JPH06151958A - Light emitting device - Google Patents

Light emitting device

Info

Publication number
JPH06151958A
JPH06151958A JP29465392A JP29465392A JPH06151958A JP H06151958 A JPH06151958 A JP H06151958A JP 29465392 A JP29465392 A JP 29465392A JP 29465392 A JP29465392 A JP 29465392A JP H06151958 A JPH06151958 A JP H06151958A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
emission output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29465392A
Other languages
Japanese (ja)
Inventor
Shinobu Shinohara
しのぶ 篠原
Masaru Takahashi
勝 高橋
Masayuki Kuwabara
雅之 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Japan Ltd
Original Assignee
Eastman Kodak Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Japan Ltd filed Critical Eastman Kodak Japan Ltd
Priority to JP29465392A priority Critical patent/JPH06151958A/en
Publication of JPH06151958A publication Critical patent/JPH06151958A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stable light emitting output by installing a resistor for light emitting output controller controlling light emitting output which is connected in parallel to an electrode at a position near the electrode formed on the surface of a second conductive type layer thereby controlling the fluctuation of light emitting output accompanying the temperature change in individual light emitting element. CONSTITUTION:A light emitting diode 8 and a resistor 6 for light emitting output controller are combined in parallel on a light emitting element 10, and a constant current supply circuit 9 for supplying a constant current to the light emitting element 10 is connected to one end of said parallel circuit. When this parallel circuit is driven by a constant current, the resistance value of the resistor 6 for light emitting output controller rises together with temperature increase, and the proportion of a current flowing to the resistor 6 for light emitting output controller decreases. On the other hand, this circuit has a constant current drive, so that the proportion of the current flowing to the light emitting diode 8 increases. Therefore, the resistance value of the resistor 6 for light emitting output controller changes in response to the changes in the light emitting element 10 and ambient temperature and thus the proportion of a current flowing to the light emitting diode 8 is controlled and thus a predetermined light emitting output is always obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光装置、特に表面発光
型の発光素子を有する発光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device, and more particularly to a light emitting device having a surface emitting type light emitting element.

【0002】[0002]

【従来の技術】小型・軽量である発光素子を有する発光
装置は、様々な分野において広く活用されている。そし
て、近年においては、光照射によって情報を記録する光
プリンタや光の反射強度を用いて画像やバーコードデー
タを読み取るイメージリーダ、あるいは光信号を利用し
た光通信機器において、発光装置が利用されている。
2. Description of the Related Art A light emitting device having a small and light emitting element is widely used in various fields. In recent years, a light emitting device has been used in an optical printer that records information by light irradiation, an image reader that reads an image or barcode data by using reflection intensity of light, or an optical communication device that uses an optical signal. There is.

【0003】図7は従来から用いられているガリウム砒
素リンを用いた発光素子の構造を示す断面模式図であ
る。
FIG. 7 is a schematic sectional view showing the structure of a light emitting device using gallium arsenide phosphide which has been used conventionally.

【0004】図7に示される発光素子において、テルル
を含有するガリウム砒素リン半導体はN型半導体1を形
成する。前記N型半導体1に亜鉛が拡散されて、P型ガ
リウム砒素リン半導体2(以下P型半導体2という)が
形成されている。前記N型半導体1に亜鉛を拡散する
時、前記N型半導体1の上面を拡散窓を有する選択拡散
膜5によってマスキングをして、前記拡散窓より拡散を
行うので所望の範囲に前記P型半導体2を形成すること
ができる。
In the light emitting device shown in FIG. 7, a gallium arsenide phosphide semiconductor containing tellurium forms an N-type semiconductor 1. Zinc is diffused into the N-type semiconductor 1 to form a P-type gallium arsenide phosphide semiconductor 2 (hereinafter referred to as P-type semiconductor 2). When zinc is diffused into the N-type semiconductor 1, the upper surface of the N-type semiconductor 1 is masked by a selective diffusion film 5 having a diffusion window, and diffusion is performed from the diffusion window. 2 can be formed.

【0005】そして前記P型半導体2の上面に正電極3
が設けられ、前記N型半導体1の裏面に負電極4が形成
されている。そして、該発光素子の近傍に設けられ、発
光素子に電流を供給する図示しない定電流供給回路よ
り、順方向の電流がP型半導体2とN型半導体1の接合
面に流れ、注入された多数キャリアが拡散することによ
って電気エネルギーが光エネルギーに変換されて光が射
出される。
A positive electrode 3 is formed on the upper surface of the P-type semiconductor 2.
And the negative electrode 4 is formed on the back surface of the N-type semiconductor 1. Then, a constant current supply circuit (not shown) that is provided near the light emitting element and supplies a current to the light emitting element causes a forward current to flow to the joint surface between the P-type semiconductor 2 and the N-type semiconductor 1 and is injected. Electric energy is converted into light energy by the diffusion of the carriers, and light is emitted.

【0006】前述したような発光素子は、注入した電流
の大部分は熱に変わり発光部から自己発熱する。この自
己発熱、及び、該発光素子を含む光プリンタ等の装置全
体から放出される熱による周囲環境温度の上昇により発
光部の温度が上昇する。一般的な発光素子は、定電流が
発光素子に流れた場合、図8に示すように温度上昇につ
れて発光出力が低下することが知られている。従って、
発光素子の発光出力は自己発熱および、周囲環境温度の
変化に伴う温度変化によって変動することとなる。
In the light emitting device as described above, most of the injected current is converted into heat and self-heats from the light emitting portion. The temperature of the light emitting section rises due to the self-heating and the rise in the ambient environment temperature due to the heat emitted from the entire apparatus such as an optical printer including the light emitting element. It is known that in a general light emitting element, when a constant current flows through the light emitting element, the light emission output decreases as the temperature rises, as shown in FIG. Therefore,
The light-emission output of the light-emitting element fluctuates due to self-heating and a temperature change accompanying a change in ambient environment temperature.

【0007】この発光出力の温度変化による変動の存在
は、光照射によって画像を記録する電子写真方式のLE
Dアレイプリンタ等では、高階調のプリント出力を得る
時には重大な問題である。つまり、動作中に温度変化が
起きると、発光素子の発光出力が変動し、意図した階調
が再現できず高品質なプリント出力が得られない。
The existence of the fluctuation of the light emission output due to the temperature change is due to the LE of an electrophotographic system for recording an image by light irradiation.
In a D-array printer or the like, this is a serious problem when obtaining high gradation print output. That is, if a temperature change occurs during operation, the light emission output of the light emitting element fluctuates, the intended gradation cannot be reproduced, and high quality print output cannot be obtained.

【0008】このような温度変化による発光出力の変動
によって発生する印刷品質の劣化を補正する手段とし
て、発光部近傍の温度を温度センサ等で検出し、検出し
た温度情報を発光素子駆動回路にフィードバックして、
電圧や電流の制御を行い発光出力を一定にする制御が行
われている。
As a means for correcting the deterioration of print quality caused by the variation of the light emission output due to such temperature change, the temperature near the light emitting portion is detected by a temperature sensor or the like, and the detected temperature information is fed back to the light emitting element drive circuit. do it,
The voltage and current are controlled to control the light emission output to be constant.

【0009】[0009]

【発明が解決しようとする課題】しかし、温度変化を検
出し、その温度情報に従った電圧や電流の制御を行って
発光出力の制御を正確に行うためには、発光素子毎に温
度センサを設ける必要が有る。しかし、前記LEDアレ
イプリンタ等に使用する発光素子は、複数の発光素子を
ライン状に配列した発光素子アレイであり、それぞれの
発光素子に温度センサを設けることは、スペース面、コ
スト面において現実的でない。従って、多くの場合、発
光素子アレイの両端、または数箇所に温度センサを配置
して、発光素子アレイ全体の温度を検出して制御を行っ
ていた。従って、温度センサ近傍の限られた発光素子に
関する温度情報のみで、発光装置全体の制御を行うこと
になり、個々の発光素子の温度変化に対応した制御がで
きず、印刷斑等の印刷品質の劣化を完全に補正すること
ができないという問題があった。
However, in order to accurately control the light emission output by detecting the temperature change and controlling the voltage and current according to the temperature information, a temperature sensor is provided for each light emitting element. It is necessary to provide it. However, the light emitting element used in the LED array printer or the like is a light emitting element array in which a plurality of light emitting elements are arranged in a line, and providing a temperature sensor for each light emitting element is practical in terms of space and cost. Not. Therefore, in many cases, temperature sensors are arranged at both ends of the light emitting element array or at several places to detect and control the temperature of the entire light emitting element array. Therefore, the entire light emitting device is controlled only by the temperature information about the limited light emitting elements in the vicinity of the temperature sensor, the control corresponding to the temperature change of each light emitting element cannot be performed, and the print quality such as print spots is not controlled. There is a problem that the deterioration cannot be completely corrected.

【0010】そこで本発明は、個々の発光素子の温度変
化に伴う発光出力の変動を制御し、所望する安定した発
光出力を得ることができるシンプルで、安価な発光装置
を提供することを目的とする。
Therefore, an object of the present invention is to provide a simple and inexpensive light emitting device capable of obtaining a desired stable light emission output by controlling the fluctuation of the light emission output due to the temperature change of each light emitting element. To do.

【0011】[0011]

【課題を解決するための手段】本発明は、前記問題点を
解決するため、第1として、第1導電型基板と、不純物
注入によって前記第1導電型基板の一部に形成された第
2導電型層と、前記第1導電型基板と前記第2導電型層
の各表面に形成された一対の電極間に電流を供給する電
流供給回路と、を含み、前記電流供給回路によって前記
電極間に順方向に電流を流して前記第1導電型基板と前
記第2導電型層の接合面において発光させる発光素子を
有する発光装置において、前記第2導電型層の表面に形
成された電極の近傍位置に該電極に並列に接続され、前
記発光素子および周囲温度の変化にしたがって抵抗値を
増減し該発光素子に流れる電流を制御して発光出力を制
御する発光出力制御用抵抗体を有し、該発光出力制御用
抵抗体および発光素子全体を定電流で駆動することを特
徴とするものであり、第2として、前記発光出力制御用
抵抗体が前記電流供給回路の内部に設けられ、前記第2
導電型層の表面に形成された電極と並列に接続されるこ
とを特徴とするものであり、第3として、前記発光出力
制御用抵抗体が前記発光素子と前記電流供給回路の間に
設けられ、前記第2導電型層の表面に形成された電極と
並列に接続されることを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides, as a first object, a first conductivity type substrate and a second conductivity type substrate formed on a part of the first conductivity type substrate. A conductive type layer; and a current supply circuit that supplies a current between a pair of electrodes formed on the surfaces of the first conductive type substrate and the second conductive type layer, respectively. In a light emitting device having a light emitting element that causes a current to flow in a forward direction to emit light at a bonding surface between the first conductivity type substrate and the second conductivity type layer, in the vicinity of an electrode formed on the surface of the second conductivity type layer. A light emission output control resistor that is connected in parallel to the electrode at a position and that controls the light emission output by increasing or decreasing the resistance value according to changes in the light emitting element and the ambient temperature, and controlling the current flowing through the light emitting element; Resistor for controlling light emission output and light emission And characterized in that to drive the entire child at a constant current, as the second, the light emission output control resistor is provided in the interior of the current supply circuit, the second
It is characterized in that it is connected in parallel with an electrode formed on the surface of the conductivity type layer. Thirdly, the light emission output control resistor is provided between the light emitting element and the current supply circuit. , And is connected in parallel with the electrode formed on the surface of the second conductivity type layer.

【0012】[0012]

【作用】本発明の発光装置においては、該発光装置を定
電流駆動した場合、各発光素子の第2導電型層の表面、
またはその近傍に形成された電極と並列に接続された発
光出力制御用抵抗体の抵抗値が発光素子の自己発熱およ
び周囲温度の変動に応じて変化する。つまり、発光素子
の温度が上昇すると、前記発光出力制御用抵抗体の抵抗
値が温度に応じて上昇し、供給された定電流のうち、前
記発光出力制御用抵抗体に流れ込む電流量が減少する。
逆に前記発光素子に流れ込む電流量は増加する。従っ
て、温度変化による発光出力制御用抵抗体の抵抗の増減
量に応じて前記発光素子に流れ込む電流量が増減し、温
度によって変化する発光出力を補正し、温度変化に応じ
て発光出力を制御する。
In the light emitting device of the present invention, when the light emitting device is driven with a constant current, the surface of the second conductivity type layer of each light emitting element,
Alternatively, the resistance value of the light emission output control resistor connected in parallel with the electrode formed in the vicinity thereof changes according to the self-heating of the light emitting element and the fluctuation of the ambient temperature. That is, when the temperature of the light emitting element rises, the resistance value of the light emission output control resistor rises according to the temperature, and the amount of current flowing into the light emission output control resistor among the supplied constant current decreases. .
On the contrary, the amount of current flowing into the light emitting element increases. Therefore, the amount of current flowing into the light emitting element increases or decreases according to the amount of increase or decrease in resistance of the light emission output control resistor due to temperature change, the light emission output that changes with temperature is corrected, and the light emission output is controlled according to temperature change. .

【0013】[0013]

【実施例】本発明の第1実施例を図面を利用して説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to the drawings.

【0014】本発明に基づく発光装置の発光素子におい
て、図1の断面模式図、図2の平面模式図に示すよう
に、テルルを含有するガリウム砒素リン半導体はN型半
導体1を形成し、このN型半導体1に亜鉛が拡散され、
P型ガリウム砒素リン半導体2(以下P型半導体2とい
う)が形成されている。なお、前記N型半導体1に亜鉛
を拡散する時、前記N型半導体1の上面を拡散窓を有す
る選択拡散膜5によってマスキングをして、前記拡散窓
より拡散を行うことにより所望の範囲に前記P型半導体
2を形成することができる。また、前記P型半導体2の
上面に正電極3が形成され、前記N型半導体1の裏面に
負電極4が形成されている。
In the light emitting device of the light emitting device according to the present invention, the gallium arsenide phosphide semiconductor containing tellurium forms the N-type semiconductor 1 as shown in the schematic sectional view of FIG. 1 and the schematic plan view of FIG. Zinc is diffused into the N-type semiconductor 1,
A P-type gallium arsenide phosphide semiconductor 2 (hereinafter referred to as P-type semiconductor 2) is formed. When diffusing zinc into the N-type semiconductor 1, the upper surface of the N-type semiconductor 1 is masked by a selective diffusion film 5 having a diffusion window, and diffusion is performed from the diffusion window to a desired range. The P-type semiconductor 2 can be formed. A positive electrode 3 is formed on the upper surface of the P-type semiconductor 2 and a negative electrode 4 is formed on the back surface of the N-type semiconductor 1.

【0015】本発明の特徴とするところは、発光出力制
御用抵抗体6が前記選択拡散膜5の上面に前記正電極3
と並列接続する状態で設けられているところである。
A feature of the present invention is that the light emission output control resistor 6 is provided on the upper surface of the selective diffusion film 5 and the positive electrode 3 is formed.
It is being provided in a state of being connected in parallel with.

【0016】発光素子駆動電流は図示しない定電流供給
回路よりパッド7a、7bを通して前記発光出力制御用
抵抗体6と前記正電極3に供給される。この時、正電極
3に供給された電流は、順方向にP型半導体2とN型半
導体1の接合面に流れ、注入された多数キャリアが拡散
することによって電気エネルギーが光エネルギーに変換
されて光が射出される。
The light emitting element drive current is supplied from the constant current supply circuit (not shown) to the light emission output control resistor 6 and the positive electrode 3 through the pads 7a and 7b. At this time, the current supplied to the positive electrode 3 flows in the forward direction to the junction surface between the P-type semiconductor 2 and the N-type semiconductor 1, and the injected majority carriers are diffused to convert the electric energy into light energy. Light is emitted.

【0017】上述のように形成された発光出力制御用抵
抗体を有する発光素子の動作状態について説明する。図
3に本発明に係る発光装置の第1実施例の等価回路を示
す。発光ダイオード8と発光出力制御用抵抗体6は発光
素子10上で並列に組み込まれ、この回路の一端に発光
素子10に定電流を供給する定電流供給回路9が接続さ
れている。発光素子の温度が自己発熱および周囲温度の
変化によって上昇した場合、図8で示した通り、前記発
光ダイオード8は、温度上昇とともに発光出力が低下す
る温度特性をもっている。一方、発光ダイオード8と並
列に接続された発光出力制御用抵抗体6は温度上昇とと
もに抵抗値が増加する温度特性を持つ。この発光ダイオ
ード8と発光出力制御用抵抗体6の並列回路を定電流で
駆動した場合、温度上昇と共に発光出力制御用抵抗体6
の抵抗値が上昇し、該発光出力制御用抵抗体6に流れ込
む電流の割合が減少する。一方、この回路は、定電流駆
動であるから、発光ダイオード8に流れ込む電流の割合
は増加する。
The operation state of the light emitting element having the light emission output control resistor formed as described above will be described. FIG. 3 shows an equivalent circuit of the first embodiment of the light emitting device according to the present invention. The light emitting diode 8 and the light emission output control resistor 6 are installed in parallel on the light emitting element 10, and a constant current supply circuit 9 for supplying a constant current to the light emitting element 10 is connected to one end of this circuit. When the temperature of the light emitting element rises due to self-heating and changes in ambient temperature, the light emitting diode 8 has a temperature characteristic that the light emission output decreases as the temperature rises, as shown in FIG. On the other hand, the light emitting output control resistor 6 connected in parallel with the light emitting diode 8 has a temperature characteristic in which the resistance value increases as the temperature rises. When the parallel circuit of the light emitting diode 8 and the light emission output control resistor 6 is driven by a constant current, the light emission output control resistor 6 rises as the temperature rises.
Resistance value increases, and the ratio of the current flowing into the light emission output control resistor 6 decreases. On the other hand, since this circuit is driven by constant current, the ratio of the current flowing into the light emitting diode 8 increases.

【0018】従って、発光素子10および周囲温度の変
化に対して、発光出力発光出力制御用抵抗体6の抵抗値
が変化して、発光ダイオード8に流れ込む電流の割合を
制御するので、常に所定の発光出力を得ることができ
る。
Therefore, the resistance value of the light emission output light emission output control resistor 6 changes in response to changes in the light emitting element 10 and the ambient temperature, and the ratio of the current flowing into the light emitting diode 8 is controlled. A light emission output can be obtained.

【0019】次に、前記発光出力制御用抵抗体6の選定
方法について説明する。
Next, a method of selecting the light emission output control resistor 6 will be described.

【0020】前述したように発光素子の発光出力Lは、
該発光素子に流れ込む電流I2 に比例すると共に、周囲
温度Tに従って変化する。さらに、該発光素子に流れ込
む電流I2 は周囲温度Tに従って変化する。つまり、周
囲温度Tによる発光出力の変化をL0 、その時の温度を
変数とする関数をg(T) 、電流I2 の変化について温度
を変数とした時の関数をh(T) とすると、以下の3式を
得る。
As described above, the light emission output L of the light emitting element is
It is proportional to the current I 2 flowing into the light emitting element and changes according to the ambient temperature T. Further, the current I 2 flowing into the light emitting element changes according to the ambient temperature T. That is, let L 0 be the change in the light emission output due to the ambient temperature T, g (T) be the function with the temperature at that time as a variable, and h (T) be the function with the temperature as a variable for the change in the current I 2 . The following three expressions are obtained.

【0021】 L=L0 2 (式1) L0 =g(T) (式2) I2 =h(T) =L/g(T) (式3) また、図3に示すように、発光出力制御用抵抗体6と発
光ダイオード8を並列に接続し定電流Iで駆動すると、
発光出力制御用抵抗体6に流れ込む電流をI1、発光ダ
イオード8に流れ込む電流をI2 とした場合その関係
は、 I=I1 +I2 (式4) となる。この時、発光出力制御用抵抗体6の抵抗値R
は、固有抵抗値をR0 、温度係数をmとすると、 R=R0 (1+mT) (式5) また、この時、流れる電流I1 は、回路に印加される電
圧をVとすると、 I1 =V/R=V/{R0 (1+mT)} (式6) となる。また、発光ダイオード8の両端の電圧はVであ
るから該発光ダイオード8に流れる電流をI2 、周囲温
度Tとすると、両端の電圧を示すVの関数は V=f(I2 ,T) (式7) で与えられる。以上(式1)〜(式7)より、 L=g(T) {I−f(h(T) ,T)/R0 (1+mT)} (式8) が得られ、発光出力を周囲温度Tによって表すことがで
きる。
L = L 0 I 2 (Equation 1) L 0 = g (T) (Equation 2) I 2 = h (T) = L / g (T) (Equation 3) Further, as shown in FIG. , If the light emitting output control resistor 6 and the light emitting diode 8 are connected in parallel and driven by a constant current I,
When the current flowing into the light emitting output control resistor 6 is I 1 and the current flowing into the light emitting diode 8 is I 2 , the relationship is I = I 1 + I 2 (Equation 4). At this time, the resistance value R of the resistor 6 for controlling the light emission output
Is R = R 0 (1 + mT) (Equation 5), where R 0 is the specific resistance value and m is the temperature coefficient. Further, at this time, the flowing current I 1 is I when the voltage applied to the circuit is V 1 = V / R = V / {R 0 (1 + mT)} (Equation 6) Further, since the voltage across the light emitting diode 8 is V, assuming that the current flowing through the light emitting diode 8 is I 2 and the ambient temperature is T, the function of V indicating the voltage across the light emitting diode 8 is V = f (I 2 , T) ( It is given by Equation 7). From the above (Equation 1) to (Equation 7), L = g (T) {If (h (T), T) / R 0 (1 + mT)} (Equation 8) is obtained, and the light emission output is determined as the ambient temperature. It can be represented by T.

【0022】次に、(式8)を用いて、周囲温度を変化
させた場合の発光出力の変化についてシミュレーション
を行う。
Next, using (Equation 8), a simulation is carried out on changes in the light emission output when the ambient temperature is changed.

【0023】例えば、ガリウム砒素リン半導体を用いた
発光素子において、前記関数g(T)および関数f(h(T)
,T)は、実測したデータより導き出すことができる。
For example, in a light emitting device using a gallium arsenide phosphide semiconductor, the function g (T) and the function f (h (T)
, T) can be derived from the measured data.

【0024】 g(T) =2.88 10-4exp(-0.0062T) f(h(T) ,T)=f(I2 ,T)=(7.7 10-5 I2 -0.0022)T+(0.016 I2 +1.60) これらのデータを用いて式(3)及び(8)より、発光
ダイオードの発光出力を自己発熱量を含む周囲温度に関
してほぼ一定にするI、R0 、mの値の組み合わせをシ
ュミレーションにより得る。例えば、前記ガリウム砒素
リン半導体を用いた発光素子の場合は、光出力−周囲温
度グラフがほぼ水平になるI、R0 、mの値を選択する
ことができる。この場合、0℃〜80℃までの温度範囲
において光出力の温度変化は0.1%/℃以下におさえ
られる。
G (T) = 2.88 10 −4 exp (−0.0062T) f (h (T), T) = f (I 2 , T) = (7.7 10 −5 I 2 −0.0022) T + (0.016 I 2 +1.60) Using these data, the combination of the values of I, R 0 , and m which makes the light emission output of the light emitting diode almost constant with respect to the ambient temperature including the self-heating amount is simulated from the equations (3) and (8). Get by. For example, in the case of the light emitting element using the gallium arsenide phosphide semiconductor, the values of I, R 0 , and m at which the optical output-ambient temperature graph becomes substantially horizontal can be selected. In this case, the temperature change of the light output is suppressed to 0.1% / ° C. or less in the temperature range of 0 ° C. to 80 ° C.

【0025】I=9(mA) R0 =310(Ω) m=0.027(/℃) ここで、前記のR0 とmの値の抵抗は金属酸化物の焼結
体(サーミスタの材料)を用いることによって容易に入
手することができる。
I = 9 (mA) R 0 = 310 (Ω) m = 0.027 (/ ° C.) Here, the resistance of the values of R 0 and m is determined by the sintered body of metal oxide (thermistor material). It can be easily obtained by using.

【0026】また、ダブルヘテロ型のアルミニウムガリ
ウム砒素半導体を用いた発光素子では、前記関数g(T)
および関数f(h(T) ,T)は、実測したデータより導き出
すことができる。
In a light emitting device using a double hetero type aluminum gallium arsenide semiconductor, the function g (T)
The function f (h (T), T) can be derived from the actually measured data.

【0027】 g(T) =1.17 10 3exp(-0.0064T) f(h(T) ,T)=f(I2 ,T)=(-0.0024 I2 -0.0033)T+(0.34 I2 +1.51) これらのデータを用いて、前記ガリウム砒素リン半導体
と同様に、式(3)、及び(8)により、発光ダイオー
ドの発光出力を自己発熱量を含む周囲温度に関してほぼ
一定にするI、R0 、mの値の組み合わせをシミュレー
ションにより得る。例えば、前記アルミニウムガリウム
砒素半導体を用いた発光素子の場合は、光出力−周囲温
度グラフがほぼ水平になるI、R0 、mの値を選択する
ことができる。この場合、0℃〜80℃までの温度範囲
において光出力の温度変化は0.1%/℃以下におさえ
られる。
G (T) = 1.17 10 3 exp (−0.0064T) f (h (T), T) = f (I 2 , T) = (− 0.0024 I 2 −0.0033) T + (0.34 I 2 +1.51 ) Using these data, as in the case of the gallium arsenide phosphide semiconductor, I, R 0 that makes the light emission output of the light emitting diode substantially constant with respect to the ambient temperature including the self-heating amount according to equations (3) and (8). , M are obtained by simulation. For example, in the case of the light emitting device using the aluminum gallium arsenide semiconductor, the values of I, R 0 , and m at which the optical output-ambient temperature graph becomes substantially horizontal can be selected. In this case, the temperature change of the light output is suppressed to 0.1% / ° C. or less in the temperature range of 0 ° C. to 80 ° C.

【0028】I=0.9(mA) R0 =3140 (Ω) m=0.03(/℃) 前記のR0 とmの値の抵抗は金属酸化物の焼結体(サー
ミスタの材料)を用いることによって容易に入手するこ
とができる。
I = 0.9 (mA) R 0 = 3140 (Ω) m = 0.03 (/ ° C.) The resistance of the values of R 0 and m is obtained by using a metal oxide sintered body (thermistor material). It is easily available.

【0029】従って、図4に示すように、発光部、およ
び周囲温度の温度変化に対しても常に所定の発光出力が
得られる。また、発光出力制御用抵抗体6の抵抗値の温
度に対する変化率は抵抗体の材質、形状で調節できる。
特に、発光出力制御用抵抗体6をトリミングによって短
絡し、抵抗値の微調整ができる短絡パスを有する形状に
することによって、更に良好な発光出力制御が可能とな
る。また、前記発光出力制御用抵抗体6は発光素子10
の表面、すなわち発光部近傍に設けられているので、発
光部の温度変化に素早く反応し、常に所定の発光出力制
御を行うことができる。
Therefore, as shown in FIG. 4, a predetermined light emission output can always be obtained even when the temperature of the light emitting portion and the ambient temperature change. The rate of change of the resistance value of the light emission output control resistor 6 with respect to temperature can be adjusted by the material and shape of the resistor.
In particular, by further short-circuiting the light emission output control resistor 6 by trimming so as to have a shape having a short-circuit path capable of finely adjusting the resistance value, further excellent light emission output control becomes possible. Further, the light emission output control resistor 6 is a light emitting element 10
Since it is provided on the surface of the light emitting element, that is, in the vicinity of the light emitting portion, it can quickly react to the temperature change of the light emitting portion and can always perform a predetermined light emission output control.

【0030】次に、第2実施例の等価回路を図5、第3
実施例の等価回路を図6に示す。第2実施例は前記発光
出力制御用抵抗体6を定電流供給回路9内部に設けたも
のであり、第3実施例は前記発光出力制御用抵抗体6を
定電流供給回路9と発光素子10の間に設けたものであ
る。いずれの場合も発熱量の多い発光素子10近傍や定
電流供給回路9近傍に設けることが可能であり前述第1
実施例と同様な効果を得ることができる。
Next, an equivalent circuit of the second embodiment is shown in FIGS.
The equivalent circuit of the embodiment is shown in FIG. In the second embodiment, the light emission output control resistor 6 is provided inside the constant current supply circuit 9, and in the third embodiment, the light emission output control resistor 6 is provided in the constant current supply circuit 9 and the light emitting element 10. It is provided between the two. In any case, it can be provided near the light emitting element 10 which generates a large amount of heat or near the constant current supply circuit 9.
The same effect as that of the embodiment can be obtained.

【0031】なお、前記実施例においては、N型半導体
上にP型半導体を形成した発光素子で説明したが、P型
半導体上にN型半導体を形成した発光素子でも同様の構
成を有する発光素子を作ることができる。また拡散型の
発光素子でなく、不純物を添加したエピタキシャル成長
で接合部を作製してもよい。
Although the light emitting device in which the P-type semiconductor is formed on the N-type semiconductor has been described in the above embodiment, the light-emitting device having the same structure as the light-emitting device in which the N-type semiconductor is formed on the P-type semiconductor is also described. Can be made. Further, instead of the diffusion type light emitting device, the junction may be formed by epitaxial growth added with impurities.

【0032】さらに、前記発光ダイオードの接合部も1
つのPN接合に限らず、シングルヘテロ、ダブルヘテ
ロ、量子構造でも良い。また、発光素子は発光ダイオー
ドに限らずレーザーダイオードでも良い。また、簡単の
ため、前記実施例では1個の発光ダイオードを示してい
るが、2つ以上を組み合わせた発光ダイオードアレイは
レーザーダイオードアレイでも良い。また、本実施例で
は定電流駆動において、温度上昇に対して発光出力が低
下する発光素子と、抵抗値が上昇する抵抗体の組み合わ
せを示したが、シリコンカーバイトを用いた発光ダイオ
ードのように温度上昇に対して発光出力が上昇し、抵抗
値が低下する抵抗体の組み合わせでも良い。また、前記
実施例においては、N型半導体として、テルルを含有し
たガリウム砒素リン半導体を用いた場合について説明し
たが、スズ、セレン、硫黄、ゲルマニュウム、シリコン
等を含有したガリウム砒素リン半導体でもよい。また、
P半導体として、亜鉛を含有したガリウム砒素リン半導
体を用いた場合について説明したが、マグネシウム、マ
ンガン、ガドニウム等を含有したガリウム砒素リン半導
体でもよい。
Further, the junction portion of the light emitting diode is also 1
Not only one PN junction but also a single hetero, a double hetero, or a quantum structure may be used. Further, the light emitting element is not limited to the light emitting diode and may be a laser diode. Further, for simplification, one light emitting diode is shown in the above embodiment, but a light emitting diode array combining two or more may be a laser diode array. Further, in the present embodiment, in constant current driving, a combination of a light emitting element whose light emission output decreases with temperature rise and a resistor whose resistance value rises is shown, but like a light emitting diode using a silicon carbide, A combination of resistors in which the light emission output increases and the resistance value decreases with increasing temperature may be used. In addition, although the gallium arsenide phosphide semiconductor containing tellurium is used as the N-type semiconductor in the above-described embodiment, a gallium arsenide phosphide semiconductor containing tin, selenium, sulfur, germanium, silicon or the like may be used. Also,
The case where a gallium arsenide phosphorus semiconductor containing zinc is used as the P semiconductor has been described, but a gallium arsenide phosphorus semiconductor containing magnesium, manganese, gadnium or the like may be used.

【0033】さらに、本実施例においてはP型半導体及
びN型半導体としてガリウム砒素リンを用いたが、ガリ
ウム砒素、アルミニウム砒素リン、ガリウム・リン、イ
ンジュウム・ガリウム・リン等の他の化合物半導体を用
いることも可能である。
Further, although gallium arsenide phosphorus is used as the P-type semiconductor and the N-type semiconductor in this embodiment, other compound semiconductors such as gallium arsenide, aluminum arsenide phosphorus, gallium-phosphorus, indium-gallium-phosphorus, etc. are used. It is also possible.

【0034】また、前記実施例においては、不純物を拡
散してP型半導体を形成する方法で説明したが、不純物
を拡散させる方法は前記方法に限られず、例えば、イオ
ン打ち込み法でP型半導体を形成してもよい。
In the above embodiment, the method of diffusing the impurities to form the P-type semiconductor has been described. However, the method of diffusing the impurities is not limited to the above-mentioned method. For example, the P-type semiconductor is formed by the ion implantation method. You may form.

【0035】また、上述の実施例では、PN接合を有す
る発光素子を用いて本発明を説明したが、本発明はPN
接合に限定されるものではなく、例えば、PIN接合、
MIS接合、ショットキー接合にも用いることができ
る。
Further, in the above-mentioned embodiment, the present invention has been described by using the light emitting device having the PN junction.
The invention is not limited to joining, but for example, PIN joining,
It can also be used for MIS junction and Schottky junction.

【0036】[0036]

【発明の効果】本発明に基づく発光素子によれば、発光
素子の自己発熱、および該発光素子を有する光プリンタ
等の装置全体の発熱により、周囲温度が急激に変化した
場合でも発光素子の発光部に供給する電流を発光素子お
よび周囲温度の変化に応じて制御できるので常に所定の
発光出力を得ることができる。
According to the light emitting element of the present invention, the light emitting element emits light even when the ambient temperature changes rapidly due to self-heating of the light emitting element and heat generation of the entire apparatus such as an optical printer having the light emitting element. Since the current supplied to the part can be controlled according to the change of the light emitting element and the ambient temperature, a predetermined light emission output can be always obtained.

【0037】従って、本発明の発光素子を光プリンタ等
の露光光源として用いた場合には、該光プリンタ運転中
の周囲温度の変化に関係なく所定の発光出力が得られる
ので、意図した階調を再現することができ、高品質なプ
リント出力を得ることができる。つまり、印刷斑等の無
い高い印刷品質を得ることができる。また、抵抗体のみ
で発光出力制御が可能なので、安価であり、発光装置の
小型化が可能である。
Therefore, when the light emitting device of the present invention is used as an exposure light source for an optical printer or the like, a predetermined light emission output can be obtained irrespective of changes in the ambient temperature during the operation of the optical printer, so that the intended gradation can be obtained. Can be reproduced and high quality print output can be obtained. That is, it is possible to obtain high print quality without print spots. Further, since the light emission output can be controlled only by the resistor, it is inexpensive and the light emitting device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく発光装置の発光素子の第1実施
例を説明する断面模式図である。
FIG. 1 is a schematic sectional view illustrating a first embodiment of a light emitting element of a light emitting device according to the present invention.

【図2】本発明に基づく発光装置の発光素子の第1実施
例を説明する平面模式図である。
FIG. 2 is a schematic plan view illustrating a first embodiment of a light emitting element of a light emitting device according to the present invention.

【図3】本発明に基づく発光装置の発光素子の第1実施
例を説明する等価回路である。
FIG. 3 is an equivalent circuit illustrating a first embodiment of a light emitting element of a light emitting device according to the present invention.

【図4】本発明に基づく発光装置の発光素子を定電流で
駆動した場合の発光出力−周囲温度特性を示した特性図
である。
FIG. 4 is a characteristic diagram showing a light emission output-ambient temperature characteristic when a light emitting element of a light emitting device according to the present invention is driven with a constant current.

【図5】本発明に基づく発光装置の発光素子の第2実施
例を説明する等価回路である。
FIG. 5 is an equivalent circuit illustrating a second embodiment of the light emitting element of the light emitting device according to the present invention.

【図6】本発明に基づく発光装置の発光素子の第3実施
例を説明する等価回路である。
FIG. 6 is an equivalent circuit illustrating a third embodiment of the light emitting element of the light emitting device according to the present invention.

【図7】従来の発光装置の発光素子を説明する断面模式
図である。
FIG. 7 is a schematic sectional view illustrating a light emitting element of a conventional light emitting device.

【図8】従来の発光装置の発光素子を定電流で駆動した
場合の発光出力−周囲温度特性を示した特性図である。
FIG. 8 is a characteristic diagram showing a light emission output-ambient temperature characteristic when a light emitting element of a conventional light emitting device is driven with a constant current.

【符号の説明】[Explanation of symbols]

1 N型半導体(第1導電型基板) 2 P型半導体(第2導電型層) 3 正電極 4 負電極 5 選択拡散膜 6 発光出力制御用抵抗体 9 定電流駆動回路 1 N-type semiconductor (first conductivity type substrate) 2 P-type semiconductor (second conductivity type layer) 3 Positive electrode 4 Negative electrode 5 Selective diffusion film 6 Light emission output control resistor 9 Constant current drive circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型基板と、不純物注入によって
前記第1導電型基板の一部に形成された第2導電型層
と、 前記第1導電型基板と前記第2導電型層の各表面に形成
された一対の電極間に電流を供給する電流供給回路と、
を含み、 前記電流供給回路によって前記電極間に順方向に電流を
流して前記第1導電型基板と前記第2導電型層の接合面
において発光させる発光素子を有する発光装置におい
て、 前記第2導電型層の表面に形成された電極の近傍位置に
該電極に並列に接続され、前記発光素子および周囲温度
の変化にしたがって抵抗値を増減し該発光素子に流れる
電流を制御して発光出力を制御する発光出力制御用抵抗
体を有し、 該発光出力制御用抵抗体および発光素子全体を定電流で
駆動することを特徴とする発光装置。
1. A first-conductivity-type substrate, a second-conductivity-type layer formed on a part of the first-conductivity-type substrate by implanting impurities, and each of the first-conductivity-type substrate and the second-conductivity-type layer. A current supply circuit that supplies a current between a pair of electrodes formed on the surface,
A light emitting device including a light emitting element that causes a current to flow between the electrodes in a forward direction by the current supply circuit to cause light to be emitted at a bonding surface between the first conductivity type substrate and the second conductivity type layer, It is connected in parallel to an electrode formed on the surface of the mold layer in parallel with the electrode, and the resistance value is increased / decreased according to the change of the light emitting element and the ambient temperature to control the current flowing through the light emitting element to control the light emission output. A light emitting device comprising a resistor for controlling light emission output, and driving the resistor for light emission output control and the entire light emitting element with a constant current.
【請求項2】 第1導電型基板と、不純物注入によって
前記第1導電型基板の一部に形成された第2導電型層
と、 前記第1導電型基板と前記第2導電型層の各表面に形成
された一対の電極間に電流を供給する電流供給回路と、
を含み、 前記電流供給回路によって前記電極間に順方向に電流を
流して前記第1導電型基板と前記第2導電型層の接合面
において発光させる発光素子を有する発光装置におい
て、 前記電流供給回路の内部に設けられ、前記第2導電型層
の表面に形成された電極と並列に接続され、前記発光素
子および周囲温度の変化にしたがって抵抗値を増減し該
発光素子に流れる電流を制御して発光出力を制御する発
光出力制御用抵抗体を有し、 該発光出力制御用抵抗体および発光素子全体を定電流で
駆動することを特徴とする発光装置。
2. A first conductivity type substrate, a second conductivity type layer formed on a part of the first conductivity type substrate by impurity implantation, and each of the first conductivity type substrate and the second conductivity type layer. A current supply circuit that supplies a current between a pair of electrodes formed on the surface,
A light-emitting device including a light-emitting element that causes a current to flow between the electrodes in a forward direction by the current supply circuit to emit light at a bonding surface of the first conductivity type substrate and the second conductivity type layer, And is connected in parallel with the electrode formed on the surface of the second conductive type layer, and controls the current flowing through the light emitting element by increasing or decreasing the resistance value according to the change of the ambient temperature. A light emitting device comprising a light emission output control resistor for controlling light emission output, wherein the light emission output control resistor and the entire light emitting element are driven by a constant current.
【請求項3】 第1導電型基板と、不純物注入によって
前記第1導電型基板の一部に形成された第2導電型層
と、 前記第1導電型基板と前記第2導電型層の各表面に形成
された一対の電極間に電流を供給する電流供給回路と、
を含み、 前記電流供給回路によって前記電極間に順方向に電流を
流して前記第1導電型基板と前記第2導電型層の接合面
において発光させる発光素子を有する発光装置におい
て、 前記発光素子と前記電流供給回路の間に設けられ、前記
第2導電型層の表面に形成された電極と並列に接続さ
れ、前記発光素子および周囲温度の変化にしたがって抵
抗値を増減し該発光素子に流れる電流を制御して発光出
力を制御する発光出力制御用抵抗体を有し、 該発光出力制御用抵抗体および発光素子全体を定電流で
駆動することを特徴とする発光装置。
3. A first conductivity type substrate, a second conductivity type layer formed on a part of the first conductivity type substrate by implanting impurities, and each of the first conductivity type substrate and the second conductivity type layer. A current supply circuit that supplies a current between a pair of electrodes formed on the surface,
A light-emitting device having a light-emitting element that causes a current to flow in a forward direction between the electrodes by the current supply circuit to cause light to be emitted at a bonding surface between the first-conductivity-type substrate and the second-conductivity-type layer, A current that is provided between the current supply circuits and is connected in parallel with an electrode formed on the surface of the second conductivity type layer, and that increases or decreases the resistance value according to changes in the light emitting element and the ambient temperature and flows through the light emitting element. A light emitting device, comprising: a light emission output control resistor for controlling a light emission output by controlling the light emission output, and driving the light emission output control resistor and the entire light emitting element with a constant current.
JP29465392A 1992-11-02 1992-11-02 Light emitting device Pending JPH06151958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29465392A JPH06151958A (en) 1992-11-02 1992-11-02 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29465392A JPH06151958A (en) 1992-11-02 1992-11-02 Light emitting device

Publications (1)

Publication Number Publication Date
JPH06151958A true JPH06151958A (en) 1994-05-31

Family

ID=17810558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29465392A Pending JPH06151958A (en) 1992-11-02 1992-11-02 Light emitting device

Country Status (1)

Country Link
JP (1) JPH06151958A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003108066A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Active matrix type display device and its driving method
US7411221B2 (en) * 2005-08-03 2008-08-12 Samsung Electro-Mechanics Co., Ltd. Light emitting device having protection element and method of manufacturing the light emitting device
JP2009076684A (en) * 2007-09-20 2009-04-09 Harison Toshiba Lighting Corp Light emitting device and lamp fitting
KR100905884B1 (en) * 2005-08-03 2009-07-03 삼성전기주식회사 Light emitting device having protection element
US20100295087A1 (en) * 2007-01-16 2010-11-25 Korea Photonics Technology Institute Light Emitting Diode with High Electrostatic Discharge and Fabrication Method Thereof
JP2012146985A (en) * 2011-01-12 2012-08-02 Everlight Electronics Co Ltd Lighting apparatus and led device thereof
JP2015103666A (en) * 2013-11-25 2015-06-04 セイコーエプソン株式会社 Light-emitting device and image display device
US9210767B2 (en) 2011-12-20 2015-12-08 Everlight Electronics Co., Ltd. Lighting apparatus and light emitting diode device thereof
US9488839B2 (en) 2013-11-25 2016-11-08 Seiko Epson Corporation Light emitting device and image display apparatus
TWI562678B (en) * 2011-12-20 2016-12-11 Everlight Electronics Co Ltd Lighting emitting diode device
US9997505B2 (en) 2013-02-27 2018-06-12 Everlight Electronics Co., Ltd Lighting device, backlight module and illumination module
JP2018173452A (en) * 2017-03-31 2018-11-08 ミツミ電機株式会社 Display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003108066A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Active matrix type display device and its driving method
KR100905884B1 (en) * 2005-08-03 2009-07-03 삼성전기주식회사 Light emitting device having protection element
US7411221B2 (en) * 2005-08-03 2008-08-12 Samsung Electro-Mechanics Co., Ltd. Light emitting device having protection element and method of manufacturing the light emitting device
US8294167B2 (en) * 2007-01-16 2012-10-23 Korea Photonics Technology Institute Light emitting diode with high electrostatic discharge and fabrication method thereof
US20100295087A1 (en) * 2007-01-16 2010-11-25 Korea Photonics Technology Institute Light Emitting Diode with High Electrostatic Discharge and Fabrication Method Thereof
JP2009076684A (en) * 2007-09-20 2009-04-09 Harison Toshiba Lighting Corp Light emitting device and lamp fitting
JP2012146985A (en) * 2011-01-12 2012-08-02 Everlight Electronics Co Ltd Lighting apparatus and led device thereof
US9210767B2 (en) 2011-12-20 2015-12-08 Everlight Electronics Co., Ltd. Lighting apparatus and light emitting diode device thereof
TWI562678B (en) * 2011-12-20 2016-12-11 Everlight Electronics Co Ltd Lighting emitting diode device
US9997505B2 (en) 2013-02-27 2018-06-12 Everlight Electronics Co., Ltd Lighting device, backlight module and illumination module
JP2015103666A (en) * 2013-11-25 2015-06-04 セイコーエプソン株式会社 Light-emitting device and image display device
US9488839B2 (en) 2013-11-25 2016-11-08 Seiko Epson Corporation Light emitting device and image display apparatus
JP2018173452A (en) * 2017-03-31 2018-11-08 ミツミ電機株式会社 Display device

Similar Documents

Publication Publication Date Title
US20120299481A1 (en) In-circuit temperature measurement of light-emitting diodes
US7693196B2 (en) Semiconductor laser driving unit and image forming apparatus having the same
JPH06151958A (en) Light emitting device
GB2131607A (en) Semiconductor laser device
AU2012258584A1 (en) In-circuit temperature measurement of light-emitting diodes
EP0492117A2 (en) Current source with adjustable temperature variation
EP0284212A2 (en) Semiconductor lasers
EP0762567B1 (en) Temperature-controlled semiconductor laser apparatus and temperature control method therefor
US5488625A (en) Semiconductor laser device having chip-mounted heating element
JPH0576792B2 (en)
JPH06151957A (en) Light emitting device
JP4026970B2 (en) Light emitting diode driving method and optical transmission device using the same
US7834602B2 (en) Feedback power control system for an electrical component
JP4763900B2 (en) Light emitting element drive circuit
JP2001287398A (en) Self-scanning type light emitting element array and method of driving the same
US7206329B2 (en) Driving system for a semiconductor laser device
JPH0534124Y2 (en)
JPH0856031A (en) Light emission drive circuit of laser diode
JPH0685362A (en) Laser diode driving circuit within wide temperature range
JPS62163068A (en) Led head
JPS6053478B2 (en) Optical output stabilization circuit
JPH0983055A (en) Optical transmission circuit
JPH0555629A (en) Light emitting semiconductor element
JP2004006463A (en) Temperature controlling method
JPS58223959A (en) Device for adjusting density of picture of laser beam printer