JPH06151758A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH06151758A
JPH06151758A JP4299443A JP29944392A JPH06151758A JP H06151758 A JPH06151758 A JP H06151758A JP 4299443 A JP4299443 A JP 4299443A JP 29944392 A JP29944392 A JP 29944392A JP H06151758 A JPH06151758 A JP H06151758A
Authority
JP
Japan
Prior art keywords
layer
capacitor
semiconductor substrate
wiring layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4299443A
Other languages
Japanese (ja)
Inventor
Takashi Arima
高志 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4299443A priority Critical patent/JPH06151758A/en
Publication of JPH06151758A publication Critical patent/JPH06151758A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a semiconductor memory to be improved in yield and elongated in data-hold time by a method wherein a connection hole is lessened in aspect ratio so as to enhance a wiring layer in covering properties, and a charge storage electrode of a capacitor is kept unconnected to a semiconductor substrate. CONSTITUTION:After a capacitor is formed on a semiconductor substrate 11, a semiconductor layer 17 where a channel can be formed and N-type impurity layers 18 which serve as a source and a drain are formed, and a gate oxide film 19, a gate electrode 20, and a second wiring layer 23 are formed on the semiconductor layer 17, whereby a connection hole 22 provided to the second wiring layer 23 can be lessened in aspect ratio. No short circuit occurs between a capacitor electrode 14 and the connection hole 22, a capacitor charge storage electrode 14 is prevented from being connected to a semiconductor substrate 11, and the stored static charge is prevented from being discharged to the semiconductor substrate 11, so that a semiconductor memory of this design can be elongated in data-hold time and improved in yield and reliability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体記憶装置に関
し、特にトランジスタとキャパシタにより、データを記
憶する随時書き込み読み出し可能な半導体記憶装置すな
わちDRAMに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device, ie, a DRAM, which stores data by a transistor and a capacitor and can be written and read at any time.

【0002】[0002]

【従来の技術】従来より、DRAMにおいてはデータ記
憶保持時間を長くするための手段として、キャパシタ容
量を増加させる方法を考えてきた。半導体基板表面の拡
散層と絶縁膜を介した導電体で形成されたプレーナーキ
ャパシタから始まり、その後の微細化に対応し、より大
きなキャパシタ容量を得るために、半導体基板を掘るこ
とにより、キャパシタ面積を増加させるトレンチドキャ
パシタ、そしてトレンチドキャパシタの半導体基板への
リーク電流の増加などにより、次に出現して来たゲート
電極上にキャパシタを形成するスタックドキャパシタな
どがある。現在最も一般的なDRAMセル構造を図3に
示す。図3を用いて従来のDRAMの構造を説明する。
51は例えばP型の半導体基板、52は例えばLOCO
S法により形成された素子分離酸化膜、53は酸化技術
により形成された15nm程度のゲート酸化膜、54は
例えばリン等の不純物を含む多結晶シリコンより成るゲ
ート電極、55は例えば半導体基板にヒ素を注入し形成
したソース・ドレインとなるN型不純物拡散層、56は
例えばCVD技術により堆積されたシリコン酸化膜より
なる第1層間絶縁膜、57は例えば容量部電荷蓄積用電
極となる300nmのリン等の不純物を含む多結晶シリ
コン、58は容量部電荷蓄積電極57と、N型不純物拡
散層55とを電気的に接続する接続孔、59は例えばC
VD技術により堆積された10nm程度のシリコン窒化
膜、60は例えば150nm程度のリン等の不純物を含
む多結晶シリコンの容量部定電圧電極、61は例えばリ
ン、ホウ素等の不純物を含んだシリコン酸化膜(BPS
G膜)、62は例えばシリコン等を微量に含んだ金属配
線層あるいは、高融点金属とシリコンのシリサイド配線
層、63は配線層62とN型不純物拡散層55とを電気
的に接続する接続孔である。前記構造において、データ
ーの読み出し、書き込みはゲート電極54の電位を上げ
た状態での、半導体基板51と接続する容量部の電極5
7への電荷の蓄積、蓄積された電荷の放出、蓄積された
電荷量の放出によって行われる。
2. Description of the Related Art Conventionally, a method of increasing the capacitance of a capacitor has been considered as a means for increasing the data storage retention time in a DRAM. Starting from a planar capacitor formed of a conductor with a diffusion layer on the surface of the semiconductor substrate and an insulating film, to cope with subsequent miniaturization and to obtain a larger capacitor capacitance, the semiconductor substrate is dug to reduce the capacitor area. There is a trenched capacitor to be increased, and a stacked capacitor to form a capacitor on a gate electrode, which appears next due to an increase in leak current of the trenched capacitor to a semiconductor substrate. The most common DRAM cell structure at present is shown in FIG. The structure of a conventional DRAM will be described with reference to FIG.
51 is a P-type semiconductor substrate, 52 is a LOCO, for example.
An element isolation oxide film formed by the S method, 53 is a gate oxide film of about 15 nm formed by an oxidation technique, 54 is a gate electrode made of polycrystalline silicon containing impurities such as phosphorus, and 55 is arsenic on a semiconductor substrate, for example. Is an N-type impurity diffusion layer serving as a source / drain formed by implanting silicon, 56 is a first interlayer insulating film made of a silicon oxide film deposited by, for example, a CVD technique, and 57 is, for example, a 300 nm phosphorus film serving as a capacitor portion charge storage electrode. Polycrystal silicon containing impurities such as 58, 58 is a connection hole for electrically connecting the capacitance section charge storage electrode 57 and the N-type impurity diffusion layer 55, and 59 is, for example, C
A silicon nitride film having a thickness of about 10 nm deposited by the VD technique, 60 is a capacitor constant voltage electrode of polycrystalline silicon containing impurities such as phosphorus having a thickness of about 150 nm, and 61 is a silicon oxide film containing impurities such as phosphorus and boron. (BPS
G film), 62 is a metal wiring layer containing a trace amount of silicon or the like, or a silicide wiring layer of a refractory metal and silicon, 63 is a connection hole for electrically connecting the wiring layer 62 and the N-type impurity diffusion layer 55. Is. In the above structure, data reading and writing are performed with the potential of the gate electrode 54 raised, and the electrode 5 of the capacitor portion connected to the semiconductor substrate 51.
It is carried out by accumulating the electric charge in 7, discharging the accumulated electric charge, and discharging the accumulated electric charge amount.

【0003】[0003]

【発明が解決しようとする課題】この従来のDRAM構
造では、容量部がゲート電極上にあるため、第2配線層
の接続孔の開孔径と深さの比(今後はアスペクト比と呼
ぶ)が大きくなり、第2配線層の接続孔内での被覆性が
悪くなる。また容量部の電極と第2配線層の接続孔との
間隔も狭くなり接続孔部において第2配線層と容量部電
極との短絡がおこり歩留りの低下、信頼性の悪化を引き
起こすという問題点があった。また、この第2配線層の
接続孔と容量部電極との間隔がある程度まで必要なため
容量部の面積を大きくすることができず必要な容量値が
得られない。または、容量部の電極の厚さを厚くするこ
とにより側壁の面積を利用し、必要な容量を確保しよう
とすると、第2配線層の接続孔のアスペクト比の悪化と
いう問題点があった。また、容量部の電極が半導体基板
のN型不純物層と接続されている構造のため、容量部の
電極に蓄えられた電荷が半導体基板へのリークにより放
電され、データ保持時間が劣化し、歩留りが低下すると
いう問題点もあった。
In this conventional DRAM structure, since the capacitance portion is on the gate electrode, the ratio of the opening diameter to the depth of the connection hole of the second wiring layer (hereinafter referred to as the aspect ratio) is It becomes large, and the coverage in the connection hole of the second wiring layer deteriorates. In addition, the gap between the electrode of the capacitance section and the connection hole of the second wiring layer is narrowed, so that a short circuit occurs between the second wiring layer and the capacitance section electrode in the connection hole portion, resulting in a decrease in yield and deterioration of reliability. there were. Further, since the space between the connection hole of the second wiring layer and the capacitor electrode is required to some extent, the area of the capacitor cannot be increased and the required capacitance value cannot be obtained. Alternatively, if an attempt is made to secure a required capacitance by utilizing the area of the side wall by increasing the thickness of the electrode of the capacitor portion, there is a problem that the aspect ratio of the connection hole of the second wiring layer is deteriorated. Further, since the electrode of the capacitor portion is connected to the N-type impurity layer of the semiconductor substrate, the charge accumulated in the electrode of the capacitor portion is discharged due to leakage to the semiconductor substrate, the data retention time is deteriorated, and the yield is increased. There was also a problem that it decreased.

【0004】本発明の目的は接続孔のアスペクト比を小
さくし、配線層の被覆性を向上させ歩留りの向上をはか
り、またデータ記憶保持時間の延長を計ることができる
半導体記憶装置を提供することにある。
An object of the present invention is to provide a semiconductor memory device capable of reducing the aspect ratio of a connection hole, improving the coverage of a wiring layer to improve the yield, and extending the data storage retention time. It is in.

【0005】[0005]

【課題を解決するための手段】本発明の半導体記憶装置
は、半導体基板上に形成された不純物拡散層と、前記不
純物拡散層上に形成した第1の絶縁膜を介して形成され
た電荷保持用の導体層と、前記電荷保持用の導体層上に
形成した第2の絶縁膜を介し形成されたチャネル部とな
る第1導電型半導体層と、前記第1導電型半導体層の一
部分に形成されたソース・ドレインとなる第2導電型半
導体と、前記電荷保持用の導体層と前記第2導電型半導
体層の一部との電気的な接続を行なうための接続孔と、
前記第1導電型半導体層上に形成された第3の絶縁膜を
介して形成された第1配線層と、前記第1配線層上に堆
積した第4の絶縁膜を介して形成された第2配線層と、
前記第2導電型半導体層と前記第2配線層との電気的接
続を行なうための接続孔とを備えている。
According to another aspect of the present invention, there is provided a semiconductor memory device including an impurity diffusion layer formed on a semiconductor substrate and a charge holding layer formed via a first insulating film formed on the impurity diffusion layer. Conductive layer, a first conductive type semiconductor layer serving as a channel portion formed through a second insulating film formed on the charge holding conductive layer, and a part of the first conductive type semiconductor layer A second conductivity type semiconductor serving as a source / drain, and a connection hole for electrically connecting the conductor layer for holding charges and a part of the second conductivity type semiconductor layer,
A first wiring layer formed via a third insulating film formed on the first conductivity type semiconductor layer and a fourth insulating film formed on a fourth insulating film deposited on the first wiring layer 2 wiring layers,
The semiconductor device further includes a connection hole for electrically connecting the second conductive type semiconductor layer and the second wiring layer.

【0006】[0006]

【実施例】次に本発明について図面を参照して説明す
る。図1は、本発明の一実施例の半導体記憶装置の断面
図である。図1において、11は例えばP型半導体基
板、12は例えばイオン注入法によりリンまたはヒ素等
を導入した容量部定電圧電極となるN型不純物拡散層、
13は容量絶縁膜となる例えばCVD法により堆積した
9nmの窒化シリコン膜、14は例えばCVD法により
堆積した多結晶シリコン膜よりなる容量部電荷蓄積用電
極である。この12、13、14により容量部を形成す
る。15は例えばCVD法などで埋め込まれたシリコン
酸化膜より成る層間絶縁膜、17は例えば非晶質シリコ
ン層を低温熱処理することにより形成された厚さ200
nm程度の半導体層であり、18は例えば半導体層17
上にイオン注入法によりヒ素等の不純物を導入し形成し
たソース・ドレインとなるN型不純物層、16は例えば
N型不純物層18と容量部電荷蓄積用電極14を接続す
るため層間絶縁膜15をフォトリソグラフィー技術を用
い、形成した接続孔にCVD法により多結晶シリコンを
埋め込んだ埋め込み接続孔であり、19はゲート酸化膜
となる例えば熱酸化法による15nmのシリコン酸化膜
であり、20は例えばCVD法による150nmの多結
晶シリコン膜より成るゲート電極、21は例えばCVD
法による300nmのシリコン酸化膜よりなる第2層間
絶縁膜、22は第2層間絶縁膜21をフォトリソグラフ
ィー技術を用いて形成した接続孔、23は例えば高融点
金属シリサイドよりなる第2配線層を示している。以上
の様な構造を有する半導体記憶装置は、容量部上にチャ
ネル形成可能な半導体層17と、N型不純物層18から
なるソース・ドレイン及び、ゲートから形成されたトラ
ンジスターを有しており、容量部電荷蓄積用電極14の
電荷を蓄積、又は放出して従来の半導体記憶装置と同様
にデータを記憶することができる。以上の様に半導体層
17の下側に容量部、上側に配線部を形成することによ
り、第2配線層23と容量部電極との間隔を考える必要
がなく従来より、容量部の面積を大きくすることが可能
となる。また容量部12、13、14がゲート電極20
の上に形成されないため、接続孔22のアスペクト比
は、従来の半分になり、第2配線層の被覆性も改善され
る。また電荷を蓄積する容量部電極14が半導体基板と
接していないため、最も大きな電荷リーク源がなくな
り、記憶保持時間も長くなる。
The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a semiconductor memory device according to an embodiment of the present invention. In FIG. 1, 11 is, for example, a P-type semiconductor substrate, 12 is, for example, an N-type impurity diffusion layer serving as a capacitor constant voltage electrode into which phosphorus or arsenic is introduced by an ion implantation method,
Numeral 13 is a 9 nm silicon nitride film deposited by, for example, the CVD method as a capacitive insulating film, and 14 is an electrode for accumulating charge in the capacitive part made of a polycrystalline silicon film deposited by, for example, the CVD method. These 12, 13, and 14 form a capacitance section. Reference numeral 15 is an interlayer insulating film made of, for example, a silicon oxide film buried by a CVD method, and 17 is a thickness 200 formed by, for example, heat-treating an amorphous silicon layer at a low temperature.
is a semiconductor layer having a thickness of about nm, and 18 is, for example, the semiconductor layer 17
An N-type impurity layer serving as a source / drain formed by introducing an impurity such as arsenic or the like by an ion implantation method, and an interlayer insulating film 15 for connecting the N-type impurity layer 18 and the capacitance section charge storage electrode 14 are provided, for example. Numeral 19 is a buried contact hole in which polycrystalline silicon is buried by a CVD method in a contact hole formed by using a photolithography technique, 19 is a 15 nm silicon oxide film to be a gate oxide film by, for example, a thermal oxidation method, and 20 is, for example, a CVD method. A gate electrode made of a polycrystalline silicon film having a thickness of 150 nm formed by the method
Second interlayer insulating film made of a silicon oxide film having a thickness of 300 nm by the method, 22 is a connection hole formed by photolithography of the second interlayer insulating film 21, and 23 is a second wiring layer made of refractory metal silicide, for example. ing. The semiconductor memory device having the above-described structure has the semiconductor layer 17 capable of forming a channel on the capacitor portion, the source / drain made of the N-type impurity layer 18, and the transistor formed of the gate, Data can be stored in the same manner as in the conventional semiconductor memory device by accumulating or discharging the charges of the partial charge accumulating electrode 14. As described above, by forming the capacitance section on the lower side of the semiconductor layer 17 and the wiring section on the upper side, it is not necessary to consider the distance between the second wiring layer 23 and the capacitance section electrode, and the area of the capacitance section can be made larger than in the conventional case. It becomes possible to do. In addition, the capacitors 12, 13, 14 are connected to the gate electrode 20.
Since it is not formed on the top surface, the aspect ratio of the connection hole 22 is half that of the conventional one, and the coverage of the second wiring layer is also improved. Further, since the capacitor electrode 14 for accumulating charges is not in contact with the semiconductor substrate, the largest charge leak source is eliminated, and the storage retention time is extended.

【0007】図2は本発明の他の実施例の半導体記憶装
置の断面図である。31は例えばP型半導体基板、32
は例えばP型半導体基板をフォトリソグラフィー技術を
用いてエッチングし、イオン注入法により、リンまたは
ヒ素等を導入したN型不純物拡散層よりなる容量部定電
圧電極であり、33は例えばCVD法により堆積した9
nmの窒化シリコン膜よりなる容量絶縁膜、34は例え
ばCVD法により埋め込まれた多結晶シリコン膜よりな
る容量部電荷蓄積用電極であり、基板内に堀り込まれた
容量部定電圧電極32と、容量絶縁膜33と容量部電荷
蓄積用電極34にて容量部を形成する。あとは第1の実
施例と同様の構造を示す。容量部電荷蓄積用電極34が
半導体基板31と接していないため半導体基板31への
電荷のリークを考える必要がなく、半導体基板31を掘
り下げることにより、容量部の表面積を広げることが容
易となり、容量値の増加、記憶保持時間の延長が可能と
なる。
FIG. 2 is a sectional view of a semiconductor memory device according to another embodiment of the present invention. 31 is, for example, a P-type semiconductor substrate, 32
Is a capacitor constant voltage electrode made of an N-type impurity diffusion layer into which phosphorus or arsenic or the like is introduced by an ion implantation method by etching a P-type semiconductor substrate using a photolithography technique, and 33 is deposited by, for example, a CVD method. Done 9
A capacitor insulating film made of a silicon nitride film having a thickness of 34 nm is an electrode for accumulating a charge of a capacitor made of a polycrystalline silicon film buried by, for example, a CVD method, and a constant voltage electrode 32 for the capacitor which is dug into the substrate. The capacitor insulating film 33 and the capacitor charge storage electrode 34 form a capacitor. The rest of the structure is similar to that of the first embodiment. Since the capacitor portion charge storage electrode 34 is not in contact with the semiconductor substrate 31, it is not necessary to consider the leakage of charges to the semiconductor substrate 31, and by digging into the semiconductor substrate 31, it is easy to increase the surface area of the capacitor portion. It is possible to increase the value and extend the memory retention time.

【0008】[0008]

【発明の効果】以上説明した様に本発明は、容量部の上
にチャネル形成可能な半導体層と、ソース・ドレインと
なるN型不純物層を形成することにより、第2配線層の
接続孔のアスペクト比が小さくなり、また容量部と配線
とが半導体層の上下に別れるため容量部電極と配線との
ショートの危険性がなくなり、歩留りの向上、また信頼
性の向上という効果を有する。また容量部電荷蓄積用電
極が、半導体基板と接しておらず、蓄えられた電荷が半
導体基板へのリークにより放電されることがなくなり、
また半導体基板を掘り下げて容量部の表面積を大きくす
ることが可能となるため、データ保持時間が大幅に延長
され、歩留りが向上するという効果も有する。
As described above, according to the present invention, the semiconductor layer capable of forming a channel and the N-type impurity layer serving as the source / drain are formed on the capacitor portion to form the connection hole of the second wiring layer. Since the aspect ratio is reduced and the capacitor portion and the wiring are separated above and below the semiconductor layer, the risk of short circuit between the capacitor portion electrode and the wiring is eliminated, and the yield and reliability are improved. In addition, the capacitor portion charge storage electrode is not in contact with the semiconductor substrate, and the stored charge is not discharged due to leakage to the semiconductor substrate,
In addition, since the semiconductor substrate can be dug down to increase the surface area of the capacitor portion, the data retention time can be significantly extended and the yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体記憶装置の断面図で
ある。
FIG. 1 is a cross-sectional view of a semiconductor memory device according to an embodiment of the present invention.

【図2】本発明の他の実施例の半導体記憶装置の断面図
である。
FIG. 2 is a sectional view of a semiconductor memory device according to another embodiment of the present invention.

【図3】従来の半導体記憶装置の一例の断面図である。FIG. 3 is a cross-sectional view of an example of a conventional semiconductor memory device.

【符号の説明】[Explanation of symbols]

11,31,51 P型半導体基板 12,32,60 容量部定電圧電極 13,33,59 容量絶縁膜 14,34,57 容量部電荷蓄積用電極 15,35,56 第1層間絶縁膜 16,36,58 容量部電極の接続孔 17,37 半導体層 18,38 N型不純物層 19,39,53 ゲート絶縁膜 20,40,54 ゲート電極 21,41,61 第2層間絶縁膜 22,42,63 第2配線層の接続孔 23,43,62 第2配線層 51 素子分離用酸化膜 55 N型不純物拡散層 11, 31, 51 P-type semiconductor substrate 12, 32, 60 Capacitance part constant voltage electrode 13, 33, 59 Capacitance insulating film 14, 34, 57 Capacitance part charge storage electrode 15, 35, 56 First interlayer insulating film 16, 36, 58 Capacitance part electrode connection hole 17, 37 Semiconductor layer 18, 38 N-type impurity layer 19, 39, 53 Gate insulating film 20, 40, 54 Gate electrode 21, 41, 61 Second interlayer insulating film 22, 42, 63 Second Wiring Layer Connection Hole 23, 43, 62 Second Wiring Layer 51 Element Isolation Oxide Film 55 N-type Impurity Diffusion Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された不純物拡散層
と、前記不純物拡散層上に形成した第1の絶縁膜を介し
て形成された電荷保持用の導体層と、前記電荷保持用の
導体層上に形成した第2の絶縁膜を介し形成されたチャ
ネルとなる第1導電型半導体層と、前記第1導電型半導
体層の一部分に形成されたソース・ドレインとなる第2
導電型半導体と、前記電荷保持用の導体層と前記第2導
電型半導体層の一部との電気的な接続を行なうための接
続孔と、前記第1導電型半導体層上に形成した第3の絶
縁膜を介し形成された第1配線層と、前記第1配線層上
に堆積した第4の絶縁膜を介して形成された第2の配線
層と、前記第2導電型半導体層と前記第2の配線層との
電気的接続と行なうための接続孔とを有することを特徴
とする半導体記憶装置。
1. An impurity diffusion layer formed on a semiconductor substrate, a charge-holding conductor layer formed via a first insulating film formed on the impurity diffusion layer, and the charge-holding conductor. A first conductive type semiconductor layer which is a channel formed through a second insulating film formed on the layer and a second source / drain which is formed in a part of the first conductive type semiconductor layer
A conductive semiconductor, a connection hole for electrically connecting the charge retaining conductor layer and a part of the second conductive semiconductor layer, and a third hole formed on the first conductive semiconductor layer. Wiring layer formed via the insulating film, the second wiring layer formed via the fourth insulating film deposited on the first wiring layer, the second conductivity type semiconductor layer, and A semiconductor memory device having a connection hole for electrical connection with a second wiring layer.
JP4299443A 1992-11-10 1992-11-10 Semiconductor memory Pending JPH06151758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4299443A JPH06151758A (en) 1992-11-10 1992-11-10 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4299443A JPH06151758A (en) 1992-11-10 1992-11-10 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH06151758A true JPH06151758A (en) 1994-05-31

Family

ID=17872651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4299443A Pending JPH06151758A (en) 1992-11-10 1992-11-10 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH06151758A (en)

Similar Documents

Publication Publication Date Title
US4021789A (en) Self-aligned integrated circuits
JP3744938B2 (en) Fabrication of a device having a self-amplifying dynamic MOS transistor memory cell.
JP2798300B2 (en) Method for manufacturing IC capacitor, semiconductor IC device, and DRAM memory cell
JP2673952B2 (en) Memory cell manufacturing method
US4801989A (en) Dynamic random access memory having trench capacitor with polysilicon lined lower electrode
JP3737576B2 (en) DRAM cell device
US20070057304A1 (en) Capacitor structure, memory cell and method for forming a capacitor structure
US4735915A (en) Method of manufacturing a semiconductor random access memory element
US20070002691A1 (en) Buried strap contact for a storage capacitor and method for fabricating it
US6251722B1 (en) Method of fabricating a trench capacitor
US6479852B1 (en) Memory cell having a deep trench capacitor and a vertical channel
US7173302B2 (en) Integrated circuit arrangement having capacitors and having planar transistors and fabrication method
JPH05190795A (en) Memory cell array
KR0139513B1 (en) Semiconductor device
JPS6155258B2 (en)
JPH0349259A (en) Semiconductor memory device and its manufacture
US5960282A (en) Method for fabricating a dynamic random access memory with a vertical pass transistor
US7208799B2 (en) Floating body cell dynamic random access memory with optimized body geometry
JP3421230B2 (en) Semiconductor storage device and method of manufacturing the same
JP2676168B2 (en) Semiconductor device
US20080277709A1 (en) Dram structure
US7332390B2 (en) Semiconductor memory device and fabrication thereof
JP2000114475A (en) Stacked capacitor memory cell and manufacture thereof
JPH06151758A (en) Semiconductor memory
US6238974B1 (en) Method of forming DRAM capacitors with a native oxide etch-stop

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990330