JPH06149939A - Automatic arrangement design device for printed wiring board - Google Patents

Automatic arrangement design device for printed wiring board

Info

Publication number
JPH06149939A
JPH06149939A JP4273920A JP27392092A JPH06149939A JP H06149939 A JPH06149939 A JP H06149939A JP 4273920 A JP4273920 A JP 4273920A JP 27392092 A JP27392092 A JP 27392092A JP H06149939 A JPH06149939 A JP H06149939A
Authority
JP
Japan
Prior art keywords
cluster
parts
component
specific gravity
procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4273920A
Other languages
Japanese (ja)
Other versions
JP2888057B2 (en
Inventor
Hideo Kikuchi
秀雄 菊地
Takeshi Shimozu
猛 下津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4273920A priority Critical patent/JP2888057B2/en
Publication of JPH06149939A publication Critical patent/JPH06149939A/en
Application granted granted Critical
Publication of JP2888057B2 publication Critical patent/JP2888057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To optimally arrange parts in a short time by arranging the parts by arithmetically calculating the positions of parts to minimize a total wiring length between parts. CONSTITUTION:The specific gravity of non-arranged parts is calculated by a parts specific gravity calculating means 3, and the parts are successively put in order from the heavy specific gravity by applying means 5. Then, the order of putting in the parts is stored in a parts arrangement storage means 4. Further, the least significant parts data of non-arranged parts are registered as most significant arranged parts. Next, the parts are successively processed from down to up for the arrangement of a first solution by a cluster preparing means 6, the specific gravity of adjacent parts is compared, and a cluster combining upper and lower parts is prepared. The cluster is stored in a parts data storage means 2. When the cluster is prepared, the specific gravity is also compared between that part and the upper part, and a cluster defining that cluster as a component, is prepared as well. Then, the specific gravity is compared between the cluster and the parts which are not contained in the cluster but remained, and the overlapped arrangement in the order of weight is calculated from the downside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は印刷配線板の配線の経路
を設計する自動配置設計装置に関し、特に、部品の配置
位置を探索する配置設計装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic layout designing device for designing a wiring route of a printed wiring board, and more particularly to a layout designing device for searching a layout position of parts.

【0002】[0002]

【従来の技術】一般に、印刷配線板の自動配置設計装置
の課題は、部品間を接続する配線の総配線長が最小の配
置を求めることがある。これは原理的には、全部品の配
置可能なあらゆる組合せ毎に総配線長を計算し、その値
が最小になる組合せを選定する方法が考えられる。しか
し、この場合の組合せの数は部品数Nの階乗N!であり
膨大な計算量を要するので実用的でなかった。
2. Description of the Related Art Generally, a problem of an automatic layout designing apparatus for a printed wiring board is to find a layout in which the total wiring length of wirings connecting components is minimum. In principle, a method is conceivable in which the total wiring length is calculated for every possible combination of all components and the combination having the smallest value is selected. However, the number of combinations in this case is the factorial N! It is not practical because it requires a huge amount of calculation.

【0003】一方、従来の配置設計装置の部品配置の実
用的方法として、自動的に部品を配置替えし総配線長が
少なくなる順次選んでいく自動部品配置方法が知られて
いた。
On the other hand, as a practical method for arranging components in a conventional layout designing apparatus, there has been known an automatic component arranging method in which components are automatically rearranged and the total wiring length is reduced to be sequentially selected.

【0004】単に部品交換で総配線長が小さくなる配線
を選ぶことを繰り返す方法では、最後にどの部品を交換
しても総配線長が大きくなる配置を選ぶが、この特徴を
持った配置は複数存在するので、総配線長が正しく最小
の最適解を得る確実な手法が必要であった。このため
に、分子の加熱時のかく乱による状態遷移の原理を部品
の配置位置探索に利用したシミュレーテッドアニーリン
グ法を併用して最適解を得ようとしてきた。また、表示
部に部品端子間を接続する線(ラッツネスト)を表示
し、更に基板を横断する配線の密度のグラフを表示し操
作者に部品の配置位置を指定させる手法も用いられてき
た。
In the method of repeatedly selecting wirings whose total wiring length is reduced by simply exchanging components, an arrangement is selected in which the total wiring length is increased regardless of which component is finally exchanged. However, there are a plurality of arrangements having this feature. Since it exists, a reliable method for obtaining the optimum solution with the correct total wiring length is required. For this reason, we have tried to obtain the optimal solution by using the simulated annealing method that utilizes the principle of state transition due to the disturbance during the heating of the molecule to search the placement position of the component. Also, a method has been used in which a line (rat's nest) that connects component terminals is displayed on the display unit, and a graph of the density of wiring that traverses the substrate is displayed to allow the operator to specify the placement position of the component.

【0005】[0005]

【発明が解決しようとする課題】上述した従来のシミュ
レーテッドアニーリング法の自動配置設計装置は、ラン
ダム要因を利用した試行錯誤によるため、最適配置を得
ようとすると無限に時間がかかるという問題があった。
また、操作者に部品の配置位置を指定させる方法は、一
つづつ順に部品を移動させるので、最適な部品配置を得
るために多くの部品移動操作を繰り返し長時間を要する
問題があった。
The above-described conventional automatic layout designing apparatus for the simulated annealing method has a problem that it takes an infinite amount of time to obtain an optimum layout because of trial and error using random factors. It was
Further, in the method of allowing the operator to specify the arrangement position of the components, the components are moved one by one, so that there is a problem that many component movement operations are repeated and a long time is required to obtain the optimum component arrangement.

【0006】本発明の目的は、これらの問題を解決し、
最適な部品配置を短時間に得られる印刷配線板の自動配
置設計装置を提供することにある。
The object of the present invention is to solve these problems,
An object of the present invention is to provide an automatic layout design device for a printed wiring board, which can obtain an optimum component layout in a short time.

【0007】[0007]

【課題を解決するための手段】本発明の印刷配線板の自
動配置設計装置の構成は、印刷配線の部品をその部品か
ら引き出す配線数を部品の面積で割った商の比重を計算
する比重計算手段と、前記比重の重い順に前記部品を配
置する整列手段とを備え、前記部品間の総配線長を最小
にする配線を計算により求めて前記部品を配置すること
を特徴とする。
According to the structure of an automatic layout designing apparatus for a printed wiring board of the present invention, a specific gravity calculation for calculating a specific gravity of a quotient obtained by dividing the number of wirings to be drawn out from the parts of the printed wiring by the area of the parts It is characterized by comprising means and an aligning means for arranging the parts in order of increasing specific gravity, and arranging the parts by calculating a wiring that minimizes a total wiring length between the parts.

【0008】本発明において、整列手段により計算した
部品配置結果を用いて結合する部品の集合(クラスタ)
を作成するクラスタ作成手段を備え、クラスタから引き
出す配線数をクラスタの面積あるいは部品数で割った商
(比重)を比重計算手段により計算し、整列手段により
比重に基づきクラスタを一括移動させることもでき、ま
たクラスタを表示するクラスタ表示手段を備えることも
できる。
In the present invention, a set (cluster) of parts to be connected by using the parts placement result calculated by the aligning means.
It is also possible to provide a cluster creating means for creating a cluster, and calculate the quotient (specific gravity) obtained by dividing the number of wires drawn from the cluster by the area of the cluster or the number of parts by the specific gravity calculating means, and moving the clusters collectively by the aligning means. Also, a cluster display means for displaying the cluster may be provided.

【0009】[0009]

【作用】本発明において、ネットの長さはネットの両端
の部品の距離であるがこの距離が最小になる様に部品を
配置する必要がある。部品はそれを接続するネットから
引力を受けるものとすると、総ネット長はこれらの部品
を配置した総位置エネルギーに対応するため、総ネット
長を最小にする問題を総位置エネルギーを最小にする問
題に変換する。
In the present invention, the length of the net is the distance between the parts at both ends of the net, but it is necessary to arrange the parts so that this distance is minimized. Assuming that a part receives an attractive force from the net that connects it, the total net length corresponds to the total potential energy where these parts are placed, so the problem of minimizing the total net length is the problem of minimizing the total potential energy. Convert to.

【0010】部品の比重Wを、既配置部品に接続するネ
ット数P1から未配置部品に接続するネット数P2を引
いた値を部品の面積Nで割った商で定義し(W=(P1
−P2)/N)、比重Wの大きい部品から順に下から上
に部品を配置することにより位置エネルギーを極小化す
る。また、結合する部品はクラスタを一括移動させるこ
とによりクラスタ全体の位置エネルギーを最小にするよ
うに最適配置を計算している。
The specific gravity W of a component is defined by a quotient obtained by dividing a value obtained by subtracting the number P2 of nets connected to an unplaced part from the number P1 of nets connected to an already arranged part by the area N of the part (W = (P1
-P2) / N), and the potential energy is minimized by arranging the parts from the bottom to the top in order from the part having the largest specific gravity W. In addition, the optimal placement of the components to be coupled is calculated so that the potential energy of the entire cluster is minimized by moving the cluster all at once.

【0011】[0011]

【実施例】図1は本発明の第1の実施例をブロック図を
示す。本実施例の自動配置設計装置は、ブラウン管等を
含む表示部10と、キーボード・マウス・通信回線等の
入力部12と、制御回路とランダムアクセス記憶回路と
ディスク記憶部からなるデータ処理部13を有するコン
ピュータから成り、データ処理部13にソフトウェアあ
るいは専用処理回路からなる部品データ入力手段1と部
品データ記憶手段2と部品比重計算手段3と部品配置順
番記憶手段4と整列手段5とクラスタ作成手段6とを備
えている。
1 shows a block diagram of a first embodiment of the present invention. The automatic layout designing apparatus of this embodiment includes a display unit 10 including a cathode ray tube and the like, an input unit 12 such as a keyboard, a mouse and a communication line, and a data processing unit 13 including a control circuit, a random access storage circuit and a disk storage unit. The data processing unit 13 includes a computer having the same, and the data processing unit 13 is made up of software or a dedicated processing circuit. The component data input unit 1, the component data storage unit 2, the component specific gravity calculation unit 3, the component arrangement order storage unit 4, the alignment unit 5, and the cluster creation unit 6 are provided. It has and.

【0012】図2から図4は第1の実施例の処理手順を
示すフロー図であり、図5(a)〜(i)は部品の結
線、面積のデータを示す模式図である。まず、部品デー
タ入力手段1が図5(a)の様な結線情報と面積の部品
データを入力し、部品データ記憶手段2に書込む。な
お、図5(a)において部品の面積は全て1とする。
2 to 4 are flow charts showing the processing procedure of the first embodiment, and FIGS. 5 (a) to 5 (i) are schematic diagrams showing data of connection and area of parts. First, the component data input means 1 inputs the connection information and the component data of the area as shown in FIG. 5A and writes it in the component data storage means 2. In addition, in FIG. 5A, all the areas of the parts are 1.

【0013】[手順1]まず、図2のステップS1で、
部品比重計算手段3が未配置部品の比重Wを計算し、ス
テップS2で整列手段5が比重の重い部品から順に整列
させる。この順番を図5(b)に示す様に部品配置順番
記憶手段4に記憶させる。そしてステップS3で未配置
部品の最下位の部品データを最上位の既配置部品とし登
録する。最初はどの部品の比重も負である。部品の既配
置部品への登録の都度、その部品に結合する未配置部品
は既配置部品に接続するネットの数P1が増し比重が重
くなる。そのため、図5(c)に示す様に、再び未配置
部品の比重Wを計算し整列する。この処理を図5(d)
〜(i)に示す様にこの処理を繰り返し(ステップS
4)、最終的に図5(i)の部品配置を得て手順2に進
む。
[Procedure 1] First, in step S1 of FIG.
The component specific gravity calculating means 3 calculates the specific gravity W of the unplaced parts, and in step S2, the aligning means 5 aligns the parts in descending order of specific gravity. This order is stored in the component placement order storage means 4 as shown in FIG. Then, in step S3, the lowest part data of the unplaced parts is registered as the highest placed part. Initially, the specific gravity of any part is negative. Each time a component is registered as an already-placed component, the number P1 of nets connected to the already-placed component increases and the specific gravity of the unplaced component connected to the component increases. Therefore, as shown in FIG. 5C, the specific gravity W of the unplaced parts is calculated again and the parts are aligned. This process is shown in FIG.
Repeat this process as shown in (i) (step S
4) Finally, the arrangement of parts shown in FIG.

【0014】[手順2]手順1の処理により図5(i)
に示す様に部品を下から上に配置した解を得たら以下の
処理を実行する。図5(i)の様な手順1による配置
で、下の部品と上の部品を結ぶ配線が存在するとき下の
部品より上の部品の比重が重い場合があり、この両部品
の結合は強いと考える。
[Procedure 2] As shown in FIG.
When the solution in which the parts are arranged from the bottom to the top is obtained as shown in, the following processing is executed. In the arrangement according to the procedure 1 as shown in FIG. 5 (i), when there is a wiring connecting the lower part and the upper part, the specific gravity of the upper part may be higher than that of the lower part. I think.

【0015】図3のステップS11でクラスタ作成手段
6が第1の解の配置の下の部品から上に順に処理し、隣
合う部品の比重を比較し、下の部品より上の部品の比重
が重い場合、図6(a)に示す様に上下の部品を合わせ
たクラスタを作成する。クラスタは面積がその構成部品
の面積の和である部品とみなし、部品データ記憶手段2
に記憶する。クラスタを作成したらそれとその上の部品
の比重も比較し、クラスタを構成部品とするクラスタも
作成する(ステップS12)。
In step S11 of FIG. 3, the cluster creating means 6 processes the parts below the first solution in order from top to bottom, compares the specific gravities of the adjacent parts, and determines the specific gravities of the parts above the lower part. If it is heavy, a cluster including upper and lower parts is created as shown in FIG. The cluster is regarded as a part whose area is the sum of the areas of its constituent parts, and the part data storage means 2
Remember. After the cluster is created, the specific gravities of the cluster and the parts on it are also compared to create a cluster having the cluster as a component (step S12).

【0016】[手順3]クラスタを作成したら、再び手
順1により、手順2で求めたクラスタ3とクラスタに含
まれずに残った部品の比重を比較し、比重の重い順に下
から上に重ね図6(b)の様に配置を計算する(ステッ
プS13)。更に、クラスタの内部の部品に手順1を適
用し図6(c)の様に部品を再配置する。
[Procedure 3] After the cluster is created, the specific gravity of the cluster 3 obtained in the procedure 2 and the specific gravity of the remaining parts not included in the cluster are compared by the procedure 1 again, and the specific gravity is overlapped from the bottom to the top. The arrangement is calculated as shown in (b) (step S13). Further, the procedure 1 is applied to the parts inside the cluster, and the parts are rearranged as shown in FIG. 6C.

【0017】[手順4]図7(a)に示す部品群は手順
1から手順3により、図4のステップ21のように、図
7(b)に示す第1の1次元配置15を得る。図7
(b)で第1の1次元配置で最初に配置する部品が部品
であったが、選択の自由度の範囲で部品に変更でき
る。最初に配置する部品を部品とし、ステップ22で
再度手順1から手順3により図7(c)に示す第2の1
次元配置16を計算する。
[Procedure 4] For the part group shown in FIG. 7A, the first one-dimensional arrangement 15 shown in FIG. 7B is obtained as in step 21 of FIG. 4 through steps 1 to 3. Figure 7
In (b), the first component to be arranged in the first one-dimensional arrangement is a component, but it can be changed to a component within the range of freedom of selection. The component to be arranged first is the component, and in step 22, the second component shown in FIG.
The dimension arrangement 16 is calculated.

【0018】ステップ23で第1の一次元配置15と第
2の一次元配置16に共通のクラスタを部品とみなし、
ステップS24で図7(b)の第1の一次元配置15と
図7(c)の第2の一次元配置16を直行座標軸におけ
る各部品の位置とし、図8に示す様に部品の二次元平面
での位置を計算する。次にステップS25で二次元平面
に配置した部品を、図9(a)に示す様にそれが接続す
る部品の近隣に移動し配置する。次に、ステップS26
でクラスタの内部の部品を配置し図9(b)に示す様に
部品の密集配置を得る。
In step 23, the cluster common to the first one-dimensional arrangement 15 and the second one-dimensional arrangement 16 is regarded as a component,
In step S24, the first one-dimensional arrangement 15 of FIG. 7 (b) and the second one-dimensional arrangement 16 of FIG. 7 (c) are set as the positions of the respective parts on the orthogonal coordinate axes, and the two-dimensional arrangement of the parts as shown in FIG. Calculate the position in the plane. Next, the component placed on the two-dimensional plane in step S25 is moved and placed near the component to which it is connected, as shown in FIG. 9 (a). Next, step S26.
Then, the parts inside the cluster are arranged to obtain a dense arrangement of the parts as shown in FIG. 9 (b).

【0019】図10は本発明の第2の実施例のブロック
図を示す。本実施例は、第1の実施例に対して部品交換
配置長増加計算手段7が付加されている。本実施例は、
次の3つ基準で階層構造のクラスタを作成するクラスタ
作成手段6を持ち、このために必要な計算を行なう部品
交換配線長増加計算手段7を有する。 (1)クラスタ中の全部品はそのクラスタ内で結合して
いることを第1の条件にする。 (2)クラスタは2つの部分クラスタ(あるいは部品)
から成り、上の部分クラスタの比重は下の部分クラスタ
の比重よりも重く、かつ、上下の部分クラスタの交換
で、その比重の大小の順が逆になるような結合力がある
ことを第2の条件とする。 (3)クラスタの部分クラスタの上下の位置の交換によ
る総配置線の増加量Gを部品交換配線長増加計算手段7
で計算する。クラスタ内の部分クラスタの交換に関する
この値Gは負にならないことを第3の条件とする。
FIG. 10 shows a block diagram of the second embodiment of the present invention. In this embodiment, a component replacement placement length increase calculation means 7 is added to the first embodiment. In this example,
It has a cluster creating means 6 for creating a cluster having a hierarchical structure on the basis of the following three criteria, and a component replacement wiring length increase calculating means 7 for performing the calculation necessary for this purpose. (1) The first condition is that all parts in a cluster are connected in the cluster. (2) A cluster is two partial clusters (or parts)
The specific gravity of the upper partial cluster is heavier than that of the lower partial cluster, and the exchange of upper and lower partial clusters has a binding force that reverses the order of specific gravity. The condition of. (3) The component replacement wiring length increase calculation means 7 is used to calculate the increase amount G of the total placement line due to the replacement of the upper and lower positions of the partial clusters of the cluster.
Calculate with. The third condition is that this value G concerning the exchange of partial clusters in a cluster should not become negative.

【0020】一方、部品交換配線長増加計算手段7は部
品の回転を伴う部品位置交換による総配線長の増加量G
を次のように計算する。
On the other hand, the component exchange wiring length increase calculation means 7 increases the total wiring length G by the component position exchange accompanied by the rotation of the component.
Is calculated as follows.

【0021】式の各パラメータは図11に示される。下
に配置した部品[2]の比重をBとし、上に配置した部
品[1]の比重をWとし、部品[2]の面積をNとし、
部品[1]の面積をnとする。部品[1]の上に伸びる
配線の番号をiとし、その配線の端部が部品[1]の中
心から上に1iの位置にあるとする。下の部品[2]に
接続する配線の番号をkとし、その配線の端部が部品
[1]の中心から下に1kの位置にあるとする。それ以
外で下に伸びる配線の番号をjとし、その配線の端部が
部品1の中心から下に1jの位置にあるとする。
The parameters of the equation are shown in FIG. The specific gravity of the component [2] arranged below is B, the specific gravity of the component [1] arranged above is W, the area of the component [2] is N,
The area of the part [1] is n. It is assumed that the number of the wiring extending above the component [1] is i, and the end of the wiring is at the position 1i above the center of the component [1]. It is assumed that the number of the wiring connected to the lower part [2] is k, and the end of the wiring is 1 k below the center of the part [1]. Other than that, the number of the wiring extending downward is j, and the end of the wiring is assumed to be at the position 1j below the center of the component 1.

【0022】部品[2]の下に伸びる配線の番号をqと
し、その配線の端部が部品[2]の中心から下に1qの
位置にあるとする。上の部品[2]に接続する配線の番
号をmとし、その配線の端部が部品[2]の中心から上
に1mの位置にあるとする。それ以外で上に伸びる配線
の番号をpとし、その配線の端部が部品[2]の中心か
ら上に1pの位置にあるとする。また、sN、snは、
部品[2]あるいは部品[1]に関し部品を180度回
転する場合は値が1、そうでない場合は値が0である変
数で、次式の増加量Gが最小になる様に選ぶ。ここで、
係数mの数と係数kの数は共に部品[1]と部品[2]
を結合する配線数を表す。
It is assumed that the number of the wiring extending below the component [2] is q, and the end of the wiring is 1q below the center of the component [2]. It is assumed that the number of the wiring connected to the upper part [2] is m and the end of the wiring is 1 m above the center of the part [2]. It is assumed that the number of the wiring extending upwards other than that is p and the end portion of the wiring is located 1p above the center of the component [2]. Also, sN and sn are
With respect to the component [2] or the component [1], a variable having a value of 1 when the component is rotated by 180 degrees and a value of 0 otherwise is selected so that the increment G in the following equation is minimized. here,
The number of coefficients m and the number of coefficients k are both parts [1] and parts [2].
Represents the number of wires connecting

【0023】 [0023]

【0024】次の表1は図10の第2の実施例の各手順
の選択基準を示し、図12はその状態遷移図を示す。
Table 1 below shows the selection criteria of each procedure of the second embodiment of FIG. 10, and FIG. 12 shows its state transition diagram.

【0025】[0025]

【表1】 [Table 1]

【0026】図13、図14はこの実施例の各手順の部
品配置処理の模式図を示す。
FIG. 13 and FIG. 14 are schematic views of the component placement processing of each procedure of this embodiment.

【0027】[手順1]部品比重計算手段3が部品の比
重を計算し、部品整列手段5が未配置部品データを比重
Wの重い部品から順に下から上に整列し部品配置順番記
憶手段4に記憶させる。最大比重の未配置部品を部品
とし最上位の既配置部品を部品とし、部品と部品
の比重を比較する状態1にして手順2に進む。
[Procedure 1] The parts specific gravity calculating means 3 calculates the specific gravity of the parts, and the parts arranging means 5 arranges the unplaced parts data from the bottom to the top in order from the parts having the higher specific gravity W to the parts arrangement order storage means 4. Remember. The non-placed component having the maximum specific gravity is set as the component, and the uppermost placed component is set as the component.

【0028】[手順2]図13(a)のように状態1の
場合で、新配置部品が既配置部品より比重が軽いか
等しい場合、新配置部品を既配置部品の上に配置
し、その全体を含むクラスタを作成し、このクラスタを
部品とみなしその下の部品を部品とし両者を比較す
る状態1にする。ここで部品としたクラスタの下に部
品が無い場合は手順1にもどる。
[Procedure 2] In the case of state 1 as shown in FIG. 13 (a), if the specific gravity of the newly placed component is lighter than or equal to the already placed component, the newly placed component is placed on the already placed component, and A cluster including the whole is created, this cluster is regarded as a component, and the component under the cluster is regarded as a component. If there is no part under the cluster which is the part here, the procedure returns to step 1.

【0029】[手順3]状態1と、後に延べる状態2の
何れの場合でも、部品の比重が部品の比重よりも重
い場合、部品交換配線長増加計算手段7で部品と部品
の位置交換による総配線長の増加量Gを計算する。こ
の際に値Gが最小になるようにパラメータ(sn,S
N)を設定する。部品を180度回転するとGが最小に
なる場合は部品を回転することを前提にする。
[Procedure 3] In either case of the state 1 and the state 2 which is extended later, when the specific gravity of the component is heavier than the specific gravity of the component, the component exchange wiring length increase calculation means 7 is used to exchange the positions of the components. The increase amount G of the total wiring length is calculated. At this time, parameters (sn, S
N) is set. If G is minimized when the part is rotated 180 degrees, it is assumed that the part is rotated.

【0030】[手順4]図13(b)のように、状態
1、状態2何れの場合も、部品の比重が部品の比重
よりも重く、値Gが負になる場合、部品を部品の下
に配置変更し、両者を含むクラスタを作成し、これを部
品とみなし、その下の部品を部品とし、両者を比較
する状態1にする。ここで部品としたクラスタの下に
部品が無い場合は手順1にもどる。
[Procedure 4] As shown in FIG. 13B, when the specific gravity of the component is heavier than the specific gravity of the component and the value G becomes negative in both the states 1 and 2, the component is placed under the component. The arrangement is changed to, a cluster including both is created, this is regarded as a part, and the part below is regarded as a part, and both are compared to each other, and the state 1 is set. If there is no part under the cluster which is the part here, the procedure returns to step 1.

【0031】[手順5]図13(c)のように状態1、
状態2何れの場合も、部品の比重が部品の比重より
も重く、値Gが負にならず、かつ部品がクラスタでな
い単独部品の場合、部品を部品の上に配置したクラ
スタを作成し、このクラスタを部品とみなしこのクラ
スタ下にある部品を部品とし両者を比較する状態1に
する。ここで部品としたクラスタの下に部品が無い場
合は手順1にもどる。
[Procedure 5] State 1 as shown in FIG.
In either case of state 2, when the specific gravity of the component is heavier than the specific gravity of the component, the value G does not become negative, and the component is a single component that is not a cluster, a cluster in which the component is arranged on the component is created. A cluster is regarded as a part, and a part under this cluster is regarded as a part. If there is no part under the cluster which is the part here, the procedure returns to step 1.

【0032】[手順6]図14(a)のように状態1、
状態2何れの場合も、部品の比重が部品の比重より
も重く、値Gが負にならずかつ部品がクラスタである
場合、そのクラスタをその中の部品に分解し上の部品を
部品とし下の部品を部品とし、部品の上に部品
を配置した3部品構成のクラスタを作成し、部品と部
品を比較する状態2にする。
[Procedure 6] State 1 as shown in FIG.
In either case of state 2, if the specific gravity of the part is heavier than the specific gravity of the part, the value G does not become negative, and the part is a cluster, the cluster is decomposed into the parts in it The parts are used as the parts, and a cluster having a three-part configuration in which the parts are arranged on the parts is created, and a state 2 in which the parts are compared with each other is set.

【0033】[手順7]図14(b)のように状態2の
場合で、部品の比重が部品より軽いあるいは等しい
場合は部品と部品を含むクラスタを作成し、そのク
ラスタの上に部品を配置した更に大きいクラスタを作
成し、それを部品とみなしその下の部品を部品とし
両者を比較する状態1にする。ここで部品としたクラ
スタの下に部品が無い場合は手順1にもどる。
[Procedure 7] In the case of state 2 as shown in FIG. 14B, when the specific gravity of the parts is lighter than or equal to the parts, a cluster including the parts and the parts is created, and the parts are arranged on the cluster. Then, a larger cluster is created, and it is regarded as a part, and the part under it is regarded as a part, and the two are compared and the state is set to 1. If there is no part under the cluster which is the part here, the procedure returns to step 1.

【0034】[手順8]部品データ記憶手段2に記憶し
た図15(a)の様な部品群に手順1から手順7の一連
の処理を実行すると図15(b)の様に、部品を階層構
造のクラスタで囲み1次元に配置した第1の一次元配置
15が得られる。次に、最初に配置する部品をその選択
の自由度の範囲で変更して、再度手順1から手順5まで
の処理を最後まで実行し、図15(c)の様に第2の1
次元配置16を計算する。
[Procedure 8] When a series of processes from Procedure 1 to Procedure 7 is executed for the component group as shown in FIG. 15 (a) stored in the component data storage means 2, the component is hierarchized as shown in FIG. 15 (b). A first one-dimensional arrangement 15 is obtained, which is surrounded by clusters of structures and arranged one-dimensionally. Next, the first component to be placed is changed within the range of the degree of freedom of its selection, and the processes from step 1 to step 5 are executed again until the end, and the second 1st step is performed as shown in FIG.
The dimension arrangement 16 is calculated.

【0035】これら第1と第2の一次元配置の部品を両
者に共通なクラスタにまとめ、部品とみなす。第1の一
次元配置15の部品位置及び第2の一次元配置16の部
品位置は部品の直交座標軸における位置とし、図16の
様に部品の2次元平面での位置を計算する。この部品を
移動し密集させ、図17の様に総配線長が最小の配置を
得る。尚、クラスタが部品とともに配置された場合は、
クラスタ内の部品を配置し全部品の配置を仕上げる。
These first and second one-dimensionally arranged parts are put together in a cluster common to both parts and regarded as parts. The component position of the first one-dimensional arrangement 15 and the component position of the second one-dimensional arrangement 16 are positions on the orthogonal coordinate axes of the component, and the position of the component on the two-dimensional plane is calculated as shown in FIG. These parts are moved and densely packed to obtain an arrangement with a minimum total wiring length as shown in FIG. If the cluster is placed with the parts,
Place the parts in the cluster and finish the arrangement of all parts.

【0036】本実施例は、階層構造のクラスタを作成
し、全ての階層のクラスタで配線長を最小にする配置に
配置替えを行うので、厳密に総配線長が最小の配置を計
算できる。しかも、この部品配置を計算する回数は、全
部品数をNとするとたかだかN2 のオーダーであり、厳
密に総配線長が最小の配置を計算するために必要とした
従来の計算回数N!に比べ十分少ない計算回数で最善の
部品配置を計算できる特徴がある。
In this embodiment, clusters having a hierarchical structure are created, and the clusters of all layers are rearranged so that the wiring length is minimized. Therefore, the layout with the minimum total wiring length can be calculated strictly. Moreover, the number of times this component placement is calculated is at most on the order of N 2 where N is the total number of components, and the number of conventional computations N! Strictly required to calculate the placement with the minimum total wiring length is! It has the feature that the best part placement can be calculated with a sufficiently small number of calculations compared to.

【0037】図18は本発明の第3の実施例のブロック
図を示す。本実施例は、クラスタを事前に作成する事前
クラスタ作成手段8を持ち、クラスタと部品を比重に従
って配置する。図19は事前クラスタ作成手段8の処理
手順を示すフロー図である。
FIG. 18 shows a block diagram of the third embodiment of the present invention. The present embodiment has a pre-cluster creating means 8 for creating a cluster in advance, and arranges the cluster and parts according to the specific gravity. FIG. 19 is a flowchart showing the processing procedure of the pre-cluster creating means 8.

【0038】[手順1]結合する部品同志のあらゆるク
ラスタの総数は2の部品数N乗(2N )程度の膨大な数
になるので全クラスタを事前に作成することは困難であ
る。それで、事前クラスタ作成手段8が、以下の条件に
基づき特に結合力の大きいクラスタに限り実用的な数で
有用なクラスタを事前作成する。
[Procedure 1] Since the total number of all clusters of parts to be combined is a huge number of 2 to the Nth power of the number of parts (2 N ), it is difficult to create all the clusters in advance. Therefore, the pre-cluster creating unit 8 pre-creates useful clusters in a practical number only for clusters having particularly large cohesive force based on the following conditions.

【0039】(1)クラスタ中の全部品はそのクラスタ
内で結合していることを第1の条件にする。
(1) The first condition is that all parts in a cluster are connected in the cluster.

【0040】(2)クラスタの比重をその外に引き出す
配線数Cとその含む部品数Nによる漿(C/N)に負符
号を付けた値をクラスタの初期比重Wとして計算する
(W=−C/N)。
(2) A value obtained by adding a negative sign to the number of wires (C / N) depending on the number C of wirings and the number N of parts included in the cluster is calculated as the initial specific gravity W of the cluster (W =- C / N).

【0041】クラスタを含む部分クラスタがクラスタに
引き寄せられる比引力gを、比引力計算手段9が、図2
0に示す様にクラスタ内に接続する配線数をc1とし、
クラスタ外に接続する配線数をc2とし、部分クラスタ
の部品数をnとし、g=(c1−c2)/nにより計算
する。
The specific attractive force g for attracting the partial cluster including the cluster to the cluster is calculated by the specific attractive force calculation means 9 shown in FIG.
As shown in 0, the number of wires connected in the cluster is c1,
The number of wirings connected to the outside of the cluster is c2, the number of parts of the partial cluster is n, and calculation is performed by g = (c1-c2) / n.

【0042】この部分クラスタの比引力gがクラスタの
初期比重Wの絶対値よりも大きいことを第2の条件にす
る(g>C/N)。この第2の条件の目的は、各部分集
合を緊密に結合したクラスタを作成するために設定し
た。事前クラスタ作成手段8は以下の手順でクラスタを
作成する。
The second condition is that the specific attractive force g of this partial cluster is larger than the absolute value of the initial specific gravity W of the cluster (g> C / N). The purpose of this second condition was set to create tightly coupled clusters of each subset. The prior cluster creating means 8 creates a cluster by the following procedure.

【0043】[手順1−1]図21(a)の部品群で部
品と部品の様に、図19のステップS31で2つの
部品を結ぶ配線数が最大の部品対を選びクラスタの核と
し手順1−2に進む。
[Procedure 1-1] Like the parts in the parts group of FIG. 21 (a), in step S31 of FIG. 19, a part pair having the maximum number of wires connecting the two parts is selected as a core of the cluster. Go to 1-2.

【0044】[手順1−2]ステップS32でクラスタ
の全部品の比引力gを比引力計算手段9が計算する。図
21(d)〜(f)のクラスタ(10)の様に、ステッ
プS33で比引力gと比重の絶対値c/Nとを比較し、
比引力gがその全体の比重の絶対値C/N以下の部品が
あるならば手順1−3に進む。図21(b)のクラスタ
の様に、ステップS33で各部品の比引力gが全体の
比重の絶対値C/Nより大きいならば手順1−4に進
む。
[Procedure 1-2] In step S32, the specific attractive force g of all parts of the cluster is calculated by the specific attractive force calculating means 9. As in the cluster (10) of FIGS. 21D to 21F, the specific attractive force g is compared with the absolute value c / N of the specific gravity in step S33,
If there is a part whose specific gravity g is the absolute value C / N or less of the specific gravity of the whole, proceed to step 1-3. If the specific gravity g of each component is larger than the absolute value C / N of the overall specific gravity in step S33 as in the cluster of FIG. 21B, the procedure proceeds to step 1-4.

【0045】[手順1−3]ステップS35でこの部品
群を最下位に配置し部品比重計算手段3でその外の部品
の比重を計算し、整列手段5が比重の大きい部品から順
に下から上に整列する。クラスタの外の比重が最大の部
品をクラスタに加え、図21(d)から(e)でクラス
タ(10)を拡大する様にクラスタを拡大し手順1−2
に進む。
[Procedure 1-3] In step S35, this component group is arranged at the lowest position, the component specific gravity calculating means 3 calculates the specific gravity of the other components, and the aligning means 5 sequentially from the bottom to the top. Align to. A part having the highest specific gravity outside the cluster is added to the cluster, and the cluster is expanded so that the cluster (10) is expanded from FIGS.
Proceed to.

【0046】[手順1−4]ステップS34で新作成の
クラスタを構成する部品を新作成のクラスタで置き換え
手順1−1に進む。
[Procedure 1-4] In step S34, the parts forming the newly-created cluster are replaced with the newly-created cluster, and the procedure goes to procedure 1-1.

【0047】[手順1−5]図21(g)の様に全部品
が一つのクラスタに集合する場合にクラスタ作成処理を
終了する。
[Procedure 1-5] When all parts are assembled into one cluster as shown in FIG. 21 (g), the cluster creating process is terminated.

【0048】[手順2]実施例1の手順3以降の手順通
りに、クラスタと部品を比重の重いクラスタから順に下
から重ねた配置を計算する。また、実施例1の手順5に
より、部品の密集配置を計算する。
[Procedure 2] The arrangement in which the clusters and the parts are superposed from the bottom in order from the cluster having the higher specific gravity is calculated in accordance with the procedure after the procedure 3 of the first embodiment. Further, the dense arrangement of the components is calculated by the procedure 5 of the first embodiment.

【0049】本実施例は、予め部品間の結合力の強いク
ラスタを最初に作成し、そのクラスタを組合せて部品配
置するので、総配線長を最小にする部品配置を速く得る
ことができる特徴がある。
In the present embodiment, a cluster having a strong coupling force between components is first created in advance, and the clusters are combined to arrange the components. Therefore, the feature is that the component arrangement that minimizes the total wiring length can be obtained quickly. is there.

【0050】図22は本発明の第4の実施例のブロック
図を示す。本実施例は、第1の実施例に対しクラスタ指
令入力手段11と、クラスタ表示手段14とが付加さ
れ、クラスタ表示手段14は部品を1次元に自動配置し
た結果と2次元に自動配置した結果と、自動配置設計装
置が作成した各クラスタとを表示部10に表示し、クラ
スタ指令入力手段11は、操作者がその配置を変更する
指示を入力部12から入力することに対応してクラスタ
を配置できる。
FIG. 22 shows a block diagram of the fourth embodiment of the present invention. In the present embodiment, a cluster command input means 11 and a cluster display means 14 are added to the first embodiment, and the cluster display means 14 automatically arranges the parts one-dimensionally and two-dimensionally. And each cluster created by the automatic layout designing device are displayed on the display unit 10, and the cluster command input means 11 displays the clusters corresponding to the operator inputting an instruction to change the layout from the input unit 12. Can be placed.

【0051】クラスタ表示手段14は、クラスタの構成
部品を強調表示し、またそのクラスタが外部の部品に接
続する配線を表示しクラスタの比重も表示する。クラス
タ指令入力手段11は、操作者の指示を入力することで
クラスタの部品をまとめて移動し、またクラスタの構成
部品を追加削除する。
The cluster display means 14 highlights the constituent parts of the cluster, displays the wiring connecting the cluster to external parts, and also displays the specific gravity of the cluster. The cluster command input means 11 moves the parts of the cluster collectively by inputting the instruction of the operator, and additionally deletes the constituent parts of the cluster.

【0052】[0052]

【発明の効果】以上説明した様に、本発明は、印刷配線
板の一次元配置で部品の総配線長が最小の配置を少ない
計算量で求め、それを二次元平面に展開するので、総配
線長が最小の部品配置を確実に得ることができる。ま
た、結合力の強い部品のクラスタを自動的に計算でき、
部品をクラスタ単位でまとめて移動出来る融通性の高い
配置設計装置が得られる。
As described above, according to the present invention, since the total wiring length of the components in the one-dimensional layout of the printed wiring board is obtained with a small amount of calculation and the layout is developed on the two-dimensional plane, It is possible to reliably obtain the component arrangement with the minimum wiring length. Also, it can automatically calculate the cluster of parts with strong bonding strength,
It is possible to obtain a highly flexible layout design device that can move parts in a cluster unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のブロック図。FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】図1の実施例の処理手順1を説明するフロー
図。
FIG. 2 is a flowchart illustrating a processing procedure 1 of the embodiment of FIG.

【図3】図1の処理手順2,3を説明するフロー図。FIG. 3 is a flowchart illustrating processing procedures 2 and 3 of FIG.

【図4】図1の処理手順4を説明するフロー図。FIG. 4 is a flowchart illustrating a processing procedure 4 of FIG.

【図5】図1の一次元部品配置例の作成過程を示す模式
図。
5A and 5B are schematic diagrams showing a creation process of the one-dimensional component arrangement example of FIG.

【図6】図1のクラスタの作成と配置の例を示す模式
図。
FIG. 6 is a schematic diagram showing an example of creating and arranging the clusters in FIG.

【図7】図1の一次元部品配置とクラスタの配置の例を
示す模式図。
FIG. 7 is a schematic diagram showing an example of the one-dimensional component arrangement and the arrangement of clusters in FIG.

【図8】図1の二次元部品配置の例を示す模式図。8 is a schematic diagram showing an example of the two-dimensional component arrangement of FIG.

【図9】図1の二次元部品配置の密集の例を示す模式
図。
FIG. 9 is a schematic diagram showing an example of crowding of the two-dimensional component arrangement of FIG.

【図10】本発明の第2の実施例をブロック図。FIG. 10 is a block diagram of a second embodiment of the present invention.

【図11】図10における部品間の配線のパラメータを
説明する模式図。
11 is a schematic diagram illustrating parameters of wiring between components in FIG.

【図12】図10の処理手順の状態遷移図。12 is a state transition diagram of the processing procedure of FIG.

【図13】図12の処理のクラスタ作成手順を示す模式
図。
13 is a schematic diagram showing a cluster creation procedure of the processing of FIG.

【図14】図13のあとのクラスタ作成手順を示す模式
図。
FIG. 14 is a schematic diagram showing a cluster creating procedure after FIG.

【図15】図10の一次元部品配置とクラスタを示す模
式図。
15 is a schematic diagram showing the one-dimensional component arrangement and clusters in FIG.

【図16】図15の二次元部品配置の例を示す模式図。16 is a schematic diagram showing an example of the two-dimensional component arrangement of FIG.

【図17】図16の二次元部品配置の密集の例を示す模
式図。
FIG. 17 is a schematic diagram showing an example of crowding of the two-dimensional component arrangement of FIG.

【図18】本発明の第3の実施例のブロック図。FIG. 18 is a block diagram of a third embodiment of the present invention.

【図19】図18の事前クラスタ作成手段の処理手順を
示すフロー図。
FIG. 19 is a flowchart showing the processing procedure of the pre-cluster creating means shown in FIG. 18;

【図20】図18のクラスタ内の部分クラスタ間の配線
の模式図。
20 is a schematic diagram of wiring between partial clusters in the cluster of FIG.

【図21】図18のクラスタ作成過程の例を示す図。FIG. 21 is a diagram showing an example of the cluster creation process of FIG. 18;

【図22】本発明の第4の実施例のブロック図。FIG. 22 is a block diagram of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 部品データ入力手段 2 部品データ記憶手段 3 部品比重計算手段 4 部品配置順番記憶手段 5 整列手段 6 クラスタ作成手段 7 部品交換配線長増加計算手段 8 事前クラスタ作成手段 9 比引力計算手段 10 表示部 11 操作司令入力手段 12 入力部 13 データ処理部 14 クラスタ表示手段 15 第1の一次元配置 16 第2の一次元配置 1 Component Data Input Means 2 Component Data Storage Means 3 Component Specific Gravity Calculation Means 4 Component Placement Order Storage Means 5 Alignment Means 6 Cluster Creating Means 7 Component Replacement Wiring Length Increase Calculating Means 8 Pre-cluster Creating Means 9 Specific Gravity Calculating Means 10 Display 11 Operation command input means 12 Input section 13 Data processing section 14 Cluster display means 15 First one-dimensional arrangement 16 Second one-dimensional arrangement

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月19日[Submission date] November 19, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 印刷配線板の自動配置設計装置Title: Automatic layout design device for printed wiring boards

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は印刷配線板の配線の経路
を設計する自動配置設計装置に関し、特に、部品の配置
位置を探索する配置設計装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic layout designing device for designing a wiring route of a printed wiring board, and more particularly to a layout designing device for searching a layout position of parts.

【0002】[0002]

【従来の技術】一般に、印刷配線板の自動配置設計装置
の課題は、部品間を接続する配線の総配線長が最小の配
置を求めることがある。これは原理的には、全部品の配
置可能なあらゆる組合せ毎に総配線長を計算し、その値
が最小になる組合せを選定する方法が考えられる。しか
し、この場合の組合せの数は部品数Nの階乗N!であり
膨大な計算量を要するので実用的でなかった。
2. Description of the Related Art Generally, a problem of an automatic layout designing apparatus for a printed wiring board is to find a layout in which the total wiring length of wirings connecting components is minimum. In principle, a method is conceivable in which the total wiring length is calculated for every possible combination of all components and the combination having the smallest value is selected. However, the number of combinations in this case is the factorial N! It is not practical because it requires a huge amount of calculation.

【0003】一方、従来の配置設計装置の部品配置の実
用的方法として、自動的に部品を配置替えし総配線長が
少なくなる配置を順次選んでいく自動部品配置方法が知
られていた。
On the other hand, as a practical method for arranging components in a conventional layout designing apparatus, there has been known an automatic component arranging method in which components are automatically rearranged to sequentially select a layout in which the total wiring length is reduced.

【0004】単に部品交換で総配線長が小さくなる配線
を選ぶことを繰り返す方法では、最後にどの部品を交換
しても総配線長が大きくなる配置を選ぶが、この特徴を
持った配置は複数存在するので、総配線長が正しく最小
の最適解を得る確実な手法が必要であった。このため
に、分子の加熱時のかく乱による状態遷移の原理を部品
の配置位置探索に利用したシミュレーテッドアニーリン
グ法を併用して最適解を得ようとしてきた。また、表示
部に部品端子間を接続する線(ラッツネスト)を表示
し、更に基板を横断する配線の密度のグラフを表示し操
作者に部品の配置位置を指定させる手法も用いられてき
た。
In the method of repeatedly selecting wirings whose total wiring length is reduced by simply exchanging components, an arrangement is selected in which the total wiring length is increased regardless of which component is finally exchanged. However, there are a plurality of arrangements having this feature. Since it exists, a reliable method for obtaining the optimum solution with the correct total wiring length is required. For this reason, we have tried to obtain the optimal solution by using the simulated annealing method that utilizes the principle of state transition due to the disturbance during the heating of the molecule to search the placement position of the component. Also, a method has been used in which a line (rat's nest) that connects component terminals is displayed on the display unit, and a graph of the density of wiring that traverses the substrate is displayed to allow the operator to specify the placement position of the component.

【0005】[0005]

【発明が解決しようとする課題】上述した従来のシミュ
レーテッドアニーリング法の自動配置設計装置は、ラン
ダム要因を利用した試行錯誤によるため、最適配置を得
ようとすると無限に時間がかかるという問題があった。
また、操作者に部品の配置位置を指定させる方法は、一
つづつ順に部品を移動させるので、最適な部品配置を得
るために多くの部品移動操作を繰り返し長時間を要する
問題があった。
The above-described conventional automatic layout designing apparatus for the simulated annealing method has a problem that it takes an infinite amount of time to obtain an optimum layout because of trial and error using random factors. It was
Further, in the method of allowing the operator to specify the arrangement position of the components, the components are moved one by one, so that there is a problem that many component movement operations are repeated and a long time is required to obtain the optimum component arrangement.

【0006】本発明の目的は、これらの問題を解決し、
最適な部品配置を短時間に得られる印刷配線板の自動配
置設計装置を提供することにある。
The object of the present invention is to solve these problems,
An object of the present invention is to provide an automatic layout design device for a printed wiring board, which can obtain an optimum component layout in a short time.

【0007】[0007]

【課題を解決するための手段】本発明の印刷配線板の自
動配置設計装置の構成は、印刷配線の部品をその部品か
ら引き出す配線数を部品の面積で割った商の比重を計算
する比重計算手段と、前記比重の重い順に前記部品を配
置する整列手段とを備え、前記部品間の総配線長を最小
にする部品位置を計算により求めて前記部品を配置する
ことを特徴とする。
According to the structure of an automatic layout designing apparatus for a printed wiring board of the present invention, a specific gravity calculation for calculating a specific gravity of a quotient obtained by dividing the number of wirings to be drawn out from the parts of the printed wiring by the area of the parts It is characterized by comprising means and an aligning means for arranging the parts in order of decreasing specific gravity, and arranging the parts by calculating a part position that minimizes a total wiring length between the parts.

【0008】本発明において、整列手段により計算した
部品配置結果を用いて結合する部品の集合(クラスタ)
を作成するクラスタ作成手段を備え、クラスタから引き
出す配線数をクラスタの面積あるいは部品数で割った商
(比重)を比重計算手段により計算し、整列手段により
比重に基づきクラスタを一括移動させることもでき、ま
たクラスタを表示するクラスタ表示手段を備えることも
できる。
In the present invention, a set (cluster) of parts to be connected by using the parts placement result calculated by the aligning means.
It is also possible to provide a cluster creating means for creating a cluster, and calculate the quotient (specific gravity) obtained by dividing the number of wires drawn from the cluster by the area of the cluster or the number of parts by the specific gravity calculating means, and moving the clusters collectively by the aligning means. Also, a cluster display means for displaying the cluster may be provided.

【0009】[0009]

【作用】本発明において、ネットの長さはネットの両端
の部品の距離であるがこの距離が最小になる様に部品を
配置する必要がある。部品はそれを接続するネットから
引力を受けるものとすると、総ネット長はこれらの部品
を配置した総位置エネルギーに対応するため、総ネット
長を最小にする問題を総位置エネルギーを最小にする問
題に変換する。
In the present invention, the length of the net is the distance between the parts at both ends of the net, but it is necessary to arrange the parts so that this distance is minimized. Assuming that a part receives an attractive force from the net that connects it, the total net length corresponds to the total potential energy where these parts are placed, so the problem of minimizing the total net length is the problem of minimizing the total potential energy. Convert to.

【0010】部品の比重Wを、既配置部品に接続するネ
ット数P1から未配置部品に接続するネット数P2を引
いた値を部品の面積Nで割った商で定義し(W=(P1
−P2)/N)、比重Wの大きい部品から順に下から上
に部品を配置することにより位置エネルギーを極小化す
る。また、凍結する部品はクラスタを一括移動させるこ
とによりクラスタ全体の位置エネルギーを最小にするよ
うに最適配置を計算している。
The specific gravity W of a component is defined by a quotient obtained by dividing a value obtained by subtracting the number P2 of nets connected to an unplaced part from the number P1 of nets connected to an already arranged part by the area N of the part (W = (P1
-P2) / N), and the potential energy is minimized by arranging the parts from the bottom to the top in order from the part having the largest specific gravity W. In addition, for the frozen parts, the optimum placement is calculated so that the potential energy of the entire cluster is minimized by moving the cluster at once.

【0011】[0011]

【実施例】図1は本発明の第1の実施例のブロック図を
示す。本実施例の自動配置設計装置は、ブラウン管等を
含む表示部10と、キーボード・マウス・通信回線等の
入力部12と、制御回路とランダムアクセス記憶回路と
ディスク記憶部からなるデータ処理部13を有するコン
ピュータから成り、データ処理部13にソフトウェアあ
るいは専用処理回路からなる部品データ入力手段1と部
品データ記憶手段2と部品比重計算手段3と部品配置順
番記憶手段4と整列手段5とクラスタ作成手段6とを備
えている。
1 is a block diagram of a first embodiment of the present invention. The automatic layout designing apparatus of this embodiment includes a display unit 10 including a cathode ray tube and the like, an input unit 12 such as a keyboard, a mouse and a communication line, and a data processing unit 13 including a control circuit, a random access storage circuit and a disk storage unit. The data processing unit 13 includes a computer having the same, and the data processing unit 13 is made up of software or a dedicated processing circuit. The component data input unit 1, the component data storage unit 2, the component specific gravity calculation unit 3, the component arrangement order storage unit 4, the alignment unit 5, and the cluster creation unit 6 are provided. It has and.

【0012】図2から図4は第1の実施例の処理手順を
示すフロー図であり、図5(a)〜(i)は部品の結
線、面積のデータを示す模式図である。まず、部品デー
タ入力手段1が図5(a)の様な結線情報と面積の部品
データを入力し、部品データ記憶手段2に書込む。な
お、図5(a)において部品の面積は全て1とする。
2 to 4 are flow charts showing the processing procedure of the first embodiment, and FIGS. 5 (a) to 5 (i) are schematic diagrams showing data of connection and area of parts. First, the component data input means 1 inputs the connection information and the component data of the area as shown in FIG. 5A and writes it in the component data storage means 2. In addition, in FIG. 5A, all the areas of the parts are 1.

【0013】[手順1]まず、図2のステップS1で、
部品比重計算手段3が未配置部品の比重Wを計算し、ス
テップS2で整列手段5が比重の重い部品から順に整列
させる。整列順番を図5(b)に例示するが部品配置順
番記憶手段4に記憶させる。そしてステップS3で未配
置部品の最下位の部品データを最上位の既配置部品とし
登録する。最初はどの部品の比重も負である。部品の既
配置部品への登録の都度、その部品に結合する未配置部
品は既配置部品に接続するネットの数P1が増し比重が
重くなる。そのため、図5(c)に示す様に、再び未配
置部品の比重Wを計算し整列する。この処理を図5
(d)〜(i)に示す様にこの処理を繰り返し(ステッ
プS4)、最終的に図5(i)の部品配置を得て手順2
に進む。
[Procedure 1] First, in step S1 of FIG.
The component specific gravity calculating means 3 calculates the specific gravity W of the unplaced parts, and in step S2, the aligning means 5 aligns the parts in descending order of specific gravity. Although the arrangement order is illustrated in FIG. 5B, it is stored in the component arrangement order storage means 4. Then, in step S3, the lowest part data of the unplaced parts is registered as the highest placed part. Initially, the specific gravity of any part is negative. Each time a component is registered as an already-placed component, the number P1 of nets connected to the already-placed component increases and the specific gravity of the unplaced component connected to the component increases. Therefore, as shown in FIG. 5C, the specific gravity W of the unplaced parts is calculated again and the parts are aligned. This process is shown in FIG.
This process is repeated as shown in (d) to (i) (step S4), and finally the component arrangement shown in FIG.
Proceed to.

【0014】[手順2]手順1の処理により図5(i)
に示す様に部品を下から上に配置した解を得たら以下の
処理を実行する。図5(i)の様な手順1による配置
で、下の部品と上の部品を結ぶ配線が存在するとき下の
部品より上の部品の比重が重い場合があり、この場合両
部品の結合は強いと考える。
[Procedure 2] As shown in FIG.
When the solution in which the parts are arranged from the bottom to the top is obtained as shown in, the following processing is executed. In the arrangement according to the procedure 1 as shown in FIG. 5 (i), when there is a wiring connecting the lower part and the upper part, the specific gravity of the upper part may be higher than that of the lower part. Think strong

【0015】図3のステップS11でクラスタ作成手段
6が第1の解の配置の下の部品から上に順に処理し、隣
合う部品の比重を比較し、下の部品より上の部品の比重
が重い場合、図6(a)に示す様に上下の部品を合わせ
たクラスタを作成する。クラスタは面積がその構成部品
の面積の和である部品とみなし、部品データ記憶手段2
に記憶する。クラスタを作成したらそれとその上の部品
の比重も比較し、クラスタを構成部品とするクラスタも
作成する(ステップS11)。
In step S11 of FIG. 3, the cluster creating means 6 processes the parts below the first solution in order from top to bottom, compares the specific gravities of the adjacent parts, and determines the specific gravities of the parts above the lower part. If it is heavy, a cluster including upper and lower parts is created as shown in FIG. The cluster is regarded as a part whose area is the sum of the areas of its constituent parts, and the part data storage means 2
Remember. After the cluster is created, the specific gravities of the cluster and the parts on the cluster are also compared to create a cluster having the cluster as a component (step S11).

【0016】[手順3]クラスタを作成したら(ステッ
プS13)、再び手順1により、手順2で求めたクラス
タ3とクラスタに含まれずに残った部品の比重を比較
し、比重の重い順に下から上に重ね図6(b)の様に配
置を計算する(ステップS13)。更に、クラスタの内
部の部品に手順1を適用し図6(c)の様に部品を再配
置する。
[Procedure 3] After the cluster is created (step S13), the specific gravity of the cluster 3 obtained in the procedure 2 and the specific gravity of the remaining parts not included in the cluster are compared by the procedure 1 again, and from the bottom to the top of the specific gravity. Then, the arrangement is calculated as shown in FIG. 6 (b) (step S13). Further, the procedure 1 is applied to the parts inside the cluster, and the parts are rearranged as shown in FIG. 6C.

【0017】[手順4]図7(a)に示す部品群は手順
1から手順3により、図4のステップ21のように、図
7(b)に示す第1の1次元配置15を得る。図7
(b)で第1の1次元配置で最初に配置した部品が部品
であったが、手順1を開始する際の最も比動が重い部
品は部品の他に部品があり、両者は同等である。最
初に配置する部品を部品とし、ステップ22で再度手
順1から手順3により図7(c)に示す第2の1次元配
置16を計算する。
[Procedure 4] For the part group shown in FIG. 7A, the first one-dimensional arrangement 15 shown in FIG. 7B is obtained as in step 21 of FIG. 4 through steps 1 to 3. Figure 7
Although the first component placed in the first one-dimensional arrangement in (b) was a component, the component with the highest specific motion when starting the procedure 1 is a component in addition to the component, and both are equivalent. . The component to be arranged first is used as a component, and in step 22, the second one-dimensional arrangement 16 shown in FIG. 7C is calculated again by the procedures 1 to 3.

【0018】ステップ23で第1の一次元配置15と第
2の一次元配置16に共通のクラスタを部品とみなし、
ステップS24で図7(b)の第1の一次元配置15と
図7(c)の第2の一次元配置16を直行座標軸におけ
る各部品の位置とし、図8に示す様に部品の二次元平面
での位置を計算する。次にステップS25で二次元平面
に配置した部品を、図9(a)に示す様にそれが接続す
る部品の近隣に移動し配置する。次に、ステップS26
でクラスタの内部の部品を配置し図9(b)に示す様に
部品の密集配置位置を得る。
In step 23, the cluster common to the first one-dimensional arrangement 15 and the second one-dimensional arrangement 16 is regarded as a component,
In step S24, the first one-dimensional arrangement 15 of FIG. 7 (b) and the second one-dimensional arrangement 16 of FIG. 7 (c) are set as the positions of the respective parts on the orthogonal coordinate axes, and the two-dimensional arrangement of the parts as shown in FIG. Calculate the position in the plane. Next, the component placed on the two-dimensional plane in step S25 is moved and placed near the component to which it is connected, as shown in FIG. 9 (a). Next, step S26.
Then, the parts inside the cluster are arranged and the densely arranged positions of the parts are obtained as shown in FIG. 9B.

【0019】図10は本発明の第2の実施例のブロック
図を示す。本実施例は、第1の実施例に対して部品交換
配線長増加計算手段7が付加されている。本実施例は、
次の3つの条件で階層構造のクラスタを作成するクラス
タ作成手段6を持ち、このために必要な計算を行なう部
品交換配線長増加計算手段7を有する。 (1)クラスタ中の全部品はそのクラスタ内で結合して
いることを第1の条件にする。 (2)クラスタは2つの部分クラスタ(あるいは部品)
から成り、上の部分クラスタの比重は下の部分クラスタ
の比重よりも重く、かつ、上下の部分クラスタの交換
で、その比重の大小の順が逆になるような結合力がある
ことを第2の条件とする。 (3)クラスタの部分クラスタの上下の位置の交換によ
る総配線長の増加量Gを部品交換配線長増加計算手段7
で計算する。クラスタ内の部分クラスタの交換に関する
この値Gは負にならないことを第3の条件とする。
FIG. 10 shows a block diagram of the second embodiment of the present invention. In this embodiment, a component replacement wiring length increase calculation means 7 is added to the first embodiment. In this example,
It has a cluster creating means 6 for creating a cluster having a hierarchical structure under the following three conditions, and has a component replacement wiring length increase calculating means 7 for performing calculations necessary for this purpose. (1) The first condition is that all parts in a cluster are connected in the cluster. (2) A cluster is two partial clusters (or parts)
The specific gravity of the upper partial cluster is heavier than that of the lower partial cluster, and the exchange of upper and lower partial clusters has a binding force that reverses the order of specific gravity. The condition of. (3) The component replacement wiring length increase calculation means 7 is used to calculate the increase amount G of the total wiring length due to the replacement of the upper and lower positions of the partial clusters.
Calculate with. The third condition is that this value G concerning the exchange of partial clusters in a cluster should not become negative.

【0020】一方、部品交換配線長増加計算手段7は部
品の回転を伴う部品位置交換による総配線長の増加量G
を次のように計算する。
On the other hand, the component exchange wiring length increase calculation means 7 increases the total wiring length G by the component position exchange accompanied by the rotation of the component.
Is calculated as follows.

【0021】式の各パラメータは図11に示される。印
刷配線板の幅をdとする。下に配置した部品[2]の比
重をBとし、上に配置した部品[1]の比重をWとし、
部品[2]の面積をNとし、部品[1]の面積をnとす
る。部品[1]の上に伸びる配線の番号をiとし、その
配線の端部が部品[1]の中心から上に1iの位置にあ
るとする。下の部品[2]に接続する配線の番号をkと
し、その配線の端部が部品[1]の中心から下に1kの
位置にあるとする。それ以外で下に伸びる配線の番号を
jとし、その配線の端部が部品1の中心から下に1jの
位置にあるとする。
The parameters of the equation are shown in FIG. The width of the printed wiring board is d. The specific gravity of the part [2] arranged below is B, the specific gravity of the part [1] arranged above is W,
Let the area of the part [2] be N and the area of the part [1] be n. It is assumed that the number of the wiring extending above the component [1] is i, and the end of the wiring is at the position 1i above the center of the component [1]. It is assumed that the number of the wiring connected to the lower part [2] is k, and the end of the wiring is 1 k below the center of the part [1]. Other than that, the number of the wiring extending downward is j, and the end of the wiring is assumed to be at the position 1j below the center of the component 1.

【0022】部品[2]の下に伸びる配線の番号をqと
し、その配線の端部が部品[2]の中心から下に1qの
位置にあるとする。上の部品[2]に接続する配線の番
号をmとし、その配線の端部が部品[2]の中心から上
に1mの位置にあるとする。それ以外で上に伸びる配線
の番号をpとし、その配線の端部が部品[2]の中心か
ら上に1pの位置にあるとする。また、sN、snは、
部品[2]あるいは部品[1]に関し部品を180度回
転する場合は値が1、そうでない場合は値が0である変
数で、次式の増加量Gが最小になる様に選ぶ。ここで、
係数mの数(=M)と係数kの数(=K)は共に部品
[1]と部品[2]を結合する配線数を表す。
It is assumed that the number of the wiring extending below the component [2] is q, and the end of the wiring is 1q below the center of the component [2]. It is assumed that the number of the wiring connected to the upper part [2] is m and the end of the wiring is 1 m above the center of the part [2]. It is assumed that the number of the wiring extending upwards other than that is p and the end portion of the wiring is located 1p above the center of the component [2]. Also, sN and sn are
With respect to the component [2] or the component [1], a variable having a value of 1 when the component is rotated by 180 degrees and a value of 0 otherwise is selected so that the increment G in the following equation is minimized. here,
The number of coefficients m (= M) and the number of coefficients k (= K) both represent the number of wires connecting the component [1] and the component [2].

【0023】M=KM = K

【0024】 G=(B−W)・N・n/d+K・(N+n)/d+2・Σlk+2・Σlm +2・sn・[Σli+Σlj−Σlk] +2・sN・[Σlp+Σlq−Σlm]G = (B−W) · N · n / d + K · (N + n) / d + 2 · Σlk + 2 · Σlm + 2 · sn · [Σli + Σlj−Σlk] + 2 · sN · [Σlp + Σlq−Σlm]

【0025】次の表1は図10の第2の実施例の各手順
の選択基準を示し、図12はその状態遷移図を示す。
Table 1 below shows the selection criteria of each procedure of the second embodiment of FIG. 10, and FIG. 12 shows its state transition diagram.

【0026】[0026]

【表1】 [Table 1]

【0027】図13、図14はこの実施例の各手順の部
品配置処理の模式図を示す。
FIG. 13 and FIG. 14 are schematic diagrams of the component placement processing of each procedure of this embodiment.

【0028】[手順1]部品比重計算手段3が部品の比
重を計算し、部品整列手段5が未配置部品データを比重
Wの重い部品から順に下から上に整列し部品配置順番記
憶手段4に記憶させる。最大比重の未配置部品を部品
とし最上位の既配置部品を部品とし、部品と部品
の比重を比較する状態1にして手順2に進む。
[Procedure 1] The parts specific gravity calculating means 3 calculates the specific gravity of the parts, and the parts arranging means 5 arranges the non-arranged parts data from the bottom to the top in order from the part having the higher specific gravity W to the parts arrangement order storage means 4. Remember. The non-placed component having the maximum specific gravity is set as the component, and the uppermost placed component is set as the component.

【0029】[手順2]図13(a)のように状態1の
場合で、新配置部品が既配置部品より比重が軽いか
等しい場合、新配置部品を既配置部品の上に配置
し、その全体を含むクラスタを作成し、このクラスタを
部品とみなしその下の部品を部品とし両者を比較す
る状態1にする。ここで部品としたクラスタの下に部
品が無い場合は手順1にもどる。
[Procedure 2] In the case of state 1 as shown in FIG. 13 (a), if the newly placed component has a specific gravity lighter than or equal to the already placed component, the newly placed component is placed on the already placed component, and A cluster including the whole is created, this cluster is regarded as a component, and the component under the cluster is regarded as a component. If there is no part under the cluster which is the part here, the procedure returns to step 1.

【0030】[手順3]状態1と、後に延べる状態2の
何れの場合でも、部品の比重が部品の比重よりも重
い場合、部品交換配線長増加計算手段7で部品と部品
の位置交換による総配線長の増加量Gを計算する。こ
の際に値Gが最小になるようにパラメータ(sn,S
N)を設定する。部品を180度回転するとGが最小に
なる場合は部品を回転することを前提にする。
[Procedure 3] In either case of the state 1 and the state 2 which is extended later, when the specific gravity of the component is heavier than the specific gravity of the component, the component replacement wiring length increase calculation means 7 performs the position exchange between the components. The increase amount G of the total wiring length is calculated. At this time, parameters (sn, S
N) is set. If G is minimized when the part is rotated 180 degrees, it is assumed that the part is rotated.

【0031】[手順4]図13(b)のように、状態
1、状態2何れの場合も、部品の比重が部品の比重
よりも重く、値Gが負になる場合、部品を部品の下
に配置変更し、両者を含むクラスタを作成し、これを部
品とみなし、その下の部品を部品とし、両者を比較
する状態1にする。ここで部品としたクラスタの下に
部品が無い場合は手順1にもどる。
[Procedure 4] As shown in FIG. 13 (b), in both the state 1 and the state 2, when the specific gravity of the component is heavier than the specific gravity of the component and the value G becomes negative, the component is placed under the component. The arrangement is changed to, a cluster including both is created, this is regarded as a part, and the part below is regarded as a part, and both are compared to each other, and the state 1 is set. If there is no part under the cluster which is the part here, the procedure returns to step 1.

【0032】[手順5]図13(c)のように状態1、
状態2何れの場合も、部品の比重が部品の比重より
も重く、値Gが負にならず、かつ部品がクラスタでな
い単独部品の場合、部品を部品の上に配置したクラ
スタを作成し、このクラスタを部品とみなしこのクラ
スタ下にある部品を部品とし両者を比較する状態1に
する。ここで部品としたクラスタの下に部品が無い場
合は手順1にもどる。
[Procedure 5] State 1 as shown in FIG.
In either case of state 2, when the specific gravity of the component is heavier than the specific gravity of the component, the value G does not become negative, and the component is a single component that is not a cluster, a cluster in which the component is arranged on the component is created, and A cluster is regarded as a part, and a part under this cluster is regarded as a part. If there is no part under the cluster which is the part here, the procedure returns to step 1.

【0033】[手順6]図14(a)のように状態1、
状態2何れの場合も、部品の比重が部品の比重より
も重く、値Gが負にならずかつ部品がクラスタである
場合、そのクラスタをその中の部品に分解し上の部品を
部品とし下の部品を部品とし、部品の上に部品
を配置した3部品構成のクラスタを作成し、部品と部
品を比較する状態2にする。
[Procedure 6] State 1 as shown in FIG.
In either case of state 2, if the specific gravity of the part is heavier than the specific gravity of the part, the value G does not become negative, and the part is a cluster, the cluster is decomposed into the parts in it The parts are used as the parts, and a cluster having a three-part configuration in which the parts are arranged on the parts is created, and a state 2 in which the parts are compared with each other is set.

【0034】[手順7]図14(b)のように状態2の
場合で、部品の比重が部品より軽いあるいは等しい
場合は部品と部品を含むクラスタを作成し、そのク
ラスタの上に部品を配置した更に大きいクラスタを作
成し、上の部品を部品とみなしその下の部品を部品
とし両者を比較する状態1にする。ここで部品とした
クラスタの下に部品が無い場合は手順1にもどる。
[Procedure 7] In the case of state 2 as shown in FIG. 14B, when the specific gravity of the parts is lighter than or equal to the parts, a cluster including the parts and the parts is created, and the parts are arranged on the cluster. A larger cluster is created, the upper part is regarded as a part, and the lower part is regarded as a part. If there is no part under the cluster which is the part here, the procedure returns to step 1.

【0035】[手順8]部品データ記憶手段2に記憶し
た図15(a)の様な部品群に手順1から手順7の一連
の処理を実行すると図15(b)の様に、部品を階層構
造のクラスタで囲み1次元に配置した第1の一次元配置
15が得られる。次に、最初に配置する部品をその選択
の自由度の範囲で変更して、再度手順1から手順5まで
の処理を最後まで実行し、図15(c)の様に第2の1
次元配置16を計算する。
[Procedure 8] When a series of processes from Procedure 1 to Procedure 7 is executed on the component group stored in the component data storage means 2 as shown in FIG. 15 (a), the component is hierarchized as shown in FIG. 15 (b). A first one-dimensional arrangement 15 is obtained, which is surrounded by clusters of structures and arranged one-dimensionally. Next, the first component to be placed is changed within the range of the degree of freedom of its selection, and the processes from step 1 to step 5 are executed again until the end, and the second 1st step is performed as shown in FIG.
The dimension arrangement 16 is calculated.

【0036】これら第1と第2の一次元配置の部品を両
者に共通なクラスタにまとめ、部品とみなす。第1の一
次元配置15の部品位置及び第2の一次元配置16の部
品位置は部品の直交座標軸における位置とし、図16の
様に部品の2次元平面での位置を計算する。この部品を
移動し密集させ、図17の様に総配線長が最小の配置を
得る。尚、クラスタが部品とともに配置された場合は、
クラスタ内の部品を配置し全部品の配置を仕上げる。
These first and second one-dimensionally arranged parts are put together in a cluster common to both parts and regarded as parts. The component position of the first one-dimensional arrangement 15 and the component position of the second one-dimensional arrangement 16 are positions on the orthogonal coordinate axes of the component, and the position of the component on the two-dimensional plane is calculated as shown in FIG. These parts are moved and densely packed to obtain an arrangement with a minimum total wiring length as shown in FIG. If the cluster is placed with the parts,
Place the parts in the cluster and finish the arrangement of all parts.

【0037】本実施例は、階層構造のクラスタを作成
し、全ての階層のクラスタで配線長を最小にする配置に
配置替えを行うので、厳密に総配線長が最小の配置を計
算できる。しかも、この部品配置を計算する回数は、全
部品数をNとするとたかだかN2 のオーダーであり、厳
密に総配線長が最小の配置を計算するために必要とした
従来の計算回数N!に比べ十分少ない計算回数で最善の
部品配置を計算できる特徴がある。
In this embodiment, clusters having a hierarchical structure are created, and the clusters of all layers are rearranged so that the wiring length is minimized. Therefore, the layout with the minimum total wiring length can be calculated strictly. In addition, the number of times this component placement is calculated is at most on the order of N 2 where N is the total number of components, and the number of conventional computations N! It has the feature that the best part placement can be calculated with a sufficiently small number of calculations compared to.

【0038】図18は本発明の第3の実施例のブロック
図を示す。本実施例は、クラスタを事前に作成する事前
クラスタ作成手段8を持ち、クラスタと部品を比重に従
って配置する。図19は事前クラスタ作成手段8の処理
手順を示すフロー図である。
FIG. 18 shows a block diagram of the third embodiment of the present invention. The present embodiment has a pre-cluster creating means 8 for creating a cluster in advance, and arranges the cluster and parts according to the specific gravity. FIG. 19 is a flowchart showing the processing procedure of the pre-cluster creating means 8.

【0039】[手順1]結合する部品同志のあらゆるク
ラスタの総数は2の部品数N乗(2N )程度の膨大な数
になるので全クラスタを事前に作成することは困難であ
る。それで、事前クラスタ作成手段8が、以下の条件に
基づき特に結合力の大きいクラスタに限り実用的な数で
有用なクラスタを事前作成する。 (1)クラスタ中の全部品はそのクラスタ内で結合して
いることを第1の条件にする。 (2)クラスタの比重をその外に引き出す配線数Cとそ
の含む部品数Nによる商(C/N)に負符号を付けた値
をクラスタの初期比重Wとして計算する(W=−C/
N)。
[Procedure 1] Since the total number of all clusters of parts to be combined is as large as about the Nth power of 2 parts (2 N ), it is difficult to create all clusters in advance. Therefore, the pre-cluster creating unit 8 pre-creates useful clusters in a practical number only for clusters having particularly large cohesive force based on the following conditions. (1) The first condition is that all parts in a cluster are connected in the cluster. (2) A value obtained by adding a negative sign to the quotient (C / N) by the number C of wires that draws out the specific gravity of the cluster and the number N of the parts that include it is calculated as the initial specific gravity W of the cluster (W = -C /
N).

【0040】クラスタの部分クラスタがクラスタに引き
寄せられる比引力gを、比引力計算手段9が、図20に
示す様にクラスタ内に接続する配線数をc1とし、クラ
スタ外に接続する配線数をc2とし、部分クラスタの部
品数をnとし、g=(c1−c2)/nにより計算す
る。
The specific attractive force g by which a partial cluster of a cluster is attracted to the cluster is set by the specific attractive force calculation means 9 as c1 being the number of wirings connected within the cluster and c2 being the number of wirings connected outside the cluster. And the number of parts of the partial cluster is n, and g = (c1-c2) / n is used for calculation.

【0041】この部分クラスタの比引力gがクラスタの
初期比重Wの絶対値よりも大きいことを第2の条件にす
る(g>C/N)。この第2の条件の目的は、各部分集
合を緊密に結合したクラスタを作成するために設定し
た。事前クラスタ作成手段8は以下の手順でクラスタを
作成する。
The second condition is that the specific attractive force g of this partial cluster is larger than the absolute value of the initial specific gravity W of the cluster (g> C / N). The purpose of this second condition was set to create tightly coupled clusters of each subset. The prior cluster creating means 8 creates a cluster by the following procedure.

【0042】[手順1−1]図21(a)の部品群で部
品と部品の様に、図19のステップS31で2つの
部品を結ぶ配線数が最大の部品対をクラスタの要素とし
手順1−2に進む。
[Procedure 1-1] Like the parts in the parts group of FIG. 21 (a), the parts pair having the maximum number of wires connecting the two parts in step S31 of FIG. -2.

【0043】[手順1−2]ステップS32でクラスタ
の全部品の比引力gを比引力計算手段9が計算する。図
21(d)〜(f)のクラスタ(10)の様に、ステッ
プS33で比引力gと比重の絶対値c/Nとを比較し、
比引力gがその全体の比重の絶対値C/N以下の部品が
あるならば手順1−3に進む。図21(b)のクラスタ
の様に、ステップS33で各部品の比引力gが全体の
比重の絶対値C/Nより大きいならば手順1−4に進
む。
[Procedure 1-2] In step S32, the specific attractive force g of all the parts of the cluster is calculated by the specific attractive force calculating means 9. As in the cluster (10) of FIGS. 21D to 21F, the specific attractive force g is compared with the absolute value c / N of the specific gravity in step S33,
If there is a part whose specific gravity g is the absolute value C / N or less of the specific gravity of the whole, proceed to step 1-3. If the specific gravity g of each component is larger than the absolute value C / N of the overall specific gravity in step S33 as in the cluster of FIG. 21B, the procedure proceeds to step 1-4.

【0044】[手順1−3]ステップS35で形成中の
クラスタの部品群を最下位に配置し部品比重計算手段3
でその外の部品の比重を計算し、整列手段5が比重の大
きい部品から順に下から上に整列する。クラスタの外の
比重が最大の部品をクラスタに加え、手順1−2に進
む。
[Procedure 1-3] The component group of the cluster being formed in step S35 is placed at the lowest position, and the component specific gravity calculating means 3
Then, the specific gravities of the other parts are calculated, and the arranging means 5 arranges the parts having the larger specific gravities in order from bottom to top. The part having the highest specific gravity outside the cluster is added to the cluster, and the process proceeds to step 1-2.

【0045】[手順1−4]ステップS34でクラスタ
を登録し、部品群を1部品とみなすクラスタで置き換え
手順1−1に進む。
[Procedure 1-4] The cluster is registered in step S34, and the procedure proceeds to the replacement procedure 1-1 in which the parts group is regarded as one part.

【0046】[手順1−5]図21(g)の様に全部品
が一つのクラスタに集合する場合にクラスタ作成処理を
終了する。
[Procedure 1-5] When all parts are assembled into one cluster as shown in FIG. 21 (g), the cluster creating process is terminated.

【0047】[手順2]実施例1の手順3以降の手順通
りに、クラスタと部品を比重の重いクラスタから順に下
から重ねた配置を計算する。また、実施例1の手順5に
より、部品の密集配置を計算する。
[Procedure 2] In accordance with the procedure from the procedure 3 onward in the first embodiment, the arrangement in which the cluster and the parts are superposed in order from the cluster having the higher specific gravity is calculated. Further, the dense arrangement of the components is calculated by the procedure 5 of the first embodiment.

【0048】本実施例は、予め部品間の結合力の強いク
ラスタを最初に作成し、そのクラスタを組合せて部品配
置するので、総配線長を最小にする部品配置を速く得る
ことができる特徴がある。
In the present embodiment, a cluster having a strong coupling force between components is first created in advance, and the clusters are combined to arrange the components. Therefore, it is possible to quickly obtain the component arrangement that minimizes the total wiring length. is there.

【0049】図22は本発明の第4の実施例のブロック
図を示す。本実施例は、クラスタ指令入力手段11と、
クラスタ表示手段14とを有する。クラスタ表示手段1
4は部品を1次元に自動配置した結果と2次元に自動配
置した結果と、自動配置設計装置が作成した各クラスタ
とを表示部10に表示する。
FIG. 22 shows a block diagram of the fourth embodiment of the present invention. In this embodiment, the cluster command input means 11 and
And a cluster display means 14. Cluster display means 1
Reference numeral 4 displays on the display unit 10 the result of automatic placement of parts in one dimension, the result of automatic placement in two dimensions, and each cluster created by the automatic placement design apparatus.

【0050】クラスタ表示手段14は、クラスタの構成
部品を強調表示し、またそのクラスタが外部の部品に接
続する配線を表示しクラスタの比重も表示する。クラス
タ指令入力手段11は、操作者の指示を入力することで
クラスタの部品をまとめて移動し、またクラスタの構成
部品を追加削除する。
The cluster display means 14 highlights the constituent parts of the cluster, displays the wiring connecting the cluster to external parts, and also displays the specific gravity of the cluster. The cluster command input means 11 moves the parts of the cluster collectively by inputting the instruction of the operator, and additionally deletes the constituent parts of the cluster.

【0051】[0051]

【発明の効果】以上説明した様に、本発明は、印刷配線
板の一次元配置で部品の総配線長が最小の配置を少ない
計算量で求め、それを二次元平面に展開するので、総配
線長が最小の部品配置を確実に得ることができる。ま
た、結合力の強い部品のクラスタを自動的に計算でき、
部品をクラスタ単位でまとめて移動出来る融通性の高い
配置設計装置が得られる。
As described above, according to the present invention, since the total wiring length of the components in the one-dimensional layout of the printed wiring board is obtained with a small amount of calculation and the layout is developed on the two-dimensional plane, It is possible to reliably obtain the component arrangement with the minimum wiring length. Also, it can automatically calculate the cluster of parts with strong bonding strength,
It is possible to obtain a highly flexible layout design device that can move parts in a cluster unit.

【0052】[0052]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のブロック図。FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】図1の実施例の処理手順1を説明するフロー
図。
FIG. 2 is a flowchart illustrating a processing procedure 1 of the embodiment of FIG.

【図3】図1の処理手順2,3を説明するフロー図。FIG. 3 is a flowchart illustrating processing procedures 2 and 3 of FIG.

【図4】図1の処理手順4を説明するフロー図。FIG. 4 is a flowchart illustrating a processing procedure 4 of FIG.

【図5】図1の一次元部品配置例の作成過程を示す模式
図。
5A and 5B are schematic diagrams showing a creation process of the one-dimensional component arrangement example of FIG.

【図6】図1のクラスタの作成と配置の例を示す模式
図。
FIG. 6 is a schematic diagram showing an example of creating and arranging the clusters in FIG.

【図7】図1の一次元部品配置とクラスタの配置の例を
示す模式図。
FIG. 7 is a schematic diagram showing an example of the one-dimensional component arrangement and the arrangement of clusters in FIG.

【図8】図1の二次元部品配置の例を示す模式図。8 is a schematic diagram showing an example of the two-dimensional component arrangement of FIG.

【図9】図1の二次元部品配置の密集の例を示す模式
図。
FIG. 9 is a schematic diagram showing an example of crowding of the two-dimensional component arrangement of FIG.

【図10】本発明の第2の実施例のブロック図。FIG. 10 is a block diagram of a second embodiment of the present invention.

【図11】図10における部品間の配線のパラメータを
説明する模式図。
11 is a schematic diagram illustrating parameters of wiring between components in FIG.

【図12】図10の処理手順の状態遷移図。12 is a state transition diagram of the processing procedure of FIG.

【図13】図12の処理のクラスタ作成手順を示す模式
図。
13 is a schematic diagram showing a cluster creation procedure of the processing of FIG.

【図14】図13のあとのクラスタ作成手順を示す模式
図。
FIG. 14 is a schematic diagram showing a cluster creating procedure after FIG.

【図15】図10の一次元部品配置とクラスタを示す模
式図。
15 is a schematic diagram showing the one-dimensional component arrangement and clusters in FIG.

【図16】図15の二次元部品配置の例を示す模式図。16 is a schematic diagram showing an example of the two-dimensional component arrangement of FIG.

【図17】図16の二次元部品配置の密集の例を示す模
式図。
FIG. 17 is a schematic diagram showing an example of crowding of the two-dimensional component arrangement of FIG.

【図18】本発明の第3の実施例のブロック図。FIG. 18 is a block diagram of a third embodiment of the present invention.

【図19】図18の事前クラスタ作成手段の処理手順を
示すフロー図。
FIG. 19 is a flowchart showing the processing procedure of the pre-cluster creating means shown in FIG. 18;

【図20】図18のクラスタ内の部分クラスタ間の配線
の模式図。
20 is a schematic diagram of wiring between partial clusters in the cluster of FIG.

【図21】図18のクラスタ作成過程の例を示す図。FIG. 21 is a diagram showing an example of the cluster creation process of FIG. 18;

【図22】本発明の第4の実施例のブロック図。FIG. 22 is a block diagram of a fourth embodiment of the present invention.

【符号の説明】 1 部品データ入力手段 2 部品データ記憶手段 3 部品比重計算手段 4 部品配置順番記憶手段 5 整列手段 6 クラスタ作成手段 7 部品交換配線長増加計算手段 8 事前クラスタ作成手段 9 比引力計算手段 10 表示部 11 操作司令入力手段 12 入力部 13 データ処理部 14 クラスタ表示手段 15 第1の一次元配置 16 第2の一次元配置[Explanation of reference numerals] 1 parts data input means 2 parts data storage means 3 parts specific gravity calculation means 4 parts placement order storage means 5 alignment means 6 cluster creation means 7 parts replacement wiring length increase calculation means 8 pre-cluster creation means 9 specific gravity calculation Means 10 Display unit 11 Operation command input unit 12 Input unit 13 Data processing unit 14 Cluster display unit 15 First one-dimensional arrangement 16 Second one-dimensional arrangement

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図11[Name of item to be corrected] Figure 11

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図11】 FIG. 11

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図12[Name of item to be corrected] Fig. 12

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図12】 [Fig. 12]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図13[Name of item to be corrected] Fig. 13

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図13】 [Fig. 13]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図14[Name of item to be corrected] Fig. 14

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図14】 FIG. 14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 印刷配線の部品をその部品から引き出す
配線数を部品の面積で割った商の比重を計算する比重計
算手段と、前記比重の重い順に前記部品を配置する整列
手段とを備え、前記部品間の総配線長を最小にする配線
を計算により求めて前記部品を配置することを特徴とす
る印刷配線板の自動配置設計装置。
1. A specific gravity calculating means for calculating a specific gravity of a quotient obtained by dividing the number of wires for drawing out a part of a printed wiring from the part by the area of the part, and an aligning means for arranging the parts in descending order of the specific gravity. An automatic layout design apparatus for a printed wiring board, characterized in that a wiring that minimizes a total wiring length between the components is calculated and the components are arranged.
【請求項2】 整列手段により計算した部品配置結果を
用いクラスタを作成するクラスタ作成手段を備え、前記
クラスタから引出す配線数をそのクラスタの面積あるい
は部品数で割った比重を比重計算手段により計算し、こ
の比重に基づき前記クラスタを整列手段により一括移動
させる請求項1記載の印刷配線板の自動配置設計装置。
2. A cluster creating means for creating a cluster using the component placement result calculated by the aligning means, wherein the specific gravity calculated by the specific gravity calculating means is obtained by dividing the number of wires drawn from the cluster by the area of the cluster or the number of parts. 2. The automatic layout design apparatus for a printed wiring board according to claim 1, wherein the clusters are collectively moved by the aligning means based on the specific gravity.
【請求項3】 比重計算手段がクラスタから引出す配線
とそのクラスタを表示するクラスタ表示手段を備えた請
求項2記載の印刷配線板の自動配置設計装置。
3. The automatic layout design apparatus for a printed wiring board according to claim 2, wherein the specific gravity calculating means comprises wiring drawn from the cluster and cluster display means for displaying the cluster.
JP4273920A 1992-10-13 1992-10-13 Automatic layout design equipment for printed wiring boards Expired - Fee Related JP2888057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273920A JP2888057B2 (en) 1992-10-13 1992-10-13 Automatic layout design equipment for printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273920A JP2888057B2 (en) 1992-10-13 1992-10-13 Automatic layout design equipment for printed wiring boards

Publications (2)

Publication Number Publication Date
JPH06149939A true JPH06149939A (en) 1994-05-31
JP2888057B2 JP2888057B2 (en) 1999-05-10

Family

ID=17534416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273920A Expired - Fee Related JP2888057B2 (en) 1992-10-13 1992-10-13 Automatic layout design equipment for printed wiring boards

Country Status (1)

Country Link
JP (1) JP2888057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259682A (en) * 1999-03-12 2000-09-22 Nec Corp System and method for automatically arranging parts and recording medium storing automatically arranging parts program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259682A (en) * 1999-03-12 2000-09-22 Nec Corp System and method for automatically arranging parts and recording medium storing automatically arranging parts program
US6560505B1 (en) 1999-03-12 2003-05-06 Nec Toppan Circuit Solutions, Inc. Automatic parts placement system, method, and medium

Also Published As

Publication number Publication date
JP2888057B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US6035108A (en) Figure layout compaction method and compaction device
Kuh et al. Recent advances in VLSI layout
JP2724317B2 (en) Hierarchical floor planning method and system
US20010038612A1 (en) Automatic routing system for circuit layout
JPH07306886A (en) Method and device for generating wiring program method and device for generating arrangement program, and method and device for automatic wiring
JPH08123836A (en) Conversational circuit design device
US6996789B2 (en) Method and apparatus for performing an exponential path search
US20020174413A1 (en) Design method for multilayer wiring board
WO1997034316A2 (en) Interconnection routing system
US6099581A (en) Layout database for a computer aided design system
US7590963B2 (en) Integrating multiple electronic design applications
US20040098698A1 (en) Method and apparatus for searching for a global path
US5551014A (en) Method and apparatus for designing integrated circuits according to master slice approach
JP2021519520A (en) Multi-layer co-location for integrated circuits
US6560505B1 (en) Automatic parts placement system, method, and medium
US8762927B2 (en) Processing method of electric information in CAD system, processing device of electric information in CAD system, program and computer-readable storage medium
US20100325594A1 (en) Printed circuit board design assisting method, printed circuit board design assisting device, and storage medium
JPH06149939A (en) Automatic arrangement design device for printed wiring board
JPH08212241A (en) Design method for mask pattern for semiconductor integrated circuit or directly plotting pattern on wafer and their design rule confirming method
JP4025121B2 (en) Component arrangement calculation device, component arrangement calculation method, component arrangement calculation program, recording medium recording the program, and component arrangement support system
JP4907257B2 (en) Circuit board wiring method and wiring support device
Nishioka et al. A minicomputerized automatic layout system for two-layer printed wiring boards
JP2786306B2 (en) Assembly process design apparatus and method
JP3178603B2 (en) Automatic component placement method, system, and recording medium recording automatic component placement program
JPH10269269A (en) Plant design system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990119

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees