JPH06149266A - Active sound eliminating device - Google Patents

Active sound eliminating device

Info

Publication number
JPH06149266A
JPH06149266A JP4298764A JP29876492A JPH06149266A JP H06149266 A JPH06149266 A JP H06149266A JP 4298764 A JP4298764 A JP 4298764A JP 29876492 A JP29876492 A JP 29876492A JP H06149266 A JPH06149266 A JP H06149266A
Authority
JP
Japan
Prior art keywords
parameter
parameters
signal
reference signal
adjustment command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4298764A
Other languages
Japanese (ja)
Inventor
Hiroko Ando
裕子 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4298764A priority Critical patent/JPH06149266A/en
Publication of JPH06149266A publication Critical patent/JPH06149266A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • G10K11/17833Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels
    • G10K11/17835Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels using detection of abnormal input signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PURPOSE:To set the parameters of coefficient update algorithm to values which are proper from the point of view of the whole system and to take an artificial countermeasure against un unforeseen unstable state. CONSTITUTION:This active sound eliminating device is provided with a parameter part 71 which sets the parameters of the coefficient update algorithm according to the state of a reference signal (d) detected by a 1st mechanical-to-electric transducer 21 and a mu adjustment command block 72 which forcibly indicates the adjustments of the parameters to the parameter setting part 71 from outside. Consequently, the parameters which are fixed before are varied according to the state of the reference signal and set to proper values viewed from the whole system, and an adjustment command for the parameters is generated from outside through the mu adjustment command block 72 according to the transition of a sound elimination state, thereby taking an artificial countermeasure against an unexpected unstable state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械装置の稼動時に発
生する騒音を打ち消すために用いられる能動消音装置で
あって、特にパラメ−タ可変型の能動消音装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active silencer used for canceling noise generated during the operation of a mechanical device, and more particularly to a variable parameter active silencer.

【0002】[0002]

【従来の技術】図3に従来の構成を示す。図3におい
て、音源または加振源1の近くに、または制御点の波動
の伝播途中に、第1の機械→電気変換器21が設置され
ている。この第1の機械→電気変換器21は、音源また
は加振源1と相関の高い信号を検出し、これを増幅器2
2を介して信号処理回路6に参照信号dとして出力す
る。信号処理回路6は、参照信号dに基づいて消音用の
制御信号S´を演算する。この制御信号S´は、増幅器
42を介して制御用電気→機械変換器41に送られる。
これにより、制御領域5で音または振動(以後、総じて
波動と呼ぶ)を打ち消すために、位相を180度ずらし
た制御用波動が生成される。
2. Description of the Related Art FIG. 3 shows a conventional configuration. In FIG. 3, a first mechanical → electrical converter 21 is installed near the sound source or the vibration source 1 or in the course of propagation of a wave at a control point. The first mechanical-to-electrical converter 21 detects a signal highly correlated with the sound source or the vibration source 1 and outputs it to the amplifier 2
It is output to the signal processing circuit 6 via 2 as the reference signal d. The signal processing circuit 6 calculates the control signal S ′ for silencing based on the reference signal d. This control signal S ′ is sent to the control electric → mechanical converter 41 via the amplifier 42.
As a result, in order to cancel the sound or vibration (hereinafter, generally referred to as wave) in the control area 5, a control wave having a phase shifted by 180 degrees is generated.

【0003】一方、制御領域5内には、第2の機械→電
気変換器31が設置されている。この第2の機械→電気
変換器31は、残留音8を検出し、その誤差信号εを増
幅器32を介して信号処理回路6に出力する。
On the other hand, in the control area 5, a second mechanical → electrical converter 31 is installed. The second mechanical-electrical converter 31 detects the residual sound 8 and outputs its error signal ε to the signal processing circuit 6 via the amplifier 32.

【0004】ここで、信号処理回路6は、参照信号dと
誤差信号εを用いて上述した制御信号S´を演算し出力
するものである。この信号処理回路6は、通常マイクロ
コンピュ−タからなり、図4に示すLMSのような公知
のアルゴリズムに基づく信号処理を行っている。
Here, the signal processing circuit 6 calculates and outputs the above-mentioned control signal S'using the reference signal d and the error signal ε. This signal processing circuit 6 is usually composed of a microcomputer and performs signal processing based on a known algorithm such as LMS shown in FIG.

【0005】なお、信号処理回路6内において、63は
参照信号dに制御信号S´がフィ−ドバックすることを
補正するブロック、64は遅れ補正用ブロックである。
また、62は消音制御フィルタ61の係数を更新する係
数更新部であり、誤差信号εを最小にするような最適な
係数を設定し、消音制御を実現する。
In the signal processing circuit 6, 63 is a block for correcting the feedback of the control signal S'to the reference signal d, and 64 is a delay correction block.
Reference numeral 62 denotes a coefficient updating unit that updates the coefficient of the muffling control filter 61, and sets an optimum coefficient that minimizes the error signal ε to realize the muffling control.

【0006】[0006]

【発明が解決しようとする課題】ここで、図4の消音制
御フィルタ61における係数A(n)をA(n+1)に
更新するためのLMSアルゴリズムを(1)式に示す。 A(n+1)=A(n)−2με(n)D´(n) …(1) 但し、A(n) :消音制御フィルタ μ :パラメータ ε(n) :誤差信号 D´(n):遅れ補正値
Here, the LMS algorithm for updating the coefficient A (n) in the silence control filter 61 of FIG. 4 to A (n + 1) is shown in the equation (1). A (n + 1) = A (n) -2 με (n) D ′ (n) (1) where A (n): silence control filter μ: parameter ε (n): error signal D ′ (n): delay Correction value

【0007】上記(1)式から分かるように、右辺第2
項がゼロに近づくにつれて、最適な係数が得られ、収束
に向かう。この場合、唯一調整可能なものはパラメ−タ
μである。このパラメ−タμは、次の(2)式より一応
の最大値を決定することができる。しかし、現実には予
め遅れ補正値D´(n)の自乗平均和を求めることが困
難であり、従来は実際の消音効果に基づいてパラメ−タ
μの値を試行錯誤して決定していた。
As can be seen from the above equation (1), the second right side
As the term approaches zero, the optimum coefficient is obtained and it approaches convergence. In this case, the only adjustable is the parameter μ. For this parameter μ, a tentative maximum value can be determined by the following equation (2). However, in reality, it is difficult to obtain the root mean square sum of the delay correction values D ′ (n) in advance, and conventionally, the value of the parameter μ was determined by trial and error based on the actual noise reduction effect. .

【0008】[0008]

【数1】 [Equation 1]

【0009】また、演算誤差等により上記(2)式をさ
らに1/10〜1/100にする必要があることが経験
的に知られているが、装置稼働中に消音効果をモニタし
ながら値を上下させることは不可能であった。
Further, it is empirically known that it is necessary to further reduce the above equation (2) to 1/10 to 1/100 due to a calculation error or the like. It was impossible to raise or lower.

【0010】本発明は上記のような点に鑑みなされたも
ので、係数更新アルゴリズムのパラメータを系全体から
見た適切な値な設定でき、また、突発的な不安定状況に
対して人的な対処も可能とした能動消音装置を提供する
ことを目的とする。
The present invention has been made in view of the above points, and it is possible to set the parameters of the coefficient updating algorithm to appropriate values from the viewpoint of the entire system, and it is possible to manually set the parameters for sudden instability. It is an object of the present invention to provide an active silencer that can cope with the problem.

【0011】[0011]

【課題を解決するための手段】本発明の能動消音装置
は、音源または加振源と相関の高い信号を参照信号とし
て検出し、位相を180度ずらした制御信号を消音制御
フィルタより発生して消音すると共に、残留音を検出
し、所定の係数更新アルゴリズムに基づいて上記消音制
御フィルタの係数を更新する能動消音装置において、上
記参照信号の状態に応じて、上記係数更新アルゴリズム
のパラメータを設定するパラメータ設定手段と、外部よ
り上記パラメータ設定手段に対し、上記パラメータの調
整を強制的に指示する調整指令手段とを具備したもので
ある。
The active silencer of the present invention detects a signal having a high correlation with a sound source or an excitation source as a reference signal and generates a control signal with a phase shift of 180 degrees from a silence control filter. In the active muffling device that mutes, detects residual sound, and updates the coefficient of the muffling control filter based on a predetermined coefficient updating algorithm, sets the parameter of the coefficient updating algorithm according to the state of the reference signal. A parameter setting means and an adjustment command means for forcibly instructing the parameter setting means to adjust the parameters from the outside are provided.

【0012】[0012]

【作用】上記の構成によれば、従来固定であったパラメ
−タを参照信号の状態に応じて変化させることにより、
系全体から見た適切な値に設定できる。また、消音状況
の推移により、外部からパラメータの調整指令を出すこ
とができるため、突発的な不安定状況に対して人的な対
処も可能となる。
According to the above construction, by changing the parameter which is conventionally fixed according to the state of the reference signal,
It can be set to an appropriate value for the entire system. In addition, since a parameter adjustment command can be issued from the outside according to the transition of the muffling situation, it is possible to deal with a sudden unstable situation manually.

【0013】[0013]

【実施例】以下、図面を参照して本発明の一実施例に係
る能動消音装置を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An active silencer according to an embodiment of the present invention will be described below with reference to the drawings.

【0014】図1はその構成を示すブロック図である。
なお、図1において、図4と同一部分には同一符号を付
して、ここではその説明を省略する。同実施例では、信
号処理回路70にパラメ−タ設定部71およびμ調整指
令ブロック72が設けられている。パラメ−タ設定部7
1は、参照信号dの入力毎に図2に示すような演算処理
を実行し、遂次LMSパラメ−タμを最適値に設定す
る。μ調整指令ブロック72は、パラメ−タμの補正が
必要であるときに、経験則に基づいてパラメ−タ設定部
71に対してパラメ−タμの調整指令73を与える。こ
のμ調整指令ブロック72から指令を出すには、外部よ
りスイッチ操作を行って実現する。
FIG. 1 is a block diagram showing the structure.
In FIG. 1, the same parts as those in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted here. In this embodiment, the signal processing circuit 70 is provided with a parameter setting section 71 and a μ adjustment command block 72. Parameter setting section 7
1 executes the arithmetic processing as shown in FIG. 2 every time the reference signal d is input, and sets the successive LMS parameter μ to the optimum value. The μ adjustment command block 72 gives a parameter μ adjustment command 73 to the parameter setting unit 71 based on an empirical rule when the parameter μ needs to be corrected. To issue a command from the μ adjustment command block 72, a switch operation is performed from the outside.

【0015】図2はパラメ−タ設定部71での演算フロ
−を示す図である。パラメ−タ設定部71では、参照信
号dの入力毎に遅れ補正値D´(n)の移動平均{σ
(n)}2 を次の(3)式より算出し、(4)式に代入
してSumを得る。ここで、Iは消音制御フィルタ61
のタップ数であるので、Sumは(2)式の右辺の分母
である各タップ入力の平均電力和に相当する。 {σ(n)}2 =α{D´(n)}2 +(1−α){σ(n−1)}2 …(3) Sum=I×{σ(n)}2 …(4) 但し、0<α<1の範囲で安定 I:消音制御フィルタのタップ数 次に、(5)式で、パラメ−タμの最大値μmaxが求
まり、(2)式より一応の範囲(6)式が決まる。 μmax=1/Sum =1/I×{σ(n)}2 …(5) 0<μ=μ/I×{σ(n)}2 <μmax …(6) 但し、0<μ<1
FIG. 2 is a diagram showing a calculation flow in the parameter setting section 71. In the parameter setting unit 71, the moving average of the delay correction values D ′ (n) {σ for each input of the reference signal d
(N)} 2 Is calculated by the following equation (3) and is substituted into the equation (4) to obtain Sum. Here, I is the silence control filter 61
Sum is equivalent to the sum of average power of tap inputs, which is the denominator on the right side of Expression (2). {Σ (n)} 2 = Α {D '(n)} 2 + (1-α) {σ (n-1)} 2 (3) Sum = I × {σ (n)} 2 (4) However, it is stable within the range of 0 <α <1. I: Number of taps of the muffling control filter Next, the maximum value μmax of the parameter μ can be obtained by the equation (5), The range (6) formula is determined. μmax = 1 / Sum = 1 / I × {σ (n)} 2 (5) 0 <μ = μ / I × {σ (n)} 2 <Μmax (6) where 0 <μ <1

【0016】さらに、演算誤差等によりパラメ−タμの
値を1/10〜1/100することが経験により知られ
ているため、残留音8が多く効果的な消音が得られない
場合には、μ調整指令ブロック72よりパラメ−タμの
値を1/10〜1/100にする指示を与える。つま
り、(7)式のようにμの値をβ倍して調整する。 μ=μ×β =[μ/I×{σ(n)}2 ]×β …(7) 但し、0.01≦β≦0.1 なお、μ調整指令ブロック72よりの指令がない場合に
は、特に調整の必要がないものとして、上記(7)式の
演算をパスして次に進む。
Further, it is known from experience that the value of the parameter μ is set to 1/10 to 1/100 due to a calculation error or the like. Therefore, when there are many residual sounds 8 and effective silencing cannot be obtained. , .Mu. Adjustment command block 72 gives an instruction to set the parameter .mu. Value to 1/10 to 1/100. That is, the value of μ is multiplied by β as in the expression (7) to adjust. μ = μ × β = [μ / I × {σ (n)} 2 ] × β (7) However, 0.01 ≦ β ≦ 0.1 If there is no command from the μ adjustment command block 72, it is assumed that no adjustment is necessary, and the calculation of the formula (7) is performed. To continue to the next.

【0017】このようにして構成される消音装置にあっ
ては、音源または加振源1と相関の高い信号が第1の機
械→電気変換器21によって検出される。この信号は、
増幅器22により増幅された後、A/Dコンバ−タ23
でディジタル変換され、参照信号dとして信号処理回路
70の遅れ補正用フィルタ64に入力される。
In the muffler thus constructed, a signal having a high correlation with the sound source or the vibration source 1 is detected by the first mechanical → electrical converter 21. This signal is
After being amplified by the amplifier 22, the A / D converter 23
Is converted into a digital signal and is input to the delay correction filter 64 of the signal processing circuit 70 as the reference signal d.

【0018】遅れ補正用フィルタ64は、この入力した
参照信号dを図2に示すフロ−に従って処理し、遅れ補
正値D´(n)を得る。パラメ−タ設定部71は、
(3)式により、D´(n)の移動平均{σ(n)}2
を算出し、(4)、(5)、(6)式よりLMSアルゴ
リズムのパラメ−タμを求める。係数更新部62は、μ
調整指令ブロック72からの信号に従い、パラメ−タμ
をβ倍する(式(7))。この時、μ調整指令ブロック
72より指令があるか否かの判定を行い、指令がなけれ
ば、(6)式のままでLMSアルゴリズムでのパラメ−
タとして使用する。
The delay correction filter 64 processes the input reference signal d according to the flow shown in FIG. 2 to obtain a delay correction value D '(n). The parameter setting unit 71 is
From equation (3), the moving average of D '(n) {σ (n)} 2
Is calculated, and the parameter μ of the LMS algorithm is obtained from the equations (4), (5) and (6). The coefficient updating unit 62 uses μ
According to the signal from the adjustment command block 72, the parameter μ
Is multiplied by β (equation (7)). At this time, it is judged from the μ adjustment command block 72 whether or not there is a command, and if there is no command, the parameters in the LMS algorithm remain unchanged from the expression (6).
Used as a data.

【0019】一方、残留音8が制御領域5内に設置され
た第2の機械→電気変換器31によって検出され、増幅
器32およびA/Dコンバータ33を介して誤差信号ε
が入力される。係数更新部62は、この誤差信号εを用
いて、LMSのような公知アルゴリズムに基づいて消音
制御フィルタ61の係数を演算する。消音制御フィルタ
61は、この係数に基づいて、制御領域5で波動を打ち
消すための位相を180度ずらした制御信号S´を生成
する。この制御信号S´は、D/A変換器43および増
幅器42を介して制御用電気→機械変換器41に送ら
れ、制御用波動が生成される。
On the other hand, the residual sound 8 is detected by the second mechanical → electrical converter 31 installed in the control area 5, and the error signal ε is detected via the amplifier 32 and the A / D converter 33.
Is entered. The coefficient updating unit 62 uses the error signal ε to calculate the coefficient of the silence control filter 61 based on a known algorithm such as LMS. The muffling control filter 61 generates a control signal S ′ in which the phase for canceling the wave in the control region 5 is shifted by 180 degrees based on this coefficient. The control signal S ′ is sent to the control electrical → mechanical converter 41 via the D / A converter 43 and the amplifier 42, and a control wave is generated.

【0020】なお、図2のフロ−は全て信号処理ソフト
ウェアで演算される。また、μ調整指令ブロック72は
ハードウェアで実現され、スイッチオンの時、0.1〜
0.01までn段階(n≧2)に切り替え可能であり、
それぞれのスイッチ操作によって(7)式のβに対する
値を指示する。また、スイッチオフの時は、μ調整指令
73はなく、(7)式の演算をパスして次処理に進む。
The flow chart of FIG. 2 is entirely calculated by the signal processing software. Further, the μ adjustment command block 72 is realized by hardware, and when the switch is turned on,
It is possible to switch to n steps (n ≧ 2) up to 0.01,
The value for β in equation (7) is specified by operating each switch. Further, when the switch is off, there is no μ adjustment command 73, and the calculation of equation (7) is passed and the process proceeds to the next process.

【0021】このように、従来固定であったパラメ−タ
μを、参照信号dの入力レベルの変動に合わせて変化さ
せることにより、系全体から見た適切なμの設定が可能
となり、より早く収束状態にして安定した消音状態を得
ることができる。
As described above, by changing the conventionally fixed parameter μ in accordance with the fluctuation of the input level of the reference signal d, it becomes possible to set an appropriate μ in view of the entire system, and it is faster. A stable muffling state can be obtained by setting the convergence state.

【0022】さらに、消音状況の推移によっては、パラ
メ−タμを補正する指令を外部から与えることができる
ため、突発的な不安定状況に対して人的な対処も可能と
なる。つまり、収束はしているが、制御領域5における
残留音8が多い場合において、パラメ−タμの値を小さ
くする指令を与えることにより、安定した収束に向か
い、発振傾向を抑えることができる。
Further, depending on the transition of the mute condition, a command for correcting the parameter μ can be given from the outside, so that it is possible to manually cope with a sudden unstable condition. In other words, when there is a large amount of residual sound 8 in the control region 5 although it has converged, by giving a command to reduce the value of the parameter μ, stable convergence can be achieved and the oscillation tendency can be suppressed.

【0023】[0023]

【発明の効果】以上のように本発明によれば、従来固定
であったパラメ−タを参照信号の状態に応じて変化させ
るようにしたため、系全体から見た適切な値に設定で
き、また、外部からパラメータの調整指令を出すように
したため、突発的な不安定状況に対して人的な対処も可
能となる。
As described above, according to the present invention, the conventionally fixed parameter is changed according to the state of the reference signal, so that it can be set to an appropriate value viewed from the whole system. Since the parameter adjustment command is issued from the outside, it is possible to handle the sudden unstable situation manually.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る構成を示すブロック
図。
FIG. 1 is a block diagram showing a configuration according to an embodiment of the present invention.

【図2】同実施例の演算処理を示すフローチャート。FIG. 2 is a flowchart showing a calculation process of the embodiment.

【図3】従来の構成を示すブロック図。FIG. 3 is a block diagram showing a conventional configuration.

【図4】従来の演算処理を示すフローチャート。FIG. 4 is a flowchart showing conventional arithmetic processing.

【符号の説明】[Explanation of symbols]

1…音源または加源音、21…第1の機械→電気変換
器、22…増幅機、23…A/Dコンバータ、31…第
2の機械→電気変換器、32…増幅機、33…A/Dコ
ンバータ、41…制御用電気→機械変換器、42…増幅
機、43…D/Aコンバータ、5…制御領域、61…消
音制御フィルタ、62…係数更新部、63…フィ−ドバ
ック補正ブロック、64…遅れ補正ブロック、70…信
号処理回路、71…パラメ−タ設定部、72…μ調整指
令ブロック、73…μ調整指令、8…残留音。
DESCRIPTION OF SYMBOLS 1 ... Sound source or added sound, 21 ... 1st machine-> electric converter, 22 ... Amplifier, 23 ... A / D converter, 31 ... 2nd machine-> Electric converter, 32 ... Amplifier, 33 ... A / D converter, 41 ... Controlling electrical-to-mechanical converter, 42 ... Amplifier, 43 ... D / A converter, 5 ... Control area, 61 ... Silence control filter, 62 ... Coefficient updating unit, 63 ... Feedback correction block , 64 ... Delay correction block, 70 ... Signal processing circuit, 71 ... Parameter setting section, 72 ... μ adjustment command block, 73 ... μ adjustment command, 8 ... Residual sound.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月4日[Submission date] February 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 音源または加振源と相関の高い信号を参
照信号として検出し、位相を180度ずらした制御信号
を消音制御フィルタより発生して消音すると共に、残留
音を検出し、所定の係数更新アルゴリズムに基づいて上
記消音制御フィルタの係数を更新する能動消音装置にお
いて、 上記参照信号の状態に応じて、上記係数更新アルゴリズ
ムのパラメータを設定するパラメータ設定手段と、 外部より上記パラメータ設定手段に対し、上記パラメー
タの調整を強制的に指示する調整指令手段とを具備した
ことを特徴とする能動消音装置。
1. A signal having a high correlation with a sound source or an excitation source is detected as a reference signal, a control signal having a phase shifted by 180 degrees is generated by a muffling control filter to muffle the sound, and a residual sound is detected to determine a predetermined value. In an active muffling device that updates the coefficient of the muffling control filter based on a coefficient updating algorithm, a parameter setting unit that sets a parameter of the coefficient updating algorithm according to the state of the reference signal, and an external parameter setting unit On the other hand, an active muffling device comprising an adjustment commanding means for forcibly instructing adjustment of the above parameters.
JP4298764A 1992-11-09 1992-11-09 Active sound eliminating device Withdrawn JPH06149266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4298764A JPH06149266A (en) 1992-11-09 1992-11-09 Active sound eliminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4298764A JPH06149266A (en) 1992-11-09 1992-11-09 Active sound eliminating device

Publications (1)

Publication Number Publication Date
JPH06149266A true JPH06149266A (en) 1994-05-27

Family

ID=17863923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4298764A Withdrawn JPH06149266A (en) 1992-11-09 1992-11-09 Active sound eliminating device

Country Status (1)

Country Link
JP (1) JPH06149266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586190A (en) * 1994-06-23 1996-12-17 Digisonix, Inc. Active adaptive control system with weight update selective leakage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586190A (en) * 1994-06-23 1996-12-17 Digisonix, Inc. Active adaptive control system with weight update selective leakage

Similar Documents

Publication Publication Date Title
US6831986B2 (en) Feedback cancellation in a hearing aid with reduced sensitivity to low-frequency tonal inputs
US8068629B2 (en) Hearing aid and method of utilizing gain limitation in a hearing aid
US6330336B1 (en) Active silencer
JP2004354657A (en) Active type noise reducing device
JPH08502396A (en) Hearing aids that compensate for acoustic feedback
JPH07110693A (en) Method and device for active control using lattice type filter
EP0742971A1 (en) Adaptative feedforward and feedback control system
JPH03274897A (en) Electronic muffling method and its device
US20190019493A1 (en) Active noise control apparatus
JPH06149266A (en) Active sound eliminating device
JP3549120B2 (en) Active vibration control device for vehicles
CN113470609A (en) Active noise control device
JPH05158486A (en) Noise controlling device
JPH0934470A (en) Adaptive filter
JP2872545B2 (en) Silencer
JPH06230789A (en) Active noise controller
JP3397245B2 (en) Electronic silencer
JP2989379B2 (en) Active control device using adaptive IIR digital filter
JP7157833B2 (en) Active noise control device
JP2996770B2 (en) Adaptive control device and adaptive active silencer
Kohno et al. Direct adaptive active noise control algorithms in case of uncertain secondary path dynamics
JP3523401B2 (en) Electronic silencer
JPH06124092A (en) Noise eliminating device for air conditioner
JPH0973295A (en) Active control device
JPH0728475A (en) Active type muffler device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201