, it is desired to supply a better lipase, that is, a lipase highly resistant to a surfactant at a low cost.
【0005】[0005]
【課題を解決するための手段】そこで、まず、本発明者
らは、界面活性剤に対する耐性の高いリパーゼの生産菌
を自然界より求め、鋭意検討の結果、目的に合うところ
の1菌株を得た。本菌株の菌学的性質は下記のとおりで
ある。[Means for Solving the Problems] Therefore, first, the present inventors sought from the natural world a lipase-producing bacterium highly resistant to a surfactant, and as a result of diligent studies, obtained one strain suitable for the purpose. . The mycological properties of this strain are as follows.
【0006】(a)形態 (1)桿菌(0.6×2.0)μ (2)単独または短連鎖 (3)運動性あり、極多毛 (4)胞子なし (5)グラム染色:陰性 (6)抗酸性:陰性 (7)多形性:なし(A) Morphology (1) Bacillus (0.6 × 2.0) μ (2) Alone or short chain (3) Motile, hyperhairy (4) No spores (5) Gram stain: Negative (6) Acidic : Negative (7) Polymorphism: None
【0007】(b)生育状態 (1)肉汁寒天平板培養:円形、凸円状、表面はなめら
かで薄い、黄白色半透明 (2)肉汁寒天斜面培養:直状、周縁はなめらかで生育
は普通、凸円状、薄黄白色でやや光沢あり (3)肉汁液体培養:生育は普通、表面に薄膜形成、濁
りあり (4)肉汁ゼラチン穿刺培養:生育は普通、液化は漏斗
状 (5)リトマスミルク:ややアルカリ性、リトマスを還
元する、液化するがわずかに沈澱を形成する(B) Growth state (1) Meat broth agar plate culture: round, convex circle, smooth and thin surface, yellow-white semi-transparent (2) Meat broth agar slope culture: straight, smooth on the periphery, normal growth , Convex circle, light yellowish white and slightly glossy (3) Liquid culture of gravy: growth is normal, thin film is formed on the surface, turbid (4) Gelatin gelatin stab culture: growth is normal, liquefaction is funnel-like (5) litmus Milk: Slightly alkaline, reducing litmus, liquefying but slightly forming a precipitate
【0008】(c)生育性 (1)マッコンキー(MacConkey)培地:生育 (2)KCN培地:生育しない (3)SS寒天培地:生育しない(C) Viability (1) MacConkey medium: growth (2) KCN medium: no growth (3) SS agar medium: no growth
【0009】(d)生理的性質 (1)硝酸塩の還元:陰性 (2)脱窒反応:陰性 (3)MRテスト:陰性 (4)VPテスト:陰性 (5)インドールの生成:陰性 (6)硫化水素の生成:陰性 (7)デンプンの加水分解:陰性 (8)クエン酸の利用:陽性(シモンズ、クエン酸培
地) (9)無機窒素源の利用:硝酸塩は利用されないがアン
モニウム塩を利用する (10)色素の生成 キング(King)A培地:淡黄色素 キング(King)B培地:淡褐色水溶性色素 (11)ツィーン(Tween)80分解:陽性 (12)カゼイン分解:陽性 (13)PHB蓄積:陽性 (14)ウレアーゼ:陰性 (15)オキシダーゼ:陽性 (16)カタラーゼ:陽性 (17)アルギニンジヒドロラーゼ:陰性 (18)リジンデカルボキシラーゼ:陽性 (19)オルニチンデカルボキシラーゼ:陽性 (20)アシルアミダーゼ:陽性 (21)生育pH:5.0〜9.0 (22)生育温度:12〜41℃ (23)酸素に対する態度:好気性 (24)O−Fテスト:酸化的(Oxidative) (25)糖類からの酸及びガスの生成 イ)酸の生成:表1に示す(D) Physiological properties (1) Reduction of nitrate: negative (2) Denitrification reaction: negative (3) MR test: negative (4) VP test: negative (5) Indole formation: negative (6) Generation of hydrogen sulfide: Negative (7) Hydrolysis of starch: Negative (8) Utilization of citric acid: Positive (Simmons, citric acid medium) (9) Utilization of inorganic nitrogen source: Nitrate is not used but ammonium is used (10) Pigment formation King (A) medium: light yellow pigment King (B) medium: light brown water-soluble pigment (11) Tween (80) degradation: positive (12) Casein degradation: positive (13) PHB Accumulation: Positive (14) Urease: Negative (15) Oxidase: Positive (16) Catalase: Positive (17) Arginine dihydrolase: Negative (18) Lysine decarboxylase: Positive (19) Ornithine decarboxylase: Sex (20) Acyl amidase: Positive (21) Growth pH: 5.0 to 9.0 (22) Growth temperature: 12 to 41 ° C (23) Attitude toward oxygen: Aerobic (24) OF test: Oxidative ( 25) Acid and gas production from sugars i) Acid production: shown in Table 1.
【0010】[0010]
【表1】 [Table 1]
【0011】ロ)ガスの生成:陰性 以上の菌学的諸性質をバージーズ・マニュアル・オブ・
デタミネイティブ・バクテリオロジー第8版〔Bergey's
Manual of Determinative Bacteriology 8巻(1974
年)〕,バージーズ・マニュアル・オブ・システマチッ
ク・バクテリオロジー第1巻〔Bergey's Systematic Ba
cteriology 1巻(1984年)〕,ロバート・イー(Rober
t E.)等のグラム・ネガティブ・オルガニズムズ・アン
・アプローチ・ツー・アイデンティフィケーション(Gr
am-negative organisms an approach to identificatio
n)ガイド・ツー・プリサンプティブ・アイデンティフ
ィケーション〔Guide to presumptive identification
(1983年)〕,コワンズ・マニュアル・フォー・ザ・ア
イデンティフィケーション・オブ・メディカル・バクテ
リア(Cowan's Manual for the identification of med
ical bacteria(1974年)〕の記載と対比するとシュー
ドモナス・セパシア(Pseudomonas cepacia)と一致す
ることから、本菌株はシュードモナス・セパシア(Pseu
domonas cepacia)A-0727と命名され、微工研菌寄第132
72号(FERM-P No13272)として工業技術院微生物工業技
術研究所に寄託されている。B) Gas production: Negative The above-mentioned mycological properties are described in the Vergis Manual of
Detergent Native Bacteriology 8th Edition [Bergey's
Manual of Determinative Bacteriology Volume 8 (1974
)], Volume 1 of the Burj's Manual of Systematic Bacteriology [Bergey's Systematic Ba
cteriology 1 (1984)], Robert E (Rober
Gram Negative Organisms An Approach to Identification (Gr.
am-negative organisms an approach to identificatio
n) Guide to presumptive identification [Guide to presumptive identification
(1983)], Cowan's Manual for the identification of med
ical bacteria (1974)], it is consistent with Pseudomonas cepacia. Therefore, this strain is Pseudomonas cepacia (Pseu).
domonas cepacia) A-0727.
No. 72 (FERM-P No13272) has been deposited at the Institute of Microbial Science and Technology of the Agency of Industrial Science and Technology.
【0012】次に、本発明者らは、本菌株より、リパー
ゼ遺伝子をクローニングし、該リパーゼ遺伝子が新規遺
伝子であることを見いだすと共に、更に該リパーゼ遺伝
子を導入したプラスミドベクターを作製し、これをシュ
ードモナス属菌に保持せしめることによって、シュード
モナス属菌にリパーゼを大量生産せしめることに成功
し、界面活性剤に耐性のあるリパーゼを安価に供給する
ことができ、本発明を完成したものである。Next, the present inventors cloned the lipase gene from this strain, found that the lipase gene was a novel gene, and further prepared a plasmid vector into which the lipase gene had been introduced. By retaining it in Pseudomonas, it succeeded in mass production of Pseudomonas in lipase, and it was possible to inexpensively supply a lipase resistant to a surfactant, thus completing the present invention.
【0013】以下、本発明を詳細に説明する。 (1)染色体DNAの調製法 シュードモナス・セパシア(Pseudomonas cepacia)A-0
727株をLB培地(トリプトン 1.0%,酵母エキス 0.5
%,塩化ナトリウム 1.0%)で30℃にて一晩好気的に培
養する。菌体を集菌後、斎藤,三浦の方法〔Biochim. B
iophys. Acta.,72巻、619〜629(1963)〕等、公知の
方法を利用して染色体DNAを抽出、精製してDNAを
得る。The present invention will be described in detail below. (1) Method for preparing chromosomal DNA Pseudomonas cepacia A-0
The 727 strain was treated with LB medium (tryptone 1.0%, yeast extract 0.5
%, Sodium chloride 1.0%) and aerobically incubate at 30 ℃ overnight. After collecting the cells, the method of Saito and Miura [Biochim. B
iophys. Acta., Vol. 72, 619-629 (1963)] and the like to extract chromosomal DNA and purify it to obtain DNA.
【0014】(2)DNA断片のプラスミドベクターへ
の挿入及び形質転換の方法 プラスミドベクターは宿主内で複製可能な、既知の制限
酵素切断部位を持ち、薬剤耐性等の選択マーカーを持つ
ベクター、例えば広宿主域プラスミドベクターRSF101
0,R16679,R1162等にカナマイシンやクロラムフェニコ
ール等の薬剤耐性遺伝子を導入したプラスミドベクター
を利用し、該プラスミドベクターDNAをHindIII等の
制限酵素で切断し、同じ制限酵素で切断、精製した染色
体DNAをリガーゼ等を用いた公知の方法により連結
し、組換えプラスミドを得、該組換えプラスミドを用い
てシュードモナス属菌、例えば、シュードモナス・セパ
シア(Pseudomonas cepacia)、シュードモナス・プチ
ダ(Pseudomonas putida)等を塩化カルシウム法、塩化
ルビジウム法、エレクトロポレーション法等の方法を利
用して形質転換する。(2) Method for Inserting DNA Fragment into Plasmid Vector and Transformation The plasmid vector has a known restriction enzyme cleavage site capable of replicating in the host and has a selectable marker such as drug resistance, for example, a broad vector. Host range plasmid vector RSF101
0, R16679, R1162, etc., using a plasmid vector in which a drug resistance gene such as kanamycin or chloramphenicol is introduced, and the plasmid vector DNA is cleaved with a restriction enzyme such as HindIII, and then cut and purified with the same restriction enzyme. The DNA is ligated by a known method using ligase to obtain a recombinant plasmid, and using the recombinant plasmid, Pseudomonas cepacia (Pseudomonas cepacia), Pseudomonas putida, etc. Transformation is carried out using a method such as the calcium chloride method, the rubidium chloride method or the electroporation method.
【0015】(3)リパーゼ生産能を有する形質転換菌
の選択分離方法 ポリビニルアルコールで乳化したトリブチリン,トリオ
レイン等のトリグリセリドを含み、所定濃度の抗生物質
を有する寒天培地を用い、形質転換した菌の中から該寒
天培地において大きなクリアーゾーンを形成する菌株を
分離することにより、リパーゼ遺伝子を含む菌を選択分
離し、ついで、この菌からアルカリ法、ボイリング法等
公知の方法を用いてリパーゼ遺伝子を含むプラスミドD
NAを得、更に、本発明のプラスミドDNAを導入して
得られたシュードモナス属菌を用いてリパーゼを生産す
る。(3) Method for Selective Isolation of Transformant Bacterium Having Lipase-Producing Ability Agar medium containing triglyceride such as tributyrin and triolein emulsified with polyvinyl alcohol and containing an antibiotic at a predetermined concentration was used to transform the transformed bacteria. By isolating a strain that forms a large clear zone in the agar medium, a bacterium containing the lipase gene is selectively isolated, and then the lipase gene is contained from the bacterium using a known method such as an alkaline method or a boiling method. Plasmid D
NA is obtained, and lipase is produced using Pseudomonas sp. Obtained by introducing the plasmid DNA of the present invention.
【0016】こうして得られた本願リパーゼの構造遺伝
子のアミノ酸配列と既知のシュードモナス属菌由来の各
種リパーゼの構造遺伝子のアミノ酸配列を比較し、図1
に示す。尚、本願リパーゼ構造遺伝子は、全配列を表示
し、他のリパーゼ構造遺伝子については、本願リパーゼ
構造遺伝子と異なる部分のみを表示した。そしてアミノ
酸は、1文字標記で表した。The amino acid sequences of the structural genes of the lipase of the present invention thus obtained were compared with the amino acid sequences of the structural genes of various known lipases derived from Pseudomonas sp.
Shown in. The entire sequence of the lipase structural gene of the present application is shown, and for other lipase structural genes, only the part different from the lipase structural gene of the present application is shown. Amino acids are represented by the one-letter code.
【0017】図1より明らかなように、本願のリパーゼ
遺伝子と他のリパーゼ遺伝子との相同性は、シュードモ
ナス・セパシア(Pseudomonas cepacia)M-12-33由来が
95%であり、シュードモナス・エスピー(Pseudomonas
sp.)KWI-56由来及びシュードモナス・セパシア(Pseud
omonas cepacia)DSM-3959由来が何れも92.4%となって
いる事が分かる。しかしながら、95%と最も相同性の高
いシュードモナス・セパシア(Pseudomonas cepacia)M
-12-33由来のリパーゼ遺伝子と本願のリパーゼ遺伝子と
を比較した場合でも、アミノ酸数にして16の置換が認め
られる。As is clear from FIG. 1, the homology between the lipase gene of the present invention and other lipase genes is derived from Pseudomonas cepacia M-12-33.
95%, Pseudomonas sp.
sp.) From KWI-56 and Pseud
It can be seen that 92.4% are all derived from DSM-3959. However, Pseudomonas cepacia M, which has the highest homology with 95%,
Even when the lipase gene derived from -12-33 is compared with the lipase gene of the present invention, 16 substitutions in the number of amino acids are recognized.
【0018】リパーゼ活性測定法 2%ポリビニルアルコール(PVA)溶液225mlとオリ
ーブ油75mlを混合乳化した基質溶液5mlと0.2Mマッキ
ルバイン緩衝液(pH7)4mlを平底試験管にとり、37
℃、5分間予温する。これに試料溶液1mlを加え良く振
り混ぜ、直ちに37℃、30分間放置する。30分後にアセト
ン・エタノール混液(1:1)10mlを加え良く振り混ぜ
る。これに0.05N水酸化ナトリウム溶液10ml及びアセト
ン・エタノール混液(1:1)10mlを加え、更にフェノ
ールフタレイン試液2滴を加えて窒素ガスを液面に吹き
つけながら、スターラーにて攪拌しつつ、0.05N塩酸で
pH10.00まで滴定する。ブランク値は試料溶液の代わり
に精製水を用い、同様操作する。酵素力価は1分間に1
マイクロモルの脂肪酸を生成するときを1単位とする。 Method for measuring lipase activity 5 ml of a substrate solution prepared by mixing 225 ml of 2% polyvinyl alcohol (PVA) solution and 75 ml of olive oil and 4 ml of 0.2M McIlvaine buffer (pH 7) was placed in a flat-bottomed test tube.
Preheat at ℃ for 5 minutes. To this, add 1 ml of the sample solution, shake well and immediately leave at 37 ° C for 30 minutes. After 30 minutes, add 10 ml of acetone / ethanol mixture (1: 1) and shake well. To this, 10 ml of 0.05N sodium hydroxide solution and 10 ml of acetone / ethanol mixed solution (1: 1) were added, and 2 drops of phenolphthalein reagent solution was further added thereto, while blowing nitrogen gas on the liquid surface while stirring with a stirrer, With 0.05N hydrochloric acid
Titrate to pH 10.00. For the blank value, use purified water instead of the sample solution and perform the same operation. Enzyme titer is 1 per minute
One unit is used when micromoles of fatty acid are produced.
【0019】以下に、試験例、実施例にて本発明を具体
的に説明するが、本願発明は、これらによって何等限定
されるものではない。 試験例1 シュードモナス・セパシア(Pseudomonas ce
pacia)A-0727を大豆油2.0%、ペプトン 0.5%(Difco
社製)、ビーフ・イクストラクト 0.3%(Difco社
製)、KH2PO4 0.1%、MgSO4・7H2O 0.02%、FeSO4・7H2
O 0.001%、アデカノール1滴よりなる液体培地で、30
℃、3日間振とう培養し、遠心分離によりリパーゼ活性
21u/mlの培養上清を得、得られた培養上清を希釈し
て、酵素液として使用し、本菌株の生産するリパーゼに
対する各種界面活性剤の影響を調べ、その結果を表2に
示す。尚、対照としては、シュードモナス・セパシア
(Pseudomonas cepasia)M-12-33株由来のリパーゼを用
いた。The present invention will be specifically described below with reference to test examples and examples, but the present invention is not limited to these. Test Example 1 Pseudomonas ce
pacia) A-0727 with soybean oil 2.0%, peptone 0.5% (Difco
Company), beef extract 0.3% (manufactured by Difco), KH 2 PO 4 0.1%, MgSO 4 7H 2 O 0.02%, FeSO 4 7H 2
Liquid medium consisting of 0.001% O and 1 drop adecanol, 30
Lipase activity by centrifugation at 3 ℃ for 3 days with shaking
A culture supernatant of 21 u / ml was obtained, and the obtained culture supernatant was diluted and used as an enzyme solution to examine the effects of various surfactants on the lipase produced by this strain. The results are shown in Table 2. . As a control, lipase derived from Pseudomonas cepasia M-12-33 strain was used.
【0020】[0020]
【表2】 [Table 2]
【0021】表2より明らかなように、本菌株の生産す
るリパーゼ(A-0727リパーゼ)は、対照のリパーゼ(M-
12-33リパーゼ)に比較して、界面活性剤のトリトンX-1
00やソデウム・ドデシルサルフェートによる阻害が小さ
いことが分かる。As is clear from Table 2, the lipase (A-0727 lipase) produced by this strain is a control lipase (M-
12-33 lipase) compared to the detergent Triton X-1
It can be seen that the inhibition by 00 and Sodium dodecyl sulfate is small.
【0022】[0022]
実施例1 (1)染色体DNAの調製 シュードモナス・セパシア(Pseudomonas cepacia)A-0
727株をLB培地で、30℃にて一晩好気的に振とう培養
を行い、集菌後、斎藤,三浦法によるDNA抽出法によ
り染色体DNAを抽出・精製し、染色体DNA 5.0mgを
得た。Example 1 (1) Preparation of chromosomal DNA Pseudomonas cepacia A-0
727 strains were aerobically shake-cultured in LB medium at 30 ° C overnight, and after collecting the bacteria, chromosomal DNA was extracted and purified by the DNA extraction method by Saito and Miura method to obtain 5.0 mg of chromosomal DNA. It was
【0023】(2)ベクターpFL210の調製 広宿主域プラスミドベクターRSF1010 2.75μgを制限酵
素PstIで切断し、末端をヌクレアーゼS1処理及びクレノ
ウフラグメントで処理後、8.1Kb断片を抽出し、一方、p
UC-4K(Pharmacia製)4.63μgから同様の操作によりカ
ナマイシン耐性遺伝子を含む1.4Kb断片を調製し、両者
をT4−DNAリガーゼで連結した後、大腸菌C600株を
形式転換してカナマイシン耐性株を得、該カナマイシン
耐性株よりプラスミドを調製し、PstI非分解性のプラス
ミドを選択して制限酵素HpaIで分解した。尚、プラスミ
ドの調製は、大腸菌C600株よりマニアチスらの、モルキ
ュラー・クローニング・ア・ラボラトリー・マニュアル
〔Maniatis et al,Molecular Cloning a laboratory m
anual.,92巻〜94巻(1981)〕に記載の方法により行っ
た。(2) Preparation of vector pFL210 The broad host range plasmid vector RSF1010 (2.75 μg) was digested with the restriction enzyme PstI, the ends were treated with nuclease S1 and Klenow fragment, and the 8.1 Kb fragment was extracted.
A 1.4 Kb fragment containing a kanamycin resistance gene was prepared from 4.63 μg of UC-4K (Pharmacia) by the same procedure, and both were ligated with T4-DNA ligase, and then Escherichia coli C600 strain was subjected to format conversion to obtain a kanamycin resistant strain. A plasmid was prepared from the kanamycin resistant strain, and a PstI-nondegradable plasmid was selected and digested with the restriction enzyme HpaI. The plasmid was prepared from Escherichia coli C600 strain by Maniatis et al., Molecular Cloning a Laboratory Manual [Maniatis et al, Molecular Cloning a laboratory m
anual., 92-94 (1981)].
【0024】一方、プラスミドpUC19(宝酒造製)1μg
を制限酵素HindIIIで切断した後、クレノウフラグメン
トで処理し、アガロースゲル電気泳動後、2.7Kb断片を
抽出し、前者と合した後、T4−DNAリガーゼで連結
し、大腸菌C600株を形質転換してアンピシリン及びカナ
マイシン耐性株を得、該耐性菌からプラスミドを抽出
後、制限酵素SacIで分解し、セルフライゲーションを行
ってマルチプルクローニングサイトの導入されたプラス
ミドベクターpFL200を作製した。On the other hand, plasmid pUC19 (Takara Shuzo) 1 μg
Was digested with restriction enzyme HindIII, treated with Klenow fragment, subjected to agarose gel electrophoresis, extracted with 2.7 Kb fragment, ligated with T4-DNA ligase, and transformed into Escherichia coli C600 strain. Ampicillin- and kanamycin-resistant strains were obtained, plasmids were extracted from the resistant strains, digested with restriction enzyme SacI, and self-ligated to prepare plasmid vector pFL200 into which multiple cloning sites were introduced.
【0025】更に、プラスミドpBR328(ベーリンガー・
マンハイム社製)1μgを制限酵素HhaIで切断後、ヌク
レアーゼS1処理及びクレノウフラグメントで処理し、
アガロースゲル電気泳動後、クロラムフェニコール耐性
遺伝子を含む約1.4Kb断片を抽出し、予め制限酵素SmaI
で切断したプラスミドpUC18と混合後、T4−DNAリ
ガーゼで連結し、大腸菌C600株を形質転換し、クロラム
フェニコール耐性株を選択し、プラスミドDNAを抽出
し、制限酵素BamHI、KpnIで分解後、約1.4KbDNA断片
を採取し、一方、0.5μg pFL200も同じ制限酵素BamHI、
KpnIで分解して前記DNA断片と混合した後、T4−D
NAリガーゼで連結し、大腸菌C600株を形質転換してク
ロラムフェニコール、カナマイシン2剤耐性株を選択
し、耐性菌よりプラスミドを抽出し、プラスミドベクタ
ーpFL210と命名した。Furthermore, the plasmid pBR328 (Boehringer
1 μg (mannheim) was cleaved with restriction enzyme HhaI, treated with nuclease S1 and Klenow fragment,
After agarose gel electrophoresis, an approximately 1.4 Kb fragment containing the chloramphenicol resistance gene was extracted, and the restriction enzyme SmaI was previously extracted.
After mixing with the plasmid pUC18 that had been cleaved with, ligated with T4-DNA ligase, transformed into E. coli C600 strain, selected chloramphenicol resistant strain, extracted plasmid DNA, digested with restriction enzymes BamHI and KpnI, About 1.4 Kb DNA fragment was collected, while 0.5 μg pFL200 also had the same restriction enzyme BamHI,
After digestion with KpnI and mixing with the above DNA fragment, T4-D
After ligation with NA ligase, Escherichia coli C600 strain was transformed to select a chloramphenicol and kanamycin two-drug resistant strain, a plasmid was extracted from the resistant strain, and the plasmid was named pFL210.
【0026】(3)DNA断片のプラスミドベクターへ
の挿入 上記染色体DNA 4.7μgをとり、制限酵素HindIIIを加
え、37℃で5分間反応させて、部分的に切断し、一方、
プラスミドpFL210 2.0μgに制限酵素HindIIIを加え、37
℃で2時間反応させ、完全に切断したプラスミドDNA
にアルカリ性ホスファターゼを加え、脱リン酸化し、切
断した染色体DNAとプラスミドベクターDNAを混合
し、DNAリガーゼを加えて一夜反応させてDNA鎖の
連結反応を行った。(3) Insertion of DNA fragment into plasmid vector 4.7 μg of the above chromosomal DNA was taken, restriction enzyme HindIII was added, and the mixture was reacted at 37 ° C. for 5 minutes to partially cut it, while
Add restriction enzyme HindIII to 2.0 μg of plasmid pFL210, and
Completely cleaved plasmid DNA after reaction for 2 hours at ℃
Alkaline phosphatase was added to the mixture to dephosphorylate, and the cleaved chromosomal DNA and plasmid vector DNA were mixed, DNA ligase was added, and the mixture was reacted overnight to ligate the DNA chains.
【0027】(4)プラスミドによる形質転換 前述のトリオレインを含む寒天培地でリパーゼ遺伝子を
選択、分離する際、宿主はハロー欠損株が便利であるの
で、シュードモナス・セパシア(Pseudomonascepacia)
M-12-33株(FERM-P No.9871)をニトロソグアニジン処
理して得たハローを形成しない変異株HWIOを使用した。(4) Transformation with plasmid Since a halo-deficient strain is convenient for the host when the lipase gene is selected and isolated on the agar medium containing triolein, Pseudomonas cepacia is used.
A halo-free mutant strain HWIO obtained by treating M-12-33 strain (FERM-P No.9871) with nitrosoguanidine was used.
【0028】又、本発明者らは、該菌株の形質転換に、
エレクトロポレーション法が非常に有効なことを見い出
しており、本発明においても同様に実施した。Further, the present inventors have used for transformation of the strain,
It has been found that the electroporation method is very effective, and was carried out similarly in the present invention.
【0029】即ち、該菌株をLB培地20mlで、30℃にて
対数増殖期(OD660=0.4)になるまで培養し、冷却後、
10,000rpm、5分間遠心分離を行い集菌し、菌体を10ml
の272mMシュークロース,0.7mMリン酸ナトリウム緩衝液
(pH 7.4)で洗浄し、再び遠心分離した後、同緩衝液
0.8mlに懸濁し、連結した組換え体DNAを加え、6,250
V/cmのパルスをかけ、LB培地 5.6mlを加え、30℃に
て2時間振とう培養し形質転換株を得た。That is, the strain was cultured in 20 ml of LB medium at 30 ° C. until the logarithmic growth phase (OD 660 = 0.4), and after cooling,
Collect the cells by centrifugation at 10,000 rpm for 5 minutes, and collect 10 ml of cells.
Of 272 mM sucrose and 0.7 mM sodium phosphate buffer (pH 7.4), centrifuge again, and then use the same buffer.
Suspend in 0.8 ml, add ligated recombinant DNA,
A pulse of V / cm was applied, 5.6 ml of LB medium was added, and the mixture was shake-cultured at 30 ° C. for 2 hours to obtain a transformant.
【0030】こうして連結した組換えDNAを、エレク
トロポレーション法にてHWIO株を形質転換し、100μg/
mlクロラムフェニコール、0.2%トリオレインを含む選
択培地にまき、ハロー形成株12株を得た。The recombinant DNA thus ligated was transformed into HWIO strain by electroporation to give 100 μg /
Twelve halo-forming strains were obtained by plating on a selective medium containing ml chloramphenicol and 0.2% triolein.
【0031】(5)リパーゼ遺伝子を含む形質転換株の
同定 前記ハロー形成株12株よりプラスミドを抽出し、制限酵
素HindIII及びEcoRIで切断、アガロース電気泳動で挿入
されたDNA断片の解析を行ない、HindIIIでは唯一の
約9KbDNA断片の挿入が示され、EcoRIでは数本のD
NA断片からなる2種のタイプに分けられる事が示され
た。即ち、これら2種タイプのプラスミドの制限酵素地
図を作成した結果から方向性の異なる唯一のDNA断片
が挿入された2種のプラスミドである事が確認された。(5) Identification of a transformant containing the lipase gene A plasmid was extracted from the 12 halo-forming strains, cleaved with restriction enzymes HindIII and EcoRI, and the inserted DNA fragment was analyzed by agarose electrophoresis. Shows insertion of only about 9 Kb DNA fragment, and several D in EcoRI.
It was shown to be divided into two types consisting of NA fragments. That is, it was confirmed from the results of constructing restriction enzyme maps of these two types of plasmids that they were two types of plasmids into which only unique DNA fragments having different directions were inserted.
【0032】2種プラスミドをそれぞれpLPA1及びpLPA2
と命名し、pLPA1の制限酵素地図を図2に示す。Two kinds of plasmids were designated as pLPA1 and pLPA2, respectively.
The restriction map of pLPA1 is shown in FIG.
【0033】(リパーゼ遺伝子の解析)リパーゼ遺伝子
を含むと考えられる約9KbのDNA断片を各種制限酵素
により切断し、各DNA断片をpFL210にサブクローニン
グして、シュードモナス・セパシア(Pseudomonas cepa
cia)HW10株を形質転換させ、前記と同様にしてトリオ
レイン培地におけるハロー形成の有無を調べた。(Analysis of lipase gene) A DNA fragment of about 9 Kb, which is considered to contain the lipase gene, was cleaved with various restriction enzymes, and each DNA fragment was subcloned into pFL210 to obtain Pseudomonas cepacia.
cia) HW10 strain was transformed, and the presence or absence of halo formation in triolein medium was examined in the same manner as above.
【0034】リパーゼ生産のためには2.5Kb BglII-StuI
断片以上のDNA断片が必要なことが示され、本発明者
らは、本DNA断片の全塩基配列をDNAシーケンサー
373A〔アプライド・バイオシステムズ(Applied Biosy
stems)社製〕を使用して決定した。そして、このDN
A断片中にリパーゼ遺伝子の含まれる事が判明し、その
推定されるリパーゼのアミノ酸配列は、配列表の配列番
号:1に示される。2.5 Kb BglII-StuI for lipase production
It has been shown that a DNA fragment larger than the fragment is required, and the present inventors have determined that the entire base sequence of the present DNA fragment is a DNA sequencer.
373A [Applied Biosystems
stems)). And this DN
It was found that the A fragment contained the lipase gene, and the deduced amino acid sequence of the lipase is shown in SEQ ID NO: 1 in the sequence listing.
【0035】(6)リパーゼの生産 前記リパーゼ遺伝子を含むプラスミドpLPA1でシュード
モナス・セパシア(Pseudomonas cepacia)HW10株を形
質転換し、得られた形質転換株シュードモナス・セパシ
ア(Pseudomonas cepacia)HW10(pLPA1)を大豆油 2.0
%、ペプトン 0.5%(Difco社製)、ビーフ・イクスト
ラクト 0.3%(Difco社製)、KH2PO4 0.1%、MgSO4・7H
2O 0.02%、FeSO4・7H2O 0.001%、アデカノール1滴よ
りなる液体培地で、30℃、3日間振とう培養し、遠心分
離によりリパーゼ活性430u/mlの培養上清を得た(本形
質転換株の酵素生産能は親株Pseudomonas cepacia A-07
27株のリパーゼ生産の約20倍であった。)。(6) Production of lipase Pseudomonas cepacia HW10 strain was transformed with the plasmid pLPA1 containing the lipase gene, and the obtained transformant Pseudomonas cepacia HW10 (pLPA1) was transformed into Soybean oil 2.0
%, 0.5% peptone (Difco Co.), beef Ikusutorakuto 0.3% (Difco Co.), KH 2 PO 4 0.1% , MgSO 4 · 7H
2 O 0.02%, FeSO 4 .7H 2 O 0.001%, and one drop of adecanol in a liquid medium at 30 ° C. for 3 days with shaking, and then centrifuged to obtain a culture supernatant with a lipase activity of 430 u / ml. The ability of the transformant to produce the enzyme was determined by the parent strain Pseudomonas cepacia A-07.
It was about 20 times higher than the lipase production of 27 strains. ).
【0036】[0036]
【発明の効果】本発明は、自然界より得られた、界面活
性剤に耐性を有するリパーゼ生産菌株シュードモナス・
セパシア(Pseudomonas cepacia)A-0727のリパーゼ遺
伝子をクローニングし、該遺伝子をプラスミドに導入
し、シュードモナス属菌に形質転換したものであり、本
形質転換株を培養することにより、広範囲の工業分野に
おける有用な界面活性剤耐性のリパーゼを安価に提供す
ることができる。EFFECT OF THE INVENTION The present invention is a lipase-producing strain Pseudomonas derived from nature and resistant to surfactants.
The lipase gene of Pseudomonas cepacia A-0727 was cloned, the gene was introduced into a plasmid, and transformed into a Pseudomonas genus, which was useful in a wide range of industrial fields by culturing this transformant strain. It is possible to inexpensively provide various surfactant-resistant lipases.
【0037】[0037]
配列番号:1 配列の長さ:320 配列の型:アミノ酸 配列 Ala Asp Asn Tyr Ala Ala Thr Arg Tyr Pro Ile Ile Leu Val His 15 Gly Leu Thr Gly Thr Asp Lys Tyr Ala Gly Val Leu Asp Tyr Trp 30 Tyr Gly Ile Gln Glu Asn Leu Gln Gln His Gly Ala Thr Val Tyr 45 Val Ala Asn Leu Ser Gly Phe Gln Ser Asp Asp Gly Pro Asn Gly 60 Arg Gly Glu Gln Leu Leu Ala Tyr Val Lys Thr Val Leu Ala Ala 75 Thr Gly Ala Thr Lys Val Asn Leu Val Gly His Ser Gln Gly Gly 90 Leu Thr Ser Arg Tyr Val Ala Ala Val Ala Pro Asp Leu Val Ala 105 Ser Val Thr Thr Ile Gly Thr Pro His Arg Gly Ser Glu Phe Ala 120 Asp Phe Val Gln Gly Val Leu Ala Tyr Asp Pro Thr Gly Leu Ser 135 Ser Thr Val Ile Ala Ala Phe Val Asn Val Phe Gly Ile Leu Thr 150 Ser Ser Ser His Asn Thr Asn Gln Asp Ala Leu Ala Ala Leu Lys 165 Thr Leu Thr Thr Ala Gln Ala Ala Thr Tyr Asn Gln Asn Tyr Pro 180 Ser Ala Gly Leu Gly Ala Ser Gly Ser Cys Gln Thr Gly Ala Pro 195 Thr Glu Thr Val Gly Gly Asn Thr His Leu Leu Tyr Ser Trp Ala 210 Gly Thr Ala Ile Gln Pro Thr Phe Ser Val Leu Gly Val Thr Gly 225 Ala Thr Asp Thr Ser Thr Ile Pro Leu Val Asp Pro Ala Asn Val 240 Leu Asp Leu Ser Thr Leu Ala Leu Leu Gly Thr Gly Thr Val Met 255 Ile Asn Arg Ala Ser Gly Gln Asn Asp Gly Leu Val Ser Lys Cys 270 Ser Ala Leu Tyr Gly Lys Val Leu Ser Thr Ser Tyr Lys Trp Asn 285 His Ile Asp Glu Ile Asn Gln Leu Leu Gly Val Arg Gly Ala Tyr 300 Ala Glu Asp Pro Val Ala Val Ile Arg Thr His Ala Asn Arg Leu 315 Lys Leu Ala Gly Val 320 SEQ ID NO: 1 Sequence length: 320 Sequence type: Amino acid sequence Ala Asp Asn Tyr Ala Ala Thr Arg Tyr Pro Ile Ile Leu Val His 15 Gly Leu Thr Gly Thr Asp Lys Tyr Ala Gly Val Leu Asp Tyr Trp 30 Tyr Gly Ile Gln Glu Asn Leu Gln Gln His Gly Ala Thr Val Tyr 45 Val Ala Asn Leu Ser Gly Phe Gln Ser Asp Asp Gly Pro Asn Gly 60 Arg Gly Glu Gln Leu Leu Ala Tyr Val Lys Thr Val Leu Ala Ala 75 Thr Gly Ala Thr Lys Val Asn Leu Val Gly His Ser Gln Gly Gly 90 Leu Thr Ser Arg Tyr Val Ala Ala Val Ala Pro Asp Leu Val Ala 105 Ser Val Thr Thr Ile Gly Thr Pro His Arg Gly Ser Glu Phe Ala 120 Asp Phe Val Gln Gly Val Leu Ala Tyr Asp Pro Thr Gly Leu Ser 135 Ser Thr Val Ile Ala Ala Phe Val Asn Val Phe Gly Ile Leu Thr 150 Ser Ser Ser His Asn Thr Asn Gln Asp Ala Leu Ala Ala Leu Lys 165 Thr Leu Thr Thr Ala Gln Ala Ala Thr Tyr Asn Gln Asn Tyr Pro 180 Ser Ala Gly Leu Gly Ala Ser Gly Ser Cys Gln Thr Gly Ala Pro 195 Thr Glu Thr Val Gly Gly Asn Thr His Leu Leu Tyr Ser Trp Ala 210 Gly Thr Ala Ile Gln Pro Thr Phe Ser Val Leu Gly Val Thr Gly 225 Ala Thr Asp Thr Ser Thr Ile Pro Leu Val Asp Pro Ala Asn Val 240 Leu Asp Leu Ser Thr Leu Ala Leu Leu Gly Thr Gly Thr Val Met 255 Ile Asn Arg Ala Ser Gly Gln Asn Asp Gly Leu Val Ser Lys Cys 270 Ser Ala Leu Tyr Gly Lys Val Leu Ser Thr Ser Tyr Lys Trp Asn 285 His Ile Asp Glu Ile Asn Gln Leu Leu Gly Val Arg Gly Ala Tyr 300 Ala Glu Asp Pro Val Ala Val Ile Arg Thr His Ala Asn Arg Leu 315 Lys Leu Ala Gly Val 320
【図1】本願リパーゼ構造遺伝子のアミノ酸配列と他の
リパーゼ構造遺伝子のアミノ酸配列を比較した図であ
り、図中(1)は、本願のシュードモナス・セパシア
(Pseudomonas cepacia)A-0727由来のもの、(2)
は、シュードモナス・セパシア(Pseudomonas cepaci
a)M-12-33由来のもの、(3)は、シュードモナス・エ
スピー(Pseudomonas sp.)KWI-56由来のもの、(4)
は、シュードモナス・セパシア(Pseudomonas cepaci
a)DSM-3959由来のものをそれぞれ示す。FIG. 1 is a diagram comparing the amino acid sequence of the lipase structural gene of the present invention with the amino acid sequences of other lipase structural genes, wherein (1) is derived from Pseudomonas cepacia A-0727 of the present application, (2)
Is Pseudomonas cepaci
a) derived from M-12-33, (3) derived from Pseudomonas sp. KWI-56, (4)
Is Pseudomonas cepaci
a) Those derived from DSM-3959 are shown respectively.
【図2】本願発明プラスミドpLPA 1の制限酵素地図を示
すものである。FIG. 2 shows a restriction map of the plasmid pLPA 1 of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:38) (C12N 1/21 C12R 1:38) (C12N 9/20 C12R 1:38) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C12R 1:38) (C12N 1/21 C12R 1:38) (C12N 9/20 C12R 1:38)
Claims (4)
配列をコードするリパーゼ遺伝子。1. A lipase gene encoding the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing.
配列をコードするリパーゼ遺伝子をプラスミドに組み込
んだ組換えDNA。2. A recombinant DNA in which a lipase gene encoding the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing is incorporated into a plasmid.
の配列番号:1で示されるアミノ酸配列をコードするリ
パーゼ遺伝子をシュードモナス属菌細胞内で増殖し得る
プラスミドベクターに組み込んでなる組換えDNAを導
入したシュードモナス属菌。3. A recombinant DNA, which is expressed in Pseudomonas cells and is incorporated into a plasmid vector capable of growing in Pseudomonas cells, the lipase gene encoding the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing. The introduced Pseudomonas sp.
配列をコードするリパーゼ遺伝子をシュードモナス属細
胞内で増殖し得るプラスミドベクターに組み込んでなる
組換えDNAを導入したシュードモナス属菌を培養し、
培養物中にリパーゼを生成せしめ、これを採取すること
を特徴とするリパーゼの製造法。4. A Pseudomonas strain into which a recombinant DNA introduced by incorporating a lipase gene encoding the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing into a plasmid vector capable of growing in Pseudomonas cells is cultured,
A method for producing lipase, which comprises producing lipase in a culture and collecting the lipase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34122692A JP3410128B2 (en) | 1992-11-27 | 1992-11-27 | Pseudomonas sp. Having recombinant DNA and method for producing lipase using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34122692A JP3410128B2 (en) | 1992-11-27 | 1992-11-27 | Pseudomonas sp. Having recombinant DNA and method for producing lipase using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06153965A true JPH06153965A (en) | 1994-06-03 |
JP3410128B2 JP3410128B2 (en) | 2003-05-26 |
Family
ID=18344361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34122692A Expired - Fee Related JP3410128B2 (en) | 1992-11-27 | 1992-11-27 | Pseudomonas sp. Having recombinant DNA and method for producing lipase using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3410128B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6087145A (en) * | 1996-11-28 | 2000-07-11 | Sumitomo Chemical Company, Limited | Esterase gene and its use |
US6184008B1 (en) | 1997-03-03 | 2001-02-06 | Sumitomo Chemical Company Ltd. | Production of optically active sphingoid compound |
US6472189B1 (en) | 1996-11-28 | 2002-10-29 | Sumitomo Chemical Company, Limited | Esterase gene and its use |
WO2021020458A1 (en) * | 2019-08-01 | 2021-02-04 | 天野エンザイム株式会社 | Novel lipase and use thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8409831B2 (en) | 2008-07-11 | 2013-04-02 | Sumitomo Chemical Company, Limited | Method for producing (1S,2R)-2-chloro-2-fluorocyclopropanecarboxylic acid |
-
1992
- 1992-11-27 JP JP34122692A patent/JP3410128B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6087145A (en) * | 1996-11-28 | 2000-07-11 | Sumitomo Chemical Company, Limited | Esterase gene and its use |
US6472189B1 (en) | 1996-11-28 | 2002-10-29 | Sumitomo Chemical Company, Limited | Esterase gene and its use |
US6960460B2 (en) | 1996-11-28 | 2005-11-01 | Sumitomo Chemical Company, Limited | Esterase gene and its use |
US6184008B1 (en) | 1997-03-03 | 2001-02-06 | Sumitomo Chemical Company Ltd. | Production of optically active sphingoid compound |
WO2021020458A1 (en) * | 2019-08-01 | 2021-02-04 | 天野エンザイム株式会社 | Novel lipase and use thereof |
JP6846577B1 (en) * | 2019-08-01 | 2021-03-24 | 天野エンザイム株式会社 | New lipase and its uses |
US11718837B2 (en) | 2019-08-01 | 2023-08-08 | Amano Enzyme Inc. | Lipase and uses of the same |
Also Published As
Publication number | Publication date |
---|---|
JP3410128B2 (en) | 2003-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3079276B2 (en) | Recombinant DNA, Pseudomonas sp. Containing the same, and method for producing lipase using the same | |
Wilhelm et al. | A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa | |
Zhang et al. | Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychorotrophic bacterium, Psychobacter sp. 7195 | |
US5338676A (en) | Cephalosporin acetylhydrolase gene and protein encoded by said gene | |
EP0334462B1 (en) | Molecular cloning and expression of genes encoding lipolytic enzymes | |
Quyen et al. | High-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding | |
Mao et al. | Sinorhizobium meliloti functionally replaces 3-oxoacyl-acyl carrier protein reductase (FabG) by overexpressing NodG during fatty acid synthesis | |
Prevost et al. | Functional evidence that the Ser-195 residue of staphylococcal exfoliative toxin A is essential for biological activity | |
JP3410128B2 (en) | Pseudomonas sp. Having recombinant DNA and method for producing lipase using the same | |
Sundaram et al. | Multiple oligomieric forms of glucoses-6-phosphate dehydrogenase in cyanobacteria and the role of OpeA in the assembly process | |
Brokamp et al. | Cloning and nucleotide sequence of a D, L-haloalkanoic acid dehalogenase encoding gene from Alcaligenes xylosoxidans ssp. denitrificans ABIV | |
Falcone et al. | Transposon mutagenesis and physiological analysis of strains containing inactivated form I and form II ribulose bisphosphate carboxylase/oxygenase genes in Rhodobacter sphaeroides | |
Tripathi et al. | Cloning, sequencing and structural features of a novel Streptococcus lipase | |
AU632472B2 (en) | Molecular cloning and expression of genes encoding lipolytic enzymes | |
Favre et al. | Relatedness of a periplasmic, broad-specificity RNase from Aeromonas hydrophila to RNase I of Escherichia coli and to a family of eukaryotic RNases | |
Kimura et al. | Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus | |
Rahman et al. | Cloning and expression of a novel lipase gene from Bacillus sphaericus 205y | |
JP2960775B2 (en) | Expression of DNA sequences from nocardioform microorganisms | |
JP3325128B2 (en) | Novel creatine amidinohydrolase gene, novel recombinant DNA and method for producing creatine amidinohydrolase | |
Chen et al. | Cloning, expression and characterization of l-aspartate β-decarboxylase gene from Alcaligenes faecalis CCRC 11585 | |
Winteler et al. | Anaerobically controlled expression system derived from the arcDABC operon of Pseudomonas aeruginosa: application to lipase production | |
Su et al. | Cloning and characterization of the lipase and lipase activator protein from Vibrio vulnificus CKM-1 | |
US5766913A (en) | Cloning, expression and nucleotide sequence of an alkaline lipase gene from pseudomonas pseudoalcaligenes F-111 | |
Seay et al. | Purification and properties of acyl coenzyme A thioesterase II from Rhodopseudomonas sphaeroides | |
Battchikova et al. | Aspartate Aminotransferase from an Alkalophilic Bacilus Contains an Additional 20-Amino Acid Extension at Its Functionally Important N-Terminus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |