JPH0614921B2 - Fluorescence observation device for biological tissue - Google Patents

Fluorescence observation device for biological tissue

Info

Publication number
JPH0614921B2
JPH0614921B2 JP1254389A JP25438989A JPH0614921B2 JP H0614921 B2 JPH0614921 B2 JP H0614921B2 JP 1254389 A JP1254389 A JP 1254389A JP 25438989 A JP25438989 A JP 25438989A JP H0614921 B2 JPH0614921 B2 JP H0614921B2
Authority
JP
Japan
Prior art keywords
fluorescence
tissue
observation
objective lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1254389A
Other languages
Japanese (ja)
Other versions
JPH03115958A (en
Inventor
憲一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP1254389A priority Critical patent/JPH0614921B2/en
Publication of JPH03115958A publication Critical patent/JPH03115958A/en
Publication of JPH0614921B2 publication Critical patent/JPH0614921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体組織に螢光物質を与え、生体組織から放
射される螢光によその生体組織の観察を行う生体組織螢
光観察装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention provides a biological tissue fluorescence observation apparatus for giving a fluorescent substance to biological tissue and observing the biological tissue by the fluorescence emitted from the biological tissue. Regarding

〔従来の技術〕[Conventional technology]

生体組織の代射を監視する方法として、従来、特開昭5
2−52496号公報に開示されているように、細胞内
のピリジンヌクレオチドなどの生体の代謝に対応する螢
光物質に励起光および参照光を照射し、この螢光物質か
らの放射螢光を検出するとともに励起光量を反射された
参照光量で補正することにより放射螢光量を正確に測定
し、生細胞の代謝を監視する方法が知られている。
As a method for monitoring the survivor of living tissue, Japanese Patent Laid-Open Publication No. Sho.
As disclosed in Japanese Patent Publication No. 2-52496, a fluorescent substance corresponding to the metabolism of a living body such as pyridine nucleotide in cells is irradiated with excitation light and reference light, and the emitted fluorescent light from this fluorescent substance is detected. In addition, a method is known in which the amount of emitted fluorescence is accurately measured by correcting the amount of excitation light with the amount of reflected reference light to monitor the metabolism of living cells.

一方、特開昭61−50550号公報に開示されている
ように、目のきょう膜などの血管像がはっきりと観察で
きる場所では、落射照明装置により血管に光を照射し、
その反射像を顕微鏡などのモニター手段によって拡大
し、拡大された像を流速演算手段を用いて、血液の流速
を算出する装置が知られている。
On the other hand, as disclosed in Japanese Unexamined Patent Publication No. 61-50550, in a place where a blood vessel image such as the capsule of the eye can be clearly observed, the blood vessel is irradiated with light by an epi-illumination device,
There is known a device in which the reflected image is magnified by monitor means such as a microscope, and the magnified image is used to calculate the blood flow velocity by using the flow velocity calculation means.

また、生体内の血管像のはっきり観察できない場所で
は、従来、総合倍率200〜400倍の高倍率顕微鏡を
用いて生体組織の透過像を観察する方法が知られてい
る。すなわち、顕微鏡のステージ上に動物の体内から引
っ張り出した器官や組織が静置、固定され、ステージの
下方から照明が行われて上方からその透過像が観察、記
録され、器官や組織内を流れる血球の移動速度が解析さ
れる。
Further, in a place where a blood vessel image in a living body cannot be clearly observed, a method of observing a transmission image of a living tissue using a high magnification microscope having a total magnification of 200 to 400 is conventionally known. That is, the organs and tissues pulled out from the body of the animal are placed and fixed on the stage of the microscope, illuminated from below the stage, the transmission image is observed and recorded from above, and flows through the organs and tissues. Blood cell migration speed is analyzed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、上述の生体の代謝を観察する方法では、生体の
像を観察することは不可能であり、また、血液の流速を
測定する方法では、血管像がはっきりと観察できない場
所では、血管像を観察することができない。また、観測
面に凹凸がある場合は、観測面からの乱反射が生じると
ともに、観測面全体にわたっては焦点が合わせられない
し、焦点を合わせる際には有限の時間を必要とする。す
なわち、生体の観察においては、生体が生きているうち
に、また、状態が変化しないうちに観察する必要があ
り、この焦点合わせに時間を要することは観察の可否を
左右する問題である。
However, it is impossible to observe the image of the living body by the above-mentioned method of observing the metabolism of the living body, and in the place where the blood vessel image cannot be clearly observed by the method of measuring the blood flow velocity, the blood vessel image is not observed. I can't observe. If the observation surface has irregularities, diffuse reflection from the observation surface occurs, and the observation surface cannot be focused on the entire observation surface, which requires a finite time for focusing. That is, in the observation of a living body, it is necessary to observe the living body while the living body is alive and before the state of the living body changes, and it takes time to focus the subject, which is a problem that determines whether or not the observation is possible.

さらに、血管像がはっきり観察できない場所で動物の器
官や組織を透過観察する方法では、観察視野が限られて
しまい、測定面積が非常に狭くなるため、組織全体の血
流状態の観察が困難である。これは、血球像を観察する
ために高倍率の顕微鏡が使用されているからである。ま
た、上述の透過観察方法では器官や組織を顕微鏡ステー
ジの上に固定するために、動物体内からそれらを無理や
り引っ張り出さなければならない。この処理は、器官や
組織に対して大きなストレスを与えることとなり、平常
時における器官や組織の状態とは異なる観測結果を得る
可能性を否定できない、また、動物体内から引っ張り出
すことのできない組織の観察はできない。
Furthermore, with the method of observing the organs and tissues of an animal in a place where the blood vessel image cannot be clearly observed, the observation field of view is limited and the measurement area becomes very small, making it difficult to observe the blood flow state of the entire tissue. is there. This is because a high-power microscope is used to observe blood cell images. Further, in the above-mentioned transmission observation method, in order to fix the organs and tissues on the microscope stage, they have to be forcibly pulled out from the animal body. This treatment puts great stress on the organs and tissues, and there is no denying the possibility of obtaining observation results that are different from the state of the organs or tissues in normal times, and of tissues that cannot be pulled out from the animal body. I cannot observe it.

更に、透過光像による観察であるため、ステージ上に置
かれる組織は光を透過する程度に薄くなけれならない。
しかし、動物体内の組織等は、通常、厚みをもったかた
まりであることから、上述の方法はほとんどの組織に適
用できない。
Furthermore, since the observation is performed with a transmitted light image, the tissue placed on the stage must be thin enough to transmit light.
However, since the tissues and the like in the animal body are usually thick lumps, the above method cannot be applied to most tissues.

そこで、本発明は、かかる課題を解決することを目的と
している。
Then, this invention aims at solving such a subject.

〔課題を解決するための手段〕[Means for Solving the Problems]

上述の目的を達成するため、本発明による生体組織螢光
観察装置においては、生体組織を対物レンズを介して励
起光により照明する落射照明装置と、記生体組織から生
成された螢光を前記対物レンズを介して入射することに
より螢光観察する低倍率顕別鏡と、外面が低倍率顕微鏡
の焦点面と一致するよう配置された透明板と、対物レン
ズを保持する鏡筒に基端部が取りつけられ、対物レンズ
から透明板に至る光路を包囲する筒と、筒の先端部に透
明板を固定する固定治具とを備えた構成となっている。
In order to achieve the above-mentioned object, in a biological tissue fluorescence observation apparatus according to the present invention, an epi-illumination device that illuminates biological tissue with excitation light via an objective lens, and a fluorescence generated from the biological tissue is used as the objective. A low-magnification microscope that allows fluorescence observation by entering through a lens, a transparent plate whose outer surface is aligned with the focal plane of the low-magnification microscope, and a lens barrel that holds the objective lens It is configured to include a cylinder that is attached and surrounds the optical path from the objective lens to the transparent plate, and a fixing jig that fixes the transparent plate to the tip of the cylinder.

〔作用〕[Action]

このような構成とすることにより、落射照明装置から照
射された励起光を対物レンズで収束させて生体組織に照
射し、生体内の螢光物質から螢光を励起し、この螢光を
対物レンズを介して低倍率顕微鏡に入射させることによ
って広い観察視野で生体組織からの螢光を拡大観察する
ことができる。
With such a configuration, the excitation light emitted from the epi-illumination device is converged by the objective lens to irradiate the living tissue, the fluorescence is excited from the fluorescent substance in the living body, and the fluorescence is converted into the objective lens. The fluorescence from the living tissue can be magnified and observed in a wide observation visual field by making it enter the low-magnification microscope through.

また、透明板は、固定治具によって固定され、外面が低
倍率顕微鏡の焦点面と一致するよう配置されているた
め、この透明板を生体組織の押し付けることにより観測
面の凹凸を平坦化し、この凹凸による螢光の乱反射を防
止するとともに、自動的に観測面全体に焦点を合わせる
ことができる。
Further, the transparent plate is fixed by a fixing jig and is arranged so that the outer surface thereof coincides with the focal plane of the low-magnification microscope, so that the transparent plate is pressed against living tissue to flatten the unevenness of the observation surface. It is possible to prevent irregular reflection of fluorescence due to unevenness and to automatically focus on the entire observation surface.

さらに、対物レンズから透明板に至る光路は筒により包
囲されているため、外界からの迷光を遮断することがで
きる。
Furthermore, since the optical path from the objective lens to the transparent plate is surrounded by the cylinder, stray light from the outside can be blocked.

〔実施例〕〔Example〕

以下、本発明の実施例について第1図および第2図を参
照しつつ説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明による生体組織螢光観察装置の一実施例
の概略構成を示した図である。
FIG. 1 is a view showing a schematic configuration of an embodiment of a biological tissue fluorescence observation apparatus according to the present invention.

図示したように、本発明による生体組織螢光観察装置に
おいては、観察実験中に実験動物の生命を一定の状態で
維持するための恒温槽1および生命維持装置2を備えて
いる。また、実験動物に螢光物質を一定の速度で投与す
るための定速注射装置3を備えると共に、生体組織を観
察するための低倍率顕微鏡5を備えている。低倍率顕微
鏡5には落射照明装置6が接続されると共に、高感度カ
メラ7が取り付けられている。高感度カメラ7により捕
らえられた映像は、画像処理装置8、画像記憶装置1
0、モニタ11によりそれぞれ処理、記憶、再生される
ようになっている。
As shown in the figure, the biological tissue fluorescence observation apparatus according to the present invention includes a thermostatic chamber 1 and a life support device 2 for maintaining the life of an experimental animal in a constant state during an observation experiment. In addition, a constant velocity injection device 3 for administering a fluorescent substance to a laboratory animal at a constant rate is provided, and a low magnification microscope 5 for observing living tissue is provided. An epi-illumination device 6 is connected to the low-magnification microscope 5, and a high-sensitivity camera 7 is attached. The image captured by the high-sensitivity camera 7 is the image processing device 8 and the image storage device 1.
0, the monitor 11 processes, stores, and reproduces, respectively.

恒温槽1内には、その生体組織の観察をしようとする実
験動物15が静置された状態で収容される。図示した実
験動物はねずみである。実験動物15は観察対象とされ
る組織近傍が切開され、当該組織が露出させられてい
る。実験動物15には生命維持装置2が接続されてお
り、実験動物15の生命が実験中維持される。また、実
験動物15の体内には、螢光物質の定速注射装置3か螢
光ラベルした高分子物質、あるいは赤血球ゴーストが一
定の速度でその血管から注入されている。赤血球ゴース
トは浸透圧ショックによって細胞膜内の物質が除去さ
れ、細胞膜とそれに結合する構造体だけにされた赤血球
の細胞内および細胞表面に螢光物質を取り込ませたもの
である。螢光物質としては、例えばフルオレセインを含
んだフルオレセインイソチアネートが用いられる。フレ
オレセインイソチアネートを赤血球の細胞膜に結合させ
れば、細胞膜から螢光が放射されるようになる。
In the constant temperature bath 1, an experimental animal 15 for observing the living tissue is housed in a static state. The experimental animal shown is a mouse. The experimental animal 15 is incised in the vicinity of the tissue to be observed, and the tissue is exposed. The life support device 2 is connected to the experimental animal 15, and the life of the experimental animal 15 is maintained during the experiment. In the body of the experimental animal 15, a fluorescent substance constant-velocity injection device 3, a fluorescent-labeled polymer substance, or erythrocyte ghost is injected at a constant rate from the blood vessel. Erythrocyte ghost is a substance in which a substance in the cell membrane is removed by osmotic shock, and a fluorescent substance is incorporated into the cell surface and the cell surface of the erythrocyte which is formed into only the cell membrane and a structure that binds to the cell membrane. As the fluorescent substance, for example, fluorescein isothiocyanate containing fluorescein is used. When fluorescein isothiocyanate is bound to the cell membrane of red blood cells, fluorescence is emitted from the cell membrane.

実験動物15の露出させられた観察対象たる組織16
(例えば、胃の内壁)には、固定治治具17が当接させ
られ、これにより固定されている。固定治具17は筒状
に形成されており、これに対向して総合倍率200倍未
満の低倍率顕微鏡5が配設されている。低倍率顕微鏡5
には落射照明装置6が接続されており、落射照明装置6
から観察目的たる組織16に螢光物質を光らせるための
励起光が照射されるようになっている。
Exposed observation target tissue 16 of experimental animal 15
The fixing jig 17 is brought into contact with (for example, the inner wall of the stomach) and is fixed thereby. The fixing jig 17 is formed in a tubular shape, and the low-magnification microscope 5 having an overall magnification of less than 200 is arranged opposite to the fixing jig 17. Low magnification microscope 5
An epi-illumination device 6 is connected to the
Therefore, the tissue 16 to be observed is irradiated with excitation light for causing the fluorescent substance to shine.

そして、螢光物質から放たれる螢光は、低倍率顕微鏡5
を介して高感度カメラ7にて螢光像として撮像される。
高感度カメラ7によって撮影された映像は画像処理装置
8に送られ、ここで螢光像の光強度分布から血液分析が
解析され、赤血球ゴーストの螢光輝点の移動量から血液
速度が解析される。さらに、この映像は画像記憶装置1
0に送られ記憶されると共に、モニタ11に再生される
ようになっている。
The fluorescent light emitted from the fluorescent substance is the low-magnification microscope 5
A high-sensitivity camera 7 captures a fluorescence image through the.
The image captured by the high-sensitivity camera 7 is sent to the image processing device 8, where the blood analysis is analyzed from the light intensity distribution of the fluorescence image, and the blood velocity is analyzed from the movement amount of the fluorescent bright spot of the red blood cell ghost. . Furthermore, this image is displayed on the image storage device 1.
It is sent to 0 and stored, and is reproduced on the monitor 11.

第2図に、第1図に示した本発明による生体組織螢光観
察装置の主要部たる低倍率顕微鏡等を示す。
FIG. 2 shows a low-magnification microscope, which is the main part of the biological tissue fluorescence observation apparatus according to the present invention shown in FIG.

上述したように、低倍率顕微鏡5には落射照明装置6が
接続されている。落射照明装置6の光源たる励起ランプ
6aから実験動物体内の螢光物質を光らせるための励起
光が放たれると、励起光は集光レンズ6bにより集光さ
れた後、特定波長の励起光(例えば、490nm)のみ
がバンドパスフィルタ6cを透過して顕微鏡内に設けら
れたダイクロイックミラー5aにより反射され、対物レ
ンズ5bを介して固定治具17により固定された組織1
6に照射される。
As described above, the epi-illumination device 6 is connected to the low-magnification microscope 5. When the excitation light for illuminating the fluorescent substance in the experimental animal body is emitted from the excitation lamp 6a which is the light source of the epi-illumination device 6, the excitation light is condensed by the condenser lens 6b, and then the excitation light of the specific wavelength ( For example, only the tissue (490 nm) is transmitted through the bandpass filter 6c, reflected by the dichroic mirror 5a provided in the microscope, and fixed by the fixing jig 17 through the objective lens 5b.
6 is irradiated.

固定治具17は、顕微鏡の下端部に着脱自在に嵌合した
円錐状の筒18の下端部に固定されている。このよう
に、固定治具17を顕微鏡の下部に固定しておけば、顕
微鏡の焦点を固定治具17の下端部に固定しておいて固
定治具17を組織16に当接させるだけで、組織16と
の間の焦点距離調整を行わなくとも焦点距離が組織16
に合うこととなり、観察が容易となる。固定治具17は
筒18と共に顕微鏡の下端部から取り外すことができ、
観察対象に応じて形状の異なる固定治具に取り替えるこ
とができるようになっている。なお、環状に形成された
固定治具17の下端部、すなわち観察対象に当接する部
分には、透明なガラス板20が嵌め込まれて固定されて
いる。このガラス板20を設けることによって固定治具
17内側の組織16を平坦にすることができ、組織が盛
り上がることによって顕微鏡の焦点距離が固定治具17
内側の組織16全体にわたって合わなくなることを防止
できる。
The fixing jig 17 is fixed to the lower end of a conical cylinder 18 that is detachably fitted to the lower end of the microscope. In this way, if the fixing jig 17 is fixed to the lower part of the microscope, the focus of the microscope is fixed to the lower end of the fixing jig 17 and the fixing jig 17 is brought into contact with the tissue 16, Even if the focal length adjustment with the tissue 16 is not performed,
Therefore, the observation becomes easy. The fixing jig 17 can be removed from the lower end of the microscope together with the cylinder 18.
It can be replaced with a fixing jig having a different shape according to the observation target. A transparent glass plate 20 is fitted and fixed to the lower end of the fixing jig 17 formed in an annular shape, that is, the portion in contact with the observation target. By providing this glass plate 20, the tissue 16 inside the fixing jig 17 can be flattened, and the tissue can be raised so that the focal length of the microscope is fixed.
It is possible to prevent misalignment over the entire inner tissue 16.

励起光が照射された組織16には、上述したように螢光
物質の定速注射装置3から螢光物質が供給されており、
この螢光物質が励起光を受けて波長520nm以上の螢
光を放射する。螢光は対物レンズ5b、ダイクロイック
ミラー5aを透過した後、螢光のみを通すシャープカッ
トフィルタ5cおよびリレーレンズ5dを介して高感度
カメラ7に入射する。なお、ダイクロイックミラー5a
はバンドパスフィルタ6cを透過した特定波長(この実
施例では、490nm)の励起光のみを反射する。従っ
て、これよりも長波長の螢光はダイクロイックミラー5
aを透過する。
As described above, the fluorescent substance is supplied from the constant-velocity injection device 3 for the fluorescent substance to the tissue 16 irradiated with the excitation light,
This fluorescent substance receives excitation light and emits fluorescent light having a wavelength of 520 nm or more. The fluorescent light passes through the objective lens 5b and the dichroic mirror 5a, and then enters the high-sensitivity camera 7 through the sharp cut filter 5c and the relay lens 5d that pass only the fluorescent light. The dichroic mirror 5a
Reflects only the excitation light of a specific wavelength (490 nm in this embodiment) that has passed through the bandpass filter 6c. Therefore, the fluorescence having a longer wavelength than this is dichroic mirror 5.
a is transmitted.

そして、シャープカットフィルタ5cとリレーレンズ5
dの間に反射鏡5eを挿入すれば、顕微鏡を肉眼観察用
に切り替えることができ、接眼レンズ5fを介して螢光
像を肉眼で観察することも可能となっている。
Then, the sharp cut filter 5c and the relay lens 5
If the reflecting mirror 5e is inserted between d, the microscope can be switched to the naked eye observation, and it is also possible to visually observe the fluorescence image through the eyepiece 5f.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明による生体組織螢光観察装
置においては、従来困難であると考えられていた焦点装
置が長い低倍率顕微鏡による落射照明装置を用いての螢
光観察が可能となった。これにより、従来よりも広い視
野で生体組織からの螢光を拡大観察することができる。
As described above, in the biological tissue fluorescence observing apparatus according to the present invention, it becomes possible to perform fluorescence observation using the epi-illumination device with a long low-power microscope, which has long been considered to be a focusing device. . As a result, it is possible to magnify and observe the fluorescence from the living tissue with a wider field of view than before.

また、透明板により、観測面の凹凸を平坦化し、この凹
凸による螢光の乱反射を防止するとともに、自動的に観
測面全体に焦点を合わせることができ、鮮明な螢光像を
容易に且つ短時間に得ることが可能となる。これによっ
て、生体が生きている間に、また、生体の状態が変化し
ない間に鮮明像を得ることができる。
In addition, the transparent plate flattens the unevenness of the observation surface, prevents irregular reflection of fluorescence due to this unevenness, and automatically focuses on the entire observation surface, making it easy and short to obtain a clear fluorescence image. It will be possible to get on time. As a result, a clear image can be obtained while the living body is alive and while the state of the living body does not change.

さらに、光路は筒により包囲されているため、外界から
の迷光を遮断することができ、螢光画像の解析において
も迷光によるノイズは非常に少なく、鮮明な画像を高解
像度で得ることができる。
Further, since the optical path is surrounded by the cylinder, stray light from the outside world can be blocked, and the noise due to the stray light is very small even in the analysis of the fluorescence image, and a clear image can be obtained with high resolution.

また、従来のように、観察組織を生体内から無理やり引
っ張り出す必要がなくなると共に、透過像による観察で
はないので、動物体内の裸出させることが可能なほとん
ど全ての器官(例えば、脳、肝臓、胃、腎臓など)や組
織の表層の血液分布、血液状態の観察が可能となり、よ
り平常時に近い状態で生体観察ができる。
Further, unlike the conventional case, it is not necessary to forcibly pull out the observation tissue from the living body, and since it is not the observation by the transmission image, almost all organs that can be exposed in the animal body (for example, brain, liver, It is possible to observe the blood distribution and blood condition of the surface layer of the stomach, kidney, etc.) and tissues, and to observe the living body in a state closer to normal.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による生体組織螢光観察装置の概略構成
を示した図、第2図はその主要部を示した図である。 1……恒温槽、2……生命維持装置、3……螢光物質の
定速注射装置、5……低倍率顕微鏡、6……落射照明装
置、7……高感度カメラ、8……画像処理装置、10…
…画像記憶装置、11……モニタ、15……実験動物、
16……組織、17……固定治具、18……筒、20…
…ガラス板。
FIG. 1 is a diagram showing a schematic configuration of a biological tissue fluorescence observation apparatus according to the present invention, and FIG. 2 is a diagram showing a main part thereof. 1 ... Constant temperature bath, 2 ... Life support device, 3 ... Fluorescent substance constant velocity injection device, 5 ... Low magnification microscope, 6 ... Epi-illumination device, 7 ... High sensitivity camera, 8 ... Image Processor, 10 ...
… Image storage device, 11 …… Monitor, 15 …… Experimental animal,
16 ... Organization, 17 ... Fixing jig, 18 ... Cylinder, 20 ...
... glass plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】生体組織に螢光物質を与え、生体組織から
放射される螢光によりその生体組織の観察を行う生体組
織螢光観察装置であって、 生体組織を対物レンズを介して励起光により照明する落
射照明装置と、 前記生体組織から生成された螢光を前記対物レンズを介
して入射することにより螢光観察する低倍率顕微鏡と、 外面が前記低倍率顕微鏡の焦点面と一致するよう配置さ
れた透明板と、 前記対物レンズを保持する鏡筒に基端部が取りつけら
れ、前記対物レンズから前記透明板に至る光路を包囲す
る筒と、 前記筒の先端部に前記透明板を固定する固定治具とを備
えたことを特徴とする生体組織螢光観察装置。
1. A living tissue fluorescence observation apparatus for applying a fluorescent substance to living tissue and observing the living tissue with the fluorescence emitted from the living tissue, wherein the living tissue is excited through an objective lens. An epi-illumination device that illuminates with, a low-magnification microscope that observes fluorescence by injecting fluorescence generated from the biological tissue through the objective lens, and an outer surface that matches the focal plane of the low-magnification microscope. A transparent plate arranged, a barrel having a base end attached to a lens barrel holding the objective lens, surrounding the optical path from the objective lens to the transparent plate, and fixing the transparent plate to the tip end of the barrel. A biological tissue fluorescence observation apparatus comprising:
JP1254389A 1989-09-29 1989-09-29 Fluorescence observation device for biological tissue Expired - Fee Related JPH0614921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254389A JPH0614921B2 (en) 1989-09-29 1989-09-29 Fluorescence observation device for biological tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254389A JPH0614921B2 (en) 1989-09-29 1989-09-29 Fluorescence observation device for biological tissue

Publications (2)

Publication Number Publication Date
JPH03115958A JPH03115958A (en) 1991-05-16
JPH0614921B2 true JPH0614921B2 (en) 1994-03-02

Family

ID=17264300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254389A Expired - Fee Related JPH0614921B2 (en) 1989-09-29 1989-09-29 Fluorescence observation device for biological tissue

Country Status (1)

Country Link
JP (1) JPH0614921B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050182434A1 (en) 2000-08-11 2005-08-18 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
US6544794B1 (en) * 2000-05-12 2003-04-08 Shiseido Company, Ltd. Method for visual imaging of ion distribution in tissue
JP2005189315A (en) * 2003-12-24 2005-07-14 Olympus Corp Projection optical system and microscope adapter unit for connecting imaging apparatus using same
JP4704758B2 (en) * 2005-01-11 2011-06-22 オリンパス株式会社 Microscope observation system
JP4624725B2 (en) * 2004-05-28 2011-02-02 オリンパス株式会社 Microscope observation system and microscope observation method
JP2006079000A (en) * 2004-09-13 2006-03-23 Olympus Corp Optical scanning observation device
WO2006051811A1 (en) * 2004-11-10 2006-05-18 Olympus Corporation Biological body observation device
JP4652775B2 (en) * 2004-11-10 2011-03-16 オリンパス株式会社 Living body observation device
JP2006204505A (en) * 2005-01-27 2006-08-10 Olympus Corp Living body observation apparatus
US20060239921A1 (en) 2005-04-26 2006-10-26 Novadaq Technologies Inc. Real time vascular imaging during solid organ transplant
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
JP2007233066A (en) * 2006-03-01 2007-09-13 Olympus Corp Specimen fixing method, fixing device, and stage device
JP5084387B2 (en) * 2006-08-25 2012-11-28 オリンパス株式会社 Method of adjusting guide device for objective lens, adjusting device and adjusting screen
JP5530051B2 (en) * 2006-08-25 2014-06-25 オリンパス株式会社 Objective lens guide device and objective lens unit
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
ES2671710T3 (en) 2008-05-02 2018-06-08 Novadaq Technologies ULC Methods for the production and use of erythrocytes loaded with substances for the observation and treatment of microvascular hemodynamics
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
WO2013190391A2 (en) 2012-06-21 2013-12-27 Novadaq Technologies Inc. Quantification and analysis of angiography and perfusion
WO2016030994A1 (en) * 2014-08-27 2016-03-03 オリンパス株式会社 Stabilizer and microscope device
CN107209118B (en) 2014-09-29 2021-05-28 史赛克欧洲运营有限公司 Imaging of target fluorophores in biological materials in the presence of autofluorescence
EP3915467A1 (en) 2014-10-09 2021-12-01 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
WO2018145193A1 (en) 2017-02-10 2018-08-16 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
CN115753723B (en) * 2022-12-20 2024-02-13 浙江大学 Method for analyzing content and distribution of microplastic in marine spiny organisms

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252496A (en) * 1975-10-24 1977-04-27 Omron Tateisi Electronics Co Method of monitoring living body metabolic action and device therefor
JPS6150550A (en) * 1985-07-08 1986-03-12 オリンパス光学工業株式会社 Blood vessel microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252496A (en) * 1975-10-24 1977-04-27 Omron Tateisi Electronics Co Method of monitoring living body metabolic action and device therefor
JPS6150550A (en) * 1985-07-08 1986-03-12 オリンパス光学工業株式会社 Blood vessel microscope

Also Published As

Publication number Publication date
JPH03115958A (en) 1991-05-16

Similar Documents

Publication Publication Date Title
JPH0614921B2 (en) Fluorescence observation device for biological tissue
JP3579424B2 (en) Analyte detection by the duration of luminescence at steady state.
RU2503399C2 (en) System for carrying out quasielastic light scattering and/or scanning of fluorescent ligand in subject's eye
US8781559B2 (en) Method of evaluating metabolism of the eye
US11266313B2 (en) System and method for large field of view, single cell analysis
US8423104B2 (en) Haemozoin detection
JPH08299310A (en) Non-invasive blood analysis device and method therefor
JP2008522185A (en) Pulse illumination type imaging system and method
US20080179491A1 (en) Focus detection device and fluorescent observation device using the same
JPH09309845A (en) Near-infrared fluorescent tracer and fluorescent imaging
US6600943B1 (en) Method for detecting a specific portion of organism specimen, method for physiological measurement of organism specimen, apparatus for detecting a specific portion of organism specimen, and a device for holding optical fiber
JP2008521453A (en) End scope
KR102186327B1 (en) System for in vivo microscopic imaging of deep tissue, and microscopic imaging method
CN209847146U (en) Multi-modal imaging system
US7041951B2 (en) Method and apparatus for investigating layers of tissues in living animals using a microscope
JP3255373B2 (en) In vivo measuring device
US7207937B2 (en) Objective lens unit, in-vivo examination apparatus and adaptor
JP3628396B2 (en) Fundus observation method for animals and video camera for fundus observation
EP1620000B1 (en) Device and method for performing measurements of the chemical composition of the anterior eye
WO2021054425A1 (en) Blood serum specimen inspection device, and method for inspecting blood serum specimen
US20210404965A1 (en) Method and device for optically examining a biological sample
JPH06217939A (en) Measuring device for ophthalmology
JP2000126114A5 (en)
WO2018225382A1 (en) Cell state analysis device and analysis method
JP2003190096A (en) Ophthalmic equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees