JPH06151152A - Manufacture of mn-zn ferrite calcinated powder - Google Patents

Manufacture of mn-zn ferrite calcinated powder

Info

Publication number
JPH06151152A
JPH06151152A JP4297345A JP29734592A JPH06151152A JP H06151152 A JPH06151152 A JP H06151152A JP 4297345 A JP4297345 A JP 4297345A JP 29734592 A JP29734592 A JP 29734592A JP H06151152 A JPH06151152 A JP H06151152A
Authority
JP
Japan
Prior art keywords
ferrite
calcinated powder
manufacture
calcined powder
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4297345A
Other languages
Japanese (ja)
Inventor
Shinya Naruki
木 紳 也 成
Wataru Ohashi
橋 渡 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4297345A priority Critical patent/JPH06151152A/en
Publication of JPH06151152A publication Critical patent/JPH06151152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a manufacture of Mn-Zn ferrite calcinated powder so as to improve the formability for pressurizing formation, especially method for grinding the calcinated powder. CONSTITUTION:(1) DA is the grain diameter of the 50% of secondary grains before powdering and DB is the grain diameter of the 50% of the secondary grains after powdering. The ratio DB/DA is permitted to be in a range of 0.1 to 0.6 and the formability of the calcinated powder is improved so as to manufacture Mn-Zn ferrite calcinated powder. (2) The grain diameter DB of the 50% of the powdered secondary grains is permitted to be in a range of 0.5mum or more and 5mum or less and the Mn-Zn ferrite calcinated powder is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧成形における成形
性を改善するためのMn−Zn系フェライト仮焼粉の製
造方法、特に仮焼粉の粉砕方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing Mn-Zn ferrite calcined powder for improving moldability in pressure molding, and more particularly to a method for pulverizing calcined powder.

【0002】[0002]

【従来の技術】Mn−Zn系フェライトコアは、電源用
トランス等に用いられ、大量に製造されているが、その
製造方法は、一般的に、原料を混合後、800〜120
0℃程度で仮焼を行い、これを粉砕後、造粒、成形、焼
成する工程により行われている。
2. Description of the Related Art Mn-Zn ferrite cores are used in power transformers and the like and are manufactured in large quantities. The manufacturing method is generally 800 to 120 after mixing raw materials.
Calcination is performed at about 0 ° C., and after crushing, it is granulated, molded, and fired.

【0003】このうち成形工程においては、最も量産に
適した成形方法として、一般に一軸プレス成形等のいわ
ゆる加圧成形法が多く用いられる。この方法で得られる
成形体の密度は、それに引き続く焼成後のフェライトコ
アの密度に影響し、一般に成形体密度を高くするほど焼
成体密度は高くなるため、その結果、優れた磁気特性の
製品が得られる。従って、フェライトコアに要求される
特性を満足させるには、成形工程において、密度がある
程度高く、しかも均一な成形体を得る必要がある。
In the molding process, a so-called pressure molding method such as uniaxial press molding is generally used in many cases as a molding method most suitable for mass production. The density of the molded body obtained by this method affects the density of the ferrite core after the subsequent firing, and generally, the higher the molded body density, the higher the sintered body density, and as a result, the product with excellent magnetic properties is obtained. can get. Therefore, in order to satisfy the properties required for the ferrite core, it is necessary to obtain a uniform molded product having a high density to some extent in the molding process.

【0004】しかし、成形体密度を高くしようとして、
過度に成形圧を高くした場合、金型の破損や寿命の低下
を招いたり、成形体の密度が不均一になりやすく、結
局、歩留の低下やコスト高の原因となっている。このた
め、プレス成形の際には出来る限り低い成形圧で適正な
成形体密度を実現することが望ましく、このような観点
から従来、成形性の改善のために結合剤、可塑剤等の添
加剤の添加方法の工夫等が行われてきた(特願平3−6
1754,61755号参照)。
However, in order to increase the compact density,
If the molding pressure is excessively increased, the mold may be damaged, the life of the mold may be shortened, and the density of the molded body tends to be non-uniform, which eventually causes a decrease in yield and an increase in cost. For this reason, it is desirable to achieve an appropriate compact density at the lowest possible compaction pressure during press molding. From such a viewpoint, conventionally, additives such as binders and plasticizers have been used to improve moldability. Have been devised (Japanese Patent Application No. 3-6).
1754, 61755).

【0005】しかしながら、添加剤の添加条件の変更
は、成形体強度の低下を引き起こしたり、造粒の際に適
正な造粒粉が得られなくなる等の問題がある。
However, changing the additive conditions of the additive causes problems such as a decrease in strength of the molded body and an inability to obtain an appropriate granulated powder during granulation.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来のよう
な添加剤の添加方法の工夫等によるのではなく、仮焼粉
の粉砕方法を制御することにより、成形性の優れたフェ
ライト仮焼粉を提供することを目的としている。
DISCLOSURE OF THE INVENTION The present invention does not rely on the conventional method of adding an additive but by controlling the pulverizing method of the calcined powder to obtain a ferrite calcined material having excellent formability. Intended to provide flour.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では仮焼粉の粉砕の程度と成形性との関係に
着目し、粉砕前の二次粒子の50%粒径DA と粉砕後の
二次粒子の50%粒径DB との比、DB /DA をある特
定の範囲にしたときに成形体の密度が高くなり、成形性
が改善されることを見いだし、本発明を完成させるに至
ったものである。
In order to solve the above problems, the present invention pays attention to the relationship between the degree of pulverization of calcined powder and the formability, and 50% particle size D A of secondary particles before pulverization and the ratio between the 50% particle size D B of the secondary particles after grinding, the density of the molded body is increased when the specific range of the D B / D a, found that the moldability is improved, The present invention has been completed.

【0008】本発明の要旨は、次のとおりである。 (1) 粉砕前の二次粒子の50%粒径DA と粉砕後の
二次粒子の50%粒径DB との比、DB /DA を、0.
1〜0.6の範囲とし、仮焼粉の成形性を改善したこと
を特徴とするMn−Zn系フェライト仮焼粉の製造方
法。 (2) 上記粉砕後の二次粒子の50%粒径DB を0.
5μm以上、5μm以下の範囲とすることを特徴とする
Mn−Zn系フェライト仮焼粉の製造方法。
The gist of the present invention is as follows. (1) The ratio of 50% particle size D A of secondary particles before crushing to 50% particle size D B of secondary particles after crushing, D B / D A, is set to 0.
A method for producing a calcined powder of Mn-Zn ferrite, characterized in that the formability of the calcined powder is improved in the range of 1 to 0.6. (2) The 50% particle size D B of the secondary particles after the pulverization is 0.
A method for producing a Mn—Zn-based ferrite calcined powder, which is in the range of 5 μm or more and 5 μm or less.

【0009】本発明において、粉砕前後の仮焼粉の50
%粒径DA 、DB は、マイクロトラック、コールターカ
ウンター、沈降法等を用いて測定できる。同一成形圧で
仮焼粉を成形した成形体の密度は、DB /DA の値を
0.1〜0.6の範囲になるように粉砕を施した仮焼粉
を用いることによって、大きくすることができる。な
お、DB /DA の値が0.6よりも大きい場合に形成性
が悪くなるのは、仮焼粉の凝集の程度が高くなることと
関係があると考えられる。また、DB /DA の値が0.
1以下で、成形体密度が低下するのは、粉砕の際にかな
りの微粉を発生することが関係していると思われる。ま
た、粉砕後の二次粒子の50%粒径DB を、0.5μm
以上、5μm以下とした場合に、より高い成形体密度を
得ることが可能となり、本発明の効果をより引き出すこ
とができる。
In the present invention, 50 of the calcined powder before and after crushing is used.
The% particle diameters D A and D B can be measured using a Microtrac, Coulter Counter, sedimentation method or the like. The density of the compact formed by molding the calcined powder with the same molding pressure is increased by using the calcined powder that is pulverized so that the value of D B / D A is in the range of 0.1 to 0.6. can do. When the value of D B / D A is larger than 0.6, the poor formability is considered to be related to the higher degree of aggregation of the calcined powder. Further, the value of D B / D A is 0.
When the ratio is 1 or less, the density of the compact decreases, and it is considered that a considerable amount of fine powder is generated during pulverization. In addition, the 50% particle size D B of the secondary particles after pulverization is 0.5 μm.
When the thickness is 5 μm or less, a higher compact density can be obtained, and the effect of the present invention can be further brought out.

【0010】[0010]

【実施例】以下に、本発明を実施例に基づいて、さらに
説明する。Fe2 3 、MnCO3 、ZnOを、それぞ
れ52〜54モル%、35〜38モル%(MnO換
算)、9〜12モル%の割合で混合し、800〜110
0℃で仮焼後、ボールミル粉砕を行い、種々の粒径を有
するMn−Znフェライト仮焼粉を製造した。この時の
粉砕前後の50%粒径を、マイクロトラックにより測定
した。さらに、これらの仮焼粉にPVAを添加して造粒
を行い、次いで2ton/cm2 の圧力で一軸加圧プレスを行
って、直径10mmのタブレット状に成形した。
EXAMPLES The present invention will be further described below based on examples. Fe 2 O 3, the MnCO 3, ZnO, respectively 52 to 54 mol%, 35-38 mol% (MnO basis) were mixed at a ratio of 9-12 mol%, 800-110
After calcination at 0 ° C., ball mill pulverization was performed to produce Mn—Zn ferrite calcined powder having various particle sizes. The 50% particle size before and after pulverization at this time was measured by Microtrac. Further, PVA was added to these calcined powders for granulation, and then uniaxial pressing was performed at a pressure of 2 ton / cm 2 to form tablets having a diameter of 10 mm.

【0011】得られた成形体の密度とDB /DA の値
を、第1表に示す。DB /DA を0.1〜0.6の範囲
になるように粉砕した場合、高い密度を有する成形体を
得ることができる。
The density and the value of D B / D A of the obtained molded product are shown in Table 1. When D B / D A is ground to a range of 0.1 to 0.6, a molded product having a high density can be obtained.

【0012】 第 1 表 A (μm) DB (μm) DB /DA 成形体密度(g/cm3 ) 実施例1 4.13 2.29 0.55 3.06 実施例2 3.67 1.97 0.54 3.08 実施例3 2.94 1.53 0.52 3.06 実施例4 2.57 1.00 0.39 3.07 実施例5 3.45 0.99 0.29 3.04 比較例1 3.38 2.09 0.62 2.95 比較例2 3.40 2.50 0.74 2.95 比較例3 4.35 0.41 0.09 2.89 Table 1 D A (μm) D B (μm) D B / D A compact density (g / cm 3 ) Example 1 4.13 2.29 0.55 3.06 Example 2 3.67 1.97 0.54 3.08 Example 3 2.94 1.53 0.52 3.06 Example 4 2. 57 1.00 0.39 3.07 Example 5 3.45 0.99 0.29 3.04 Comparative Example 1 3.38 2.09 0.62 2.95 Comparative Example 2 3.40 2.500 .74 2.95 Comparative Example 3 4.35 0.41 0.09 2.89

【0013】[0013]

【発明の効果】以上のように、本発明の製造方法によ
り、成形性の優れたMn−Znフェライト仮焼粉を提供
することができ、その結果、成形時に金型の破損や成形
体密度の不均一性に伴う不良品の発生を防いで、歩留の
低下やコストの低下に寄与するとともに、最終的に優れ
たフェライトコアを製造することができる。
As described above, according to the production method of the present invention, it is possible to provide a calcined powder of Mn-Zn ferrite having excellent formability. It is possible to prevent the generation of defective products due to non-uniformity, contribute to a decrease in yield and cost, and finally to manufacture an excellent ferrite core.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粉砕前の二次粒子の50%粒径DA と粉砕
後の二次粒子の50%粒径DB との比DB /DA を、
0.1〜0.6の範囲とし、仮焼粉の成形性を改善した
ことを特徴とするMn−Zn系フェライト仮焼粉の製造
方法。
1. A ratio D B / D A of 50% particle size D A of secondary particles before crushing and 50% particle size D B of secondary particles after crushing,
A method for producing a Mn-Zn ferrite calcined powder, characterized in that the formability of the calcined powder is improved in the range of 0.1 to 0.6.
【請求項2】粉砕後の二次粒子の50%粒径DB を0.
5μm以上、5μm以下の範囲とすることを特徴とする
請求項1に記載のMn−Zn系フェライト仮焼粉の製造
方法。
2. The 50% particle size D B of the secondary particles after pulverization is 0.
The method for producing a Mn-Zn ferrite calcined powder according to claim 1, wherein the range is 5 μm or more and 5 μm or less.
JP4297345A 1992-11-06 1992-11-06 Manufacture of mn-zn ferrite calcinated powder Pending JPH06151152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4297345A JPH06151152A (en) 1992-11-06 1992-11-06 Manufacture of mn-zn ferrite calcinated powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4297345A JPH06151152A (en) 1992-11-06 1992-11-06 Manufacture of mn-zn ferrite calcinated powder

Publications (1)

Publication Number Publication Date
JPH06151152A true JPH06151152A (en) 1994-05-31

Family

ID=17845317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4297345A Pending JPH06151152A (en) 1992-11-06 1992-11-06 Manufacture of mn-zn ferrite calcinated powder

Country Status (1)

Country Link
JP (1) JPH06151152A (en)

Similar Documents

Publication Publication Date Title
CN106365626A (en) Manufacturing method of dry-press anisotropic ferrite
JPH06151152A (en) Manufacture of mn-zn ferrite calcinated powder
JP4215992B2 (en) Oxide magnetic powder and core manufacturing method, core molding method, magnetic component and coil component
JPH0766027A (en) Manufacture of strontium ferrite magnet
JP3467838B2 (en) Ferrite resin and method for producing ferrite resin
JP2006111518A (en) Method for manufacturing soft ferrite core
TW202107497A (en) Method for producing an inductive component and inductive component
JPH06151154A (en) Ceramic calcinated powder provided with excellent formability
JPH04154869A (en) Ferrite-resin composite composition
JPH0564751A (en) Production of ferrite
TWI694059B (en) MnCoZn series ferrite iron and its manufacturing method
JPS61205627A (en) Production of powder for electric wave absorber
RU1841349C (en) Method for producing ferrite materials
JP3279701B2 (en) Molding method of ferrite raw material powder
JPS60233803A (en) Manufacture of anisotropic oxide permanent magnet
JPH03123004A (en) Manufacture of highly efficient sr ferrite magnet
JPH0488606A (en) Manufacture of soft magnetic ferrite
JPH08301652A (en) Production of manganese-zinc ferrite forming
CN117383923A (en) Calcium barium strontium permanent magnetic ferrite and preparation method thereof
JPH06260323A (en) Mn-zn ferrite temporary baked powder for obtaining core with high saturation magnetic flux density and low loss
JP2005170763A (en) Mn/Zn FERRITE, ITS MANUFACTURING METHOD AND ELECTRONIC PART
JPS6177625A (en) Manufacture of ferrite magnetic powdery body for magnetic paint
JPS5841647B2 (en) Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder
Prakash Technology of Barium Ferrite Magnets
JP2938260B2 (en) Microcrystalline ferrite

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020226