JPH06151249A - Separator for capacitor and capacitor using thereof - Google Patents

Separator for capacitor and capacitor using thereof

Info

Publication number
JPH06151249A
JPH06151249A JP29882992A JP29882992A JPH06151249A JP H06151249 A JPH06151249 A JP H06151249A JP 29882992 A JP29882992 A JP 29882992A JP 29882992 A JP29882992 A JP 29882992A JP H06151249 A JPH06151249 A JP H06151249A
Authority
JP
Japan
Prior art keywords
separator
capacitor
fluorine
active agent
surface active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29882992A
Other languages
Japanese (ja)
Inventor
Masakatsu Urairi
正勝 浦入
Kenji Matsumoto
憲嗣 松本
Tomoyuki Murakami
知之 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP29882992A priority Critical patent/JPH06151249A/en
Publication of JPH06151249A publication Critical patent/JPH06151249A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To obtain a separator for capacitor, which has an affinity and has a stable heat resistance for a long period, by a method wherein a coating layer containing a fluorine surface active agent having a specified structure is chemically made to apply on the surfaces of small holes in a fluorine high-molecular polymer porous film. CONSTITUTION:A coating layer containing a fluorine surface active agent having a structure, which is shown by a formula I, is formed on the surfaces of small holes in a fluorine high-molecular polymer film, desirably a PTFE porous film, by a chemical affinity. In the formula I, the R is H, OH, COOH or CH3, the (m) is 1 to 17 and the (n) is 1 to 20. As the surface active agent, a surface active agent with an ethylene oxide part, which is substituted for an OH group or a COOH group in its one group, is specially desirable. Thereby, a separator for capacitor, which is capable of absorbing and holding an electrolyte, has an oxidation resistance and an alkali resistance and is stable even at a high temperature, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンデンサ用として好
適なセパレーター、及びそれを用いた電解コンデンサや
電気二重層コンデンサに関し、詳しくは、十分な親水性
を有すると共に、長期間安定な耐熱性を有する電解コン
デンサ用や電気二重層コンデンサ用セパレーターに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator suitable for capacitors, an electrolytic capacitor and an electric double layer capacitor using the same, and more specifically, it has sufficient hydrophilicity and long-term stable heat resistance. The present invention relates to a separator for an electrolytic capacitor or an electric double layer capacitor that has.

【0002】[0002]

【従来の技術】従来、コンデンサ用のセパレーターとし
て、クラフト紙、マニラ紙、親水性モノマーをグラフト
する等の処理を行ったポリエチレンまたはポリプロピレ
ンの多孔質膜が使用されている。また、フッ素樹脂をア
ルコール処理した多孔質膜(特開昭62−263624号公
報)、極性有機溶媒に親和性のある物質を被覆してなる
フッ素樹脂多孔質膜(特開平2−241013号公報)、スパ
ッタエッチングしてなるフッ素樹脂多孔質膜(特開平3
−171612号公報)等が提案されている。
2. Description of the Related Art Conventionally, as a separator for capacitors, kraft paper, Manila paper, and a porous film of polyethylene or polypropylene which has been subjected to a treatment such as grafting with a hydrophilic monomer have been used. Also, a porous membrane obtained by treating a fluororesin with alcohol (Japanese Patent Laid-Open No. 62-263624) and a fluororesin porous membrane formed by coating a substance having an affinity for a polar organic solvent (Japanese Laid-Open Patent Publication No. 2-241013) , A fluororesin porous film formed by sputter etching (JP-A-3
-171612) and the like have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、クラフ
ト紙やマニラ紙の場合、電解液中で高温にさらされるこ
とにより劣化し、硫酸等の酸性電解液には脆化するため
使用できないという問題があった。 またポリエチレン
またはポリプロピレン多孔質膜の場合、耐熱性に不安が
あり、高温での長時間使用時や、コンデンサ製造工程中
の200℃以上の短時間の加熱時に溶融し空孔が塞がれ
るという問題があった。 また、フッ素樹脂をアルコー
ル処理した多孔質膜の場合、長時間の使用においては膜
が乾燥し、吸収液量が低下するという問題があった。
However, kraft paper and manila paper have the problem that they cannot be used because they are deteriorated by being exposed to high temperatures in an electrolytic solution and become brittle in an acidic electrolytic solution such as sulfuric acid. It was Also, in the case of polyethylene or polypropylene porous film, there is concern about the heat resistance, and when used for a long time at high temperature, or when heated for a short time of 200 ° C or more during the capacitor manufacturing process, it melts and the pores are blocked. was there. Further, in the case of a porous membrane obtained by treating a fluororesin with alcohol, there is a problem that the membrane is dried and the amount of the absorbing liquid is reduced after long-term use.

【0004】また、スパッタエッチングしてなるフッ素
樹脂多孔質膜の場合、親水化に改質される部分は表面の
みであり、膜の内部(厚み方向)まで処理されていない
ため、高温または長期間使用することにより、セパレー
ターの吸収液量が低下し、コンデンサの性能が低下して
しまうという問題があった。 また、極性有機溶媒に親
和性のある物質として特定のパーフルオロイオン交換ポ
リマーを被覆してなるフッ素樹脂多孔質膜の場合、この
ポリマーは疎水部である−CF3 末端がひとつであるた
め、膜への親和力が弱く、かかるポリマーによっては十
分に親水化できず、得られるセパレーターは満足できる
ものではなかった。
Further, in the case of a fluororesin porous film formed by sputter etching, only the surface is modified to be hydrophilic, and the inside (thickness direction) of the film is not treated. When used, there was a problem that the amount of absorbing liquid in the separator was reduced and the performance of the capacitor was reduced. Further, in the case of a fluororesin porous membrane formed by coating a specific perfluoro ion exchange polymer as a substance having an affinity for a polar organic solvent, this polymer has one --CF 3 end that is a hydrophobic portion, The affinity for the polymer was weak and the polymer could not be sufficiently hydrophilicized by the polymer, and the obtained separator was not satisfactory.

【0005】[0005]

【課題を解決するための手段】本発明は、かかる従来技
術の問題点を解決するためになされたもので、フッ素系
高分子重合体多孔質膜の少なくとも細孔表面に、後述す
る特定の構造を有するフッ素系界面活性剤を化学的に被
覆させることによって、特に架橋を行うことなく、疎水
性膜に十分な親水性を保持させることができ、十分な親
水性を有すると共に、長期間安定な耐熱性を有するコン
デンサ用セパレーターを得ることができるものである。
The present invention has been made to solve the problems of the prior art, and has a specific structure to be described later, at least on the surface of the pores of the fluoropolymer macromolecular porous film. By chemically coating the fluorine-containing surfactant having a hydrophilic property, the hydrophobic film can retain sufficient hydrophilicity without being crosslinked, and it has sufficient hydrophilicity and is stable for a long period of time. It is possible to obtain a heat-resistant capacitor separator.

【0006】即ち本発明は、フッ素系高分子重合体多孔
質膜の少なくとも細孔表面に、下記の〔化2〕
That is, the present invention provides the following [Chemical formula 2] on at least the surface of the pores of the fluoropolymer macromolecular film.

【化2】 (上記式中、RはH、OH、COOH、又はCH3 、m
は1〜17、nは1〜20である。)で表される構造を
有するフッ素系界面活性剤の被覆層が、化学的親和性に
よって形成されて、親水性を有するコンデンサ用セパレ
ーターを提供する。
[Chemical 2] (In the above formula, R is H, OH, COOH, or CH 3 , m
Is 1 to 17, and n is 1 to 20. The coating layer of a fluorosurfactant having a structure represented by (4) is formed by chemical affinity to provide a hydrophilic separator for capacitors.

【0007】さらに本発明は、このセパレーターに電解
液を含浸させて、一対の電極の間に配置してなるコンデ
ンサに関する。
Further, the present invention relates to a capacitor having a separator impregnated with an electrolytic solution and arranged between a pair of electrodes.

【0008】本発明におけるフッ素系高分子重合体多孔
質膜は、PTFE、ポリフッ化ビニリデン(PVd
F)、テトラフルオロエチレン−パーフルオロアルキル
ビニルエーテル共重合体(PFA)、テトラフルオロエ
チレン−ヘキサフルオロプロピレン共重合体(FE
P)、テトラフルオロエチレン−エチレン共重合体(E
TFE)、ポリクロロトリフルオロエチレン(CTF
E)等からなる疎水性膜であり、特に耐薬品性、耐熱性
等の点からPTFEが好ましい。 また0.01〜20μm
、特に0.05〜5μmの孔径を有する膜が好適に用いら
れる。
The fluoropolymer porous film used in the present invention is made of PTFE or polyvinylidene fluoride (PVd).
F), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FE
P), tetrafluoroethylene-ethylene copolymer (E
TFE), polychlorotrifluoroethylene (CTF)
It is a hydrophobic film made of E) or the like, and PTFE is particularly preferable from the viewpoint of chemical resistance, heat resistance and the like. Also 0.01 to 20 μm
Especially, a membrane having a pore size of 0.05 to 5 μm is preferably used.

【0009】本発明における被覆層としてのフッ素系界
面活性剤は、上記〔化2〕で表される構造を有する。
特にエチレンオキサイド部分が一部OH基、またはCO
OH基に置換された界面活性剤が好適に用いられる。
これらフッ素系界面活性剤は、熱的に安定であり、15
0℃以上の耐熱性を有し、250℃以上の耐熱性を有す
る構造のものもある。 さらに、耐アルカリ性や耐酸性
にも優れている。
The fluorosurfactant as the coating layer in the present invention has a structure represented by the above [Chemical formula 2].
Particularly, the ethylene oxide part is partially OH group or CO
Surfactants substituted with OH groups are preferably used.
These fluorine-based surfactants are thermally stable and
There is also a structure having heat resistance of 0 ° C or higher and heat resistance of 250 ° C or higher. Furthermore, it has excellent alkali resistance and acid resistance.

【0010】かかるフッ素系界面活性剤の具体例として
は、例えば下記の〔化3〕
Specific examples of such a fluorine-containing surfactant include, for example, the following [Chemical Formula 3]

【化3】 で表されるものが挙げられる。[Chemical 3] What is represented by.

【0011】本発明においては、上記フッ素系界面活性
剤の被覆層が、前記フッ素系高分子重合体多孔質膜の少
なくとも細孔表面に、化学的親和性によって形成されて
なる。 ここで細孔表面とは、多孔を構成している繊維
表面という意味であって、上記被覆層は少なくともこの
細孔表面、すなわち厚み方向の内部に形成されていれば
よいが、さらに多孔質膜の表面に形成されていてもよ
い。
In the present invention, the coating layer of the above-mentioned fluorine-containing surfactant is formed on at least the surface of the pores of the above-mentioned fluorine-containing high molecular polymer porous film by chemical affinity. The term "pore surface" as used herein means a fiber surface that constitutes porosity, and the coating layer may be formed at least on the pore surface, that is, in the thickness direction. May be formed on the surface of.

【0012】上記フッ素系界面活性剤を、前記フッ素系
高分子重合体多孔質膜の細孔表面に被覆する方法は、特
に限定されるものではないが、例えば、上記フッ素系界
面活性剤を有機溶剤で1〜10重量%、好ましくは1〜
5重量%に希釈した後、フッ素系高分子重合体多孔質膜
をその溶液に浸漬するか、またはその溶液を塗布し、膜
を乾燥させる等の方法で被覆することができ、親水化さ
れた疎水性膜が簡便に得られる。 ここで用いられる有
機溶剤は、特に限定されないが、例えば、アセトン、エ
タノール、イソプロピルアルコールなどが好適に用いら
れる。
The method for coating the surface of the fine pores of the fluorine-containing high molecular polymer porous membrane with the above-mentioned fluorine-containing surfactant is not particularly limited. 1-10% by weight of solvent, preferably 1-
After being diluted to 5% by weight, the fluoropolymer high molecular weight polymer porous membrane can be coated by a method such as immersing it in the solution, or coating the solution and drying the membrane, thus making it hydrophilic. A hydrophobic membrane can be easily obtained. The organic solvent used here is not particularly limited, but for example, acetone, ethanol, isopropyl alcohol, etc. are preferably used.

【0013】ここでフッ素系界面活性剤の被覆量は、フ
ッ素系界面活性剤の濃度と浸漬時間や塗布量で適宜コン
トロールできるが、本発明においては被覆後/前の重量
比は、1.040/1 〜1.070/1 が好ましく、特に1.045/1 〜
1.060/1 が好ましい。 1.040より少ないと、満足できる
親水性が得られない場合があり、1.070 より多いと、被
覆後に脱落する量が多くなり、コンデンサ特性を低下さ
せる恐れがある。
Here, the coating amount of the fluorine-based surfactant can be appropriately controlled by the concentration of the fluorine-based surfactant, the dipping time and the coating amount. In the present invention, the weight ratio after coating / before coating is 1.040 / 1. ~ 1.070 / 1 is preferable, and especially 1.045 / 1 ~
1.060 / 1 is preferable. If it is less than 1.040, satisfactory hydrophilicity may not be obtained in some cases, and if it is more than 1.070, the amount dropped off after coating may be large and the capacitor characteristics may be deteriorated.

【0014】さらに本発明においては、上記被覆処理の
前処理、及び/又は後処理として、前記多孔質膜を、プ
ラズマ(H2 、O2 、Ar、N2 、CO2 、Air 、H2O 等)
照射、エキシマレーザー照射、低圧水銀灯照射、電子線
照射、放射線照射等を行って、多孔質膜の表面を親水化
することもできる。
Further, in the present invention, as the pretreatment and / or posttreatment of the above-mentioned coating treatment, the porous film is treated with plasma (H 2 , O 2 , Ar, N 2 , CO 2 , Air, H 2 O). etc)
Irradiation, excimer laser irradiation, low pressure mercury lamp irradiation, electron beam irradiation, radiation irradiation and the like can also be performed to make the surface of the porous membrane hydrophilic.

【0015】本発明においては、上述の如く、フッ素系
界面活性剤を化学的親和力によって疎水性膜の細孔表面
に吸着させて、親水化したコンデンサ用セパレーターを
得ることができる。
In the present invention, as described above, a hydrophilic surfactant can be obtained by adsorbing the fluorine-based surfactant on the surface of the pores of the hydrophobic membrane by chemical affinity.

【0016】さらにこのセパレーターに電解液を含浸さ
せて、一対の電極の間に配置して、電解コンデンサや電
気二重層コンデンサを得ることができる。 ここで、電
解コンデンサの場合は、電解液としては、例えば、アジ
ピン酸塩、フタル酸塩等の電解質を、エチレングリコー
ル、γ−ブチロラクトン、ジメチルホルムアミド(DM
F)等の溶媒中に含むものが挙げられる。 電極として
は、陽極箔と陰極箔を用いる。 ここで、陽極箔として
は、アルミニウム、タンタルのような被膜形成能を有す
る金属上に、陽極酸化などにより誘電体被膜を形成させ
たもの、陰極箔としては、陽極箔と同種の金属箔を用い
る。 これらの箔は、体積当たりの表面積拡大のため、
エッチング処理されているものを用いることが多い。
Further, this separator can be impregnated with an electrolytic solution and placed between a pair of electrodes to obtain an electrolytic capacitor or an electric double layer capacitor. Here, in the case of an electrolytic capacitor, the electrolytic solution may be, for example, an electrolyte such as adipate or phthalate, ethylene glycol, γ-butyrolactone or dimethylformamide (DM).
Those included in the solvent such as F) are included. Anode foil and cathode foil are used as electrodes. Here, as the anode foil, a metal having a film forming ability such as aluminum or tantalum on which a dielectric film is formed by anodic oxidation or the like, and as the cathode foil, the same metal foil as the anode foil is used. . These foils increase surface area per volume,
Often used are those that have been etched.

【0017】また電気二重層コンデンサの場合は、電解
質溶液として硫酸水溶液、水酸化カリウム水溶液等を用
いる水溶液系や、アルキルアンモニウムの過塩素酸塩等
の電解質をγ−ブチロラクトン、ジメチルホルムアミ
ド、ジメチルフルホキシド、プロピレンカーボネート等
の有機溶媒に溶解した非水溶液系が挙げられ、電極とし
ては活性炭繊維布、あるいはその片面に導電性層を形成
させた活性炭繊維布等が挙げられるが、これらに何ら限
定はされない。
In the case of an electric double layer capacitor, an aqueous solution system using an aqueous solution of sulfuric acid, an aqueous solution of potassium hydroxide or the like as an electrolyte solution, or an electrolyte such as an alkylammonium perchlorate is used in the form of γ-butyrolactone, dimethylformamide or dimethylfluphoxide. Sid, a non-aqueous solution system dissolved in an organic solvent such as propylene carbonate, and the like include activated carbon fiber cloth as an electrode, or activated carbon fiber cloth having a conductive layer formed on one surface thereof, but not limited thereto. Not done.

【0018】[0018]

【発明の効果】本発明においては、疎水性膜の少なくと
も細孔表面を親水化処理することができるので、電解液
を十分に吸収保持できると共に、耐酸化性や耐アルカリ
性を有し、高温でも安定で、長期的に性能を維持できる
コンデンサ用セパレーターを得ることができる。
INDUSTRIAL APPLICABILITY In the present invention, at least the surface of the pores of the hydrophobic membrane can be treated to be hydrophilic, so that the electrolyte solution can be sufficiently absorbed and retained, and it has oxidation resistance and alkali resistance, and even at high temperatures. It is possible to obtain a capacitor separator that is stable and can maintain performance for a long period of time.

【0019】[0019]

【実施例】【Example】

実施例1 ポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工
株式会社製、商品名NTF1111 、公称孔径0.1 μm)を、
下記〔化4〕の構造を有するフッ素系界面活性剤
Example 1 A polytetrafluoroethylene (PTFE) porous membrane (manufactured by Nitto Denko Corporation, trade name NTF1111, nominal pore size 0.1 μm) was used.
Fluorine-based surfactant having the structure of the following [Chemical Formula 4]

【0020】[0020]

【化4】 [Chemical 4]

【0021】の2.5 重量%のアセトン溶液に浸漬し、3
0分後に膜を取り出し風乾して、電解コンデンサ用セパ
レーターを得た。このセパレーターを10cm2 に切取
り、カートリッジ型濾過装置にセットし、透過側を23
5mmHgに減圧して純水を透過させ、純水透過速度を測定
したところ、4.5ml/cm2/minであった。 このまま純
水濾過をセパレーター1cm2 あたり10リットル行った
後、一旦セパレーターを取り出し、乾燥器中で60℃で15
分間水分を除去した。 そして再度カートリッジ型濾過
装置にセットし、純水を前記と同条件で濾過したとこ
ろ、純水透過速度は変わらず、フッ素系界面活性剤が良
好に細孔表面に被覆されていることが確認できた。
Dipped in 2.5 wt% acetone solution of 3
After 0 minutes, the film was taken out and air-dried to obtain a separator for electrolytic capacitors. Cut this separator into 10 cm 2 and set it on the cartridge type filtration device.
The pressure was reduced to 5 mmHg to allow pure water to permeate, and the pure water permeation rate was measured to be 4.5 ml / cm 2 / min. The pure water is filtered as it is for 10 liters per cm 2 of the separator, and then the separator is once taken out and dried in a dryer at 60 ° C. for 15 minutes.
The water was removed for a minute. Then, it was set in the cartridge type filtration device again, and pure water was filtered under the same conditions as above. As a result, the pure water permeation rate did not change, and it was confirmed that the surface of the pores was well covered with the fluorinated surfactant. It was

【0022】また、セパレーター表面をESCA分析し
たところ、被覆前は、F/C=2.0、O/C=0.01であ
ったが、被覆後は、F/C=1.3 、O/C=0.26とな
り、Fの比率が減少し、Oが増えていることが確認され
た。 また、被覆後/前のセパレーターの重量比は、1.
052/1 (被覆したフッ素系界面活性剤のPTFE多孔質膜に
対する質量は、5.2 %)であった。
ESCA analysis of the surface of the separator showed that F / C = 2.0 and O / C = 0.01 before coating, but after coating, F / C = 1.3 and O / C = 0.26. It was confirmed that the ratio of F decreased and O increased. The weight ratio of the coated / pre-separator is 1.
052/1 (mass of coated fluorosurfactant to PTFE porous membrane was 5.2%).

【0023】実施例2 実施例1の方法で得られた被覆後の膜を、20cm四方
に切り取り、プラズマ照射装置内に電極から5cm離し
て保持した。 10-5torrに真空引きした後、Arガス
を40cc(STP)/min で供給し、チャンバー内を5×10
-2torrに保ち、13.56MH2、50Wの出力でプラズマを発生
させ、30sec 放電後膜を取り出し、コンデンサ用セパレ
ーターを得た。
Example 2 The coated film obtained by the method of Example 1 was cut into a 20 cm square and held in the plasma irradiation apparatus at a distance of 5 cm from the electrode. After evacuating to 10 -5 torr, Ar gas was supplied at 40 cc (STP) / min, and the inside of the chamber was 5 × 10 5.
While maintaining at -2 torr, plasma was generated at an output of 13.56 MH 2 and 50 W, and after discharging for 30 seconds, the film was taken out to obtain a capacitor separator.

【0024】実施例3 実施例1で用いたPTFE多孔質膜を、実施例2と同条件で
プラズマ照射を行った後、実施例1と同様にしてフッ素
系界面活性剤を被覆して、コンデンサ用セパレーターを
得た。
Example 3 The PTFE porous membrane used in Example 1 was irradiated with plasma under the same conditions as in Example 2, and then coated with a fluorine-containing surfactant in the same manner as in Example 1 to give a capacitor. A separator for use was obtained.

【0025】比較例1 フッ素系界面活性剤で処理しない以外は、実施例1と同
様にして得たコンデンサ用セパレーターの、初期純水透
過速度は、純水が透過しないため、測定不可能であっ
た。 また、ESCA分析によると、FがCの2倍の強
度を示す以外、他の元素は観察されなかった。
Comparative Example 1 The initial pure water permeation rate of the capacitor separator obtained in the same manner as in Example 1 except that it was not treated with a fluorine-containing surfactant was not measurable because pure water did not permeate. It was Moreover, according to ESCA analysis, other elements were not observed except that F showed twice the strength of C.

【0026】比較例2 下記の〔化5〕の構造を有するフッ素系界面活性剤Comparative Example 2 Fluorine-based surfactant having the structure of the following [Chemical formula 5]

【0027】[0027]

【化5】 [Chemical 5]

【0028】を用いた以外は、実施例1と同様にしてコ
ンデンサ用セパレーターを得た。 このセパレーター
は、初期には純水が透過したが、膜1cm2 あたり0.3 リ
ットルの純水を透過後乾燥したところ、このセパレータ
ーは疎水性に戻り、純水は透過しなかった。
A separator for capacitors was obtained in the same manner as in Example 1 except that was used. Pure water permeated initially in this separator, but when 0.3 liter of pure water per cm 2 of the membrane was permeated and then dried, the separator returned to hydrophobic and pure water did not permeate.

【0029】実施例1〜3及び比較例1〜2で得たセパ
レーターに、電解液(電解質:アジピン酸アンモニウ
ム、溶媒:γ−ブチロラクトン)を含浸させて、アルミ
ニウム陽極箔とアルミニウム陰極箔との間に配置して、
アルミニウム電解コンデンサを得た。 なお、比較例1
で得たセパレーターについては、エタノールで一旦湿潤
させた後、電解液と置換した。
The separators obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were impregnated with an electrolytic solution (electrolyte: ammonium adipate, solvent: γ-butyrolactone) to form a space between the aluminum anode foil and the aluminum cathode foil. Place it in
An aluminum electrolytic capacitor was obtained. Comparative Example 1
The separator obtained in 1. was moistened once with ethanol and then replaced with the electrolytic solution.

【0030】かかる電解コンデンサの、定格200 V、30
0 μFの初期損失角の正接と、120℃で3000時間経過後
の損失角の正接の値を表1に示す。 これから明らかな
ように、本発明の電解コンデンサ用セパレーターは、高
温での長期間の試験後も安定した性能を示すことがわか
る。
Such an electrolytic capacitor is rated at 200 V, 30
Table 1 shows the tangent value of the initial loss angle of 0 μF and the tangent value of the loss angle after 3000 hours at 120 ° C. As is clear from this, it is understood that the electrolytic capacitor separator of the present invention exhibits stable performance even after a long-term test at high temperature.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例1及び比較例1〜2で得たセパレー
ターに、電解液(電解質:フタル酸、溶媒:γ−ブチロ
ラクトン)を含浸させ、活性炭繊維からなる電極にはさ
んで電気二重層コンデンサーを形成した。 なお、比較
例1で得たセパレーターについては、エタノールで一旦
湿潤させた後、電解液と置換した。
The separators obtained in Example 1 and Comparative Examples 1 and 2 were impregnated with an electrolytic solution (electrolyte: phthalic acid, solvent: γ-butyrolactone) and sandwiched between electrodes made of activated carbon fiber to form an electric double layer capacitor. Formed. The separator obtained in Comparative Example 1 was once moistened with ethanol and then replaced with the electrolytic solution.

【0033】かかる電気二重層コンデンサの、定格5
V、0.1Fの初期損失角の正接と、120 ℃で3000時間
経過後の損失角の正接の値を表2に示す。 これから明
らかなように、電気二重層コンデンサーにおいても、本
発明のコンデンサ用セパレーターは、高温での長期間の
試験後も安定した性能を示すことがわかる。
Rating 5 of such an electric double layer capacitor
Table 2 shows the tangent values of the initial loss angle of V and 0.1 F and the tangent values of the loss angle after 3000 hours at 120 ° C. As is apparent from this, also in the electric double layer capacitor, the capacitor separator of the present invention shows stable performance even after a long-term test at high temperature.

【0034】[0034]

【表2】 [Table 2]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年1月6日[Submission date] January 6, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】かかるフッ素系界面活性剤の具体例として
は、例えば下記の〔化3〕
Specific examples of such a fluorine-containing surfactant include, for example, the following [Chemical Formula 3]

【化3】 で表されるものが挙げられる。[Chemical 3] What is represented by.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[0020]

【化4】 [Chemical 4]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】[0031]

【表1】 [Table 1]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】実施例1及び比較例1〜2で得たセパレー
ターに、電解液(電解質:フタル酸、溶媒:γ−ブチロ
ラクトン)を含浸させ、活性炭繊維からなる電極にはさ
んで電気二重層コンデンサを形成した。 なお、比較例
1で得たセパレーターについては、エタノールで一旦湿
潤させた後、電解液と置換した。
The separators obtained in Example 1 and Comparative Examples 1 and 2 were impregnated with an electrolytic solution (electrolyte: phthalic acid, solvent: γ-butyrolactone), and sandwiched between electrodes made of activated carbon fiber to form an electric double layer capacitor. Formed. The separator obtained in Comparative Example 1 was once moistened with ethanol and then replaced with the electrolytic solution.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】かかる電気二重層コンデンサの、定格5
V、0.1Fの初期損失角の正接と、120 ℃で3000時間
経過後の損失角の正接の値を表2に示す。 これから明
らかなように、電気二重層コンデンサにおいても、本発
明のコンデンサ用セパレーターは、高温での長期間の試
験後も安定した性能を示すことがわかる。
Rating 5 of such an electric double layer capacitor
Table 2 shows the tangent values of the initial loss angle of V and 0.1 F and the tangent values of the loss angle after 3000 hours at 120 ° C. As is apparent from this, also in the electric double layer capacitor, the capacitor separator of the present invention shows stable performance even after a long-term test at high temperature.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】[0034]

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フッ素系高分子重合体多孔質膜の少なく
とも細孔表面に、下記の〔化1〕 【化1】 (上記式中、RはH、OH、COOH、又はCH3 、m
は1〜17、nは1〜20である。)で表される構造を
有するフッ素系界面活性剤の被覆層が、化学的親和性に
よって形成されて、親水性を有することを特徴とするコ
ンデンサ用セパレーター。
1. The following [Chemical formula 1] [Chemical formula 1] on at least the surface of the pores of the fluoropolymer macromolecular film. (In the above formula, R is H, OH, COOH, or CH 3 , m
Is 1 to 17, and n is 1 to 20. A separator for a capacitor, characterized in that the coating layer of a fluorine-based surfactant having a structure represented by (4) is formed by chemical affinity and has hydrophilicity.
【請求項2】 請求項1記載のセパレーターに電解液を
含浸させて、一対の電極の間に配置してなるコンデン
サ。
2. A capacitor comprising the separator according to claim 1 impregnated with an electrolytic solution and arranged between a pair of electrodes.
JP29882992A 1992-11-09 1992-11-09 Separator for capacitor and capacitor using thereof Pending JPH06151249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29882992A JPH06151249A (en) 1992-11-09 1992-11-09 Separator for capacitor and capacitor using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29882992A JPH06151249A (en) 1992-11-09 1992-11-09 Separator for capacitor and capacitor using thereof

Publications (1)

Publication Number Publication Date
JPH06151249A true JPH06151249A (en) 1994-05-31

Family

ID=17864762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29882992A Pending JPH06151249A (en) 1992-11-09 1992-11-09 Separator for capacitor and capacitor using thereof

Country Status (1)

Country Link
JP (1) JPH06151249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016138A1 (en) * 1997-09-22 1999-04-01 W.L. Gore & Associates Gmbh An electrochemical energy storage means
KR100446659B1 (en) * 2001-05-09 2004-09-04 주식회사 엘지화학 Electrolyte containing non-ionic surface active agent and its application to lithium ion battery
CN104979101A (en) * 2014-04-02 2015-10-14 苏州科技学院 Method for manufacturing super-capacitor diaphragm

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016138A1 (en) * 1997-09-22 1999-04-01 W.L. Gore & Associates Gmbh An electrochemical energy storage means
KR100446659B1 (en) * 2001-05-09 2004-09-04 주식회사 엘지화학 Electrolyte containing non-ionic surface active agent and its application to lithium ion battery
US6960410B2 (en) 2001-05-09 2005-11-01 Lg Chem, Ltd. Electrolyte comprising non-ionic surfactant and lithium ion battery using the same
CN104979101A (en) * 2014-04-02 2015-10-14 苏州科技学院 Method for manufacturing super-capacitor diaphragm

Similar Documents

Publication Publication Date Title
JP5309171B2 (en) Battery separator for lithium polymer battery
JP2009147369A (en) Electrochemical energy storage means
KR20130012492A (en) Lithium secondary cell comprising polar solvent and bi-polar plate coated with poly-dopamine
WO2017098732A1 (en) Electrolyte membrane, method for producing same, and electrolyte membrane-equipped membrane-electrode assembly for fuel cell
JP2013194153A (en) Method for producing modified polyolefin microporous membrane
EP0229321B1 (en) Method for producing an alkali metal hydroxide and electrolytic cell useful for the method
JP4495516B2 (en) Separator for electronic parts and method for manufacturing the same
EP1789166B1 (en) Composite membranes of high homogeneity
JPH06151249A (en) Separator for capacitor and capacitor using thereof
WO2015190075A1 (en) Anion-exchange electrolyte membrane, membrane-electrode assembly for fuel cells provided with same, and fuel cell
KR20000053093A (en) Electrolytic membrane, method of manufacturing it and use
JP2000288367A (en) Manufacture of hydrophobic porous membrane
JPH0845788A (en) Capacitor
MXPA01007816A (en) Process for treating impregnated electrolytic capacitor anodes.
JP3752235B2 (en) Separator for electronic parts
JPH08316105A (en) Separator for capacitor and the capacitor using the same
JPS6171804A (en) Porous aluminum oxide membrane
JPH07312328A (en) Separator for capacitor
JPH09246103A (en) Capacitor and method for manufacturing separator using it
JPS59203602A (en) Composite membrane
JPH11106553A (en) Method for hydrophilizing porous fluoro resin membrane
WO2017104570A1 (en) Support for forming hydrogen discharge film, and laminated hydrogen discharge film
JP2929209B2 (en) Separator for electrolytic capacitor
JPH01246812A (en) Electric double-layer capacitor
JP2004224915A (en) Fine porous film