JPH0614908A - Psychological state measuring device - Google Patents

Psychological state measuring device

Info

Publication number
JPH0614908A
JPH0614908A JP4174287A JP17428792A JPH0614908A JP H0614908 A JPH0614908 A JP H0614908A JP 4174287 A JP4174287 A JP 4174287A JP 17428792 A JP17428792 A JP 17428792A JP H0614908 A JPH0614908 A JP H0614908A
Authority
JP
Japan
Prior art keywords
psychological state
data
light
oxygen concentration
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4174287A
Other languages
Japanese (ja)
Other versions
JP3142376B2 (en
Inventor
Takehiro Kurono
剛弘 黒野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP04174287A priority Critical patent/JP3142376B2/en
Publication of JPH0614908A publication Critical patent/JPH0614908A/en
Application granted granted Critical
Publication of JP3142376B2 publication Critical patent/JP3142376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To provide a psychological state measuring device for judging the psychological state of a testee by emitting a light into the body of the testee, and measuring and analyzing the time change of oxygen concentration in the body on the basis of the time change of the transmitted light. CONSTITUTION:A multidimensional oxygen concentration measuring part 1 has a light emitting part 2 and light receiving part 3 having a plurality of measuring channels and emitting and receiving the light of a specified wavelength, a signal processing part 4 and a memory 6. It emits a light into the body of a testee and measures the time change of oxygen concentration in the body on the basis of the time change of the transmitted light. A Fourier transforming part 7 conducts the Fourier transforming processing of the time change of oxygen concentration, thereby determining the spectrum distribution to frequency, which is then stored in a memory part 8. Successively, a judging part 9 extracts the characteristic on the basis of the envelop of the spectrum distribution and compares the characteristic-extracted data with a correlation data determined on the basis of the envelop of the spectrum distribution of oxygen concentration change to a preset psychological state, thereby judging the psychological state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部刺激や外部環境に
対する人間の心理状態を定量的に特徴抽出して、その心
理状態を判定する心理状態測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a psychological state measuring apparatus for quantitatively extracting a human psychological state with respect to an external stimulus or an external environment and determining the psychological state.

【0002】[0002]

【従来の技術】従来、人体の各部位について生理的計測
を行い、これらの計測データに基いて病気治療等のため
の医学的診断を行う技術が知られている(例えば、特開
平2−196334号公報参照)。
2. Description of the Related Art Conventionally, there is known a technique of performing physiological measurement on each part of the human body and performing medical diagnosis for treating diseases based on the measured data (for example, Japanese Patent Laid-Open No. 2-196334). (See the official gazette).

【0003】又、人間の肉体を物理的にのみ測定するだ
けでなく、心理状態を定量的に解析して、医学的治療に
役立てる等の試みがなされるようになった。
In addition to the physical measurement of the human body only, the psychological state is quantitatively analyzed to make a useful medical treatment.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来か
らこのような要求が高まっているにも関わらず、人間の
抽象的な心理状態を定量的に解析することは極めて困難
であり、有効な手段が開発されていなかった。
However, in spite of the increasing demands from the past, it is extremely difficult to quantitatively analyze the abstract psychological state of human beings, and an effective means is not available. It was not developed.

【0005】[0005]

【課題を解決するための手段】本発明は、このような課
題に鑑みて成されたものであり、鋭意研究の結果、人間
の心理状態と、体内のヘモグロビンHbO2 、Hbの濃
度変化等から求まる体内酸素濃度との間に一定の相関関
係があることに着目し、この酸素濃度の変化特性に基い
て人間の心理状態を定量的に特徴抽出すると共にその特
徴抽出結果から心理状態を判定するようにしたものであ
る。
The present invention has been made in view of the above problems, and as a result of earnest research, it has been found that the psychological state of human beings and changes in the concentrations of hemoglobin HbO 2 and Hb in the body. Focusing on the fact that there is a certain correlation with the obtained oxygen concentration in the body, the psychological state of human beings is quantitatively extracted based on the change characteristics of the oxygen concentration, and the psychological state is determined from the result of the characteristic extraction. It was done like this.

【0006】即ち、被検者の体内に光を照射したときの
透過光の時間的変化を計測すると共に該透過光に基いて
体内の酸素濃度の時間的変化を計測する計測手段と、該
酸素濃度の時間的変化をフーリエ変換処理することによ
り周波数に対するスペクトラム分布を求める変換手段
と、該スペクトラム分布の包絡線に基いて特徴を抽出す
ると共に、該特徴抽出されたデータを、予め設定された
心理状態における体内酸素濃度変化のスペクトラム分布
の包絡線に基いて求められた相関データと比較すること
によって心理状態を判定する解析手段を備える構成とし
た。
That is, the measuring means for measuring the temporal change of the transmitted light when the light is radiated into the body of the subject, and the temporal change of the oxygen concentration in the body based on the transmitted light, and the oxygen measuring means. A transforming means for obtaining a spectrum distribution with respect to a frequency by performing a Fourier transform process on the temporal change of the density, and a feature is extracted based on the envelope of the spectrum distribution, and the feature-extracted data is set to a preset psychology. The analysis means for judging the psychological state is provided by comparing with the correlation data obtained based on the envelope curve of the spectrum distribution of the oxygen concentration change in the body in the state.

【0007】[0007]

【作用】かかる構成の心理状態測定装置によれば、上記
計測手段が被検者の体内酸素濃度の時間的変化を計測
し、変換手段がその濃度変化を周波数軸上におけるスペ
クトラム分布に変換し、解析手段がそのスペクトラム分
布から特徴抽出を行って所定の心理状態を判定する。こ
こで、解析手段は、予め各種の外部刺激等に対する被検
者の心理状態における体内酸素濃度の変化のスペクトラ
ム分布の包絡線に基いて実験的に求められた相関データ
を有しており、特定の被検者を診断等した際に求まる上
記特徴抽出データと相関データを比較することによっ
て、特定の被検者の心理状態を判定する。
According to the psychological state measuring apparatus having such a configuration, the measuring means measures a temporal change in the body oxygen concentration of the subject, and the converting means converts the concentration change into a spectrum distribution on the frequency axis, The analysis means performs feature extraction from the spectrum distribution to determine a predetermined psychological state. Here, the analysis means has correlation data that has been experimentally obtained in advance based on the envelope of the spectrum distribution of changes in the oxygen concentration in the body in the psychological state of the subject to various external stimuli, etc. The psychological state of a specific subject is determined by comparing the above-mentioned feature extraction data obtained when diagnosing the subject and the correlation data.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面と共に説明す
る。まず図1に基いて装置の構成を述べると、多次元酸
素濃度計測部1は複数の測定チャネルを有し、夫々の測
定チャネルには、特定波長の光を発光する発光部2、光
を受光する受光部3、信号処理部4及び記憶部5が備え
られている。尚、図では1つの測定チャネルを代表して
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, the configuration of the apparatus will be described with reference to FIG. 1. The multidimensional oxygen concentration measurement unit 1 has a plurality of measurement channels, and each measurement channel has a light emitting unit 2 that emits light of a specific wavelength and a light receiving unit that receives light. The light receiving unit 3, the signal processing unit 4, and the storage unit 5 are provided. In the figure, one measurement channel is shown as a representative.

【0009】又、各測定チャネルの発光部2には、発光
された光を伝送するための光伝送路を有する照射用光プ
ローブが接続され、各測定チャネルの受光部3には、受
光された光を伝送するための光伝送路を有する受光用光
プローブが接続されるようになっている。尚、図中に
は、複数の測定チャネルに接続される複数の照射用光プ
ローブと受光用光プローブをまとめて符号6で示してい
る。
An irradiation optical probe having an optical transmission path for transmitting the emitted light is connected to the light emitting section 2 of each measurement channel, and the light receiving section 3 of each measurement channel receives the light. A light-receiving optical probe having an optical transmission line for transmitting light is connected. In the figure, a plurality of irradiation optical probes and light reception optical probes connected to a plurality of measurement channels are collectively indicated by reference numeral 6.

【0010】そして、各測定チャネルの照射用光プロー
ブの先端と受光用光プローブの先端を、例えば、被検者
の思考に係わる部位(例えば、前頭葉)に近い額や頭部
に直接付着させて測定を行うと、照射用光プローブの先
端から前頭葉等に向けて光が照射され、人体(前頭葉)
内を透過してきた透過光が受光用光プローブを介して受
光部3に入力される。又、図示するように、複数の測定
チャネルの照射用光プローブと受光用光プローブを同時
に適用すると、多次元の測定を行うことができる。
Then, the tip of the irradiation optical probe and the tip of the light receiving optical probe of each measurement channel are directly attached to, for example, the forehead or the head close to the part (for example, the frontal lobe) related to the subject's thought (for example, frontal lobe). When measurement is performed, light is emitted from the tip of the irradiation optical probe toward the frontal lobe, etc., and the human body (frontal lobe)
The transmitted light transmitted through the inside is input to the light receiving unit 3 via the light receiving optical probe. Further, as shown in the figure, multi-dimensional measurement can be performed by simultaneously applying the irradiation optical probe and the light receiving optical probe of a plurality of measurement channels.

【0011】信号処理部4は、受光部3で測定された光
の3波長成分の各減衰量に基いて人体血液中のヘモグロ
ビンHbO2 とHbの濃度を測定し、夫々の濃度の時間
的変化と、夫々の成分の和[HbO2 +Hb]の時間的
変化とをデジタルデータにA/D変換して、記憶部5に
記憶させる。尚、このヘモグロビンHbO2 とHbの濃
度が体内酸素の濃度に対応しており、光の3波長成分の
各減衰量に基いて血液中のヘモグロビンHbO2 とHb
の濃度を測定する原理は、浜松ホトニクス(株)社製の
製品(型番NIR0−500)と同様の原理が適用され
ている。
The signal processing unit 4 measures the concentrations of hemoglobin HbO 2 and Hb in human blood based on the respective attenuation amounts of the three wavelength components of the light measured by the light receiving unit 3, and changes the respective concentrations with time. And the temporal change of the sum [HbO 2 + Hb] of the respective components are A / D converted into digital data and stored in the storage unit 5. The concentrations of the hemoglobins HbO 2 and Hb correspond to the concentration of oxygen in the body, and the hemoglobins HbO 2 and Hb in blood are based on the respective attenuation amounts of the three wavelength components of light.
The same principle as that of the product (model number NIR0-500) manufactured by Hamamatsu Photonics KK is applied to the principle of measuring the concentration.

【0012】フーリエ変換部7は、記憶部5に一旦記憶
されたヘモグロビンHbO2 のデータ{以下、DA(t)
とする}と、ヘモグロビンHbのデータ{以下、DB
(t) とする}と、これらの成分の和のデータ{以下、D
C(t) とする}の夫々について高速デジタルフーリエ変
換(DFFT)を行い、データDA(t) のフーリエ変換
データFA (f) と、データDB(t) のフーリエ変換デー
タFB (f) と、データDC(t) のフーリエ変換データF
C (f) を記憶部8に記憶させる。
The Fourier transform unit 7 stores the data of the hemoglobin HbO 2 temporarily stored in the storage unit 5 (hereinafter, DA (t)).
And the data of hemoglobin Hb {hereinafter, DB
(t)} and the sum data of these components {hereinafter, D
C for each high-speed digital Fourier transform of a (t)} (DFFT) performs a Fourier transform data F A data DA (t) (f), the Fourier transform data F B data DB (t) (f) And the Fourier transform data F of the data DC (t)
C (f) is stored in the storage unit 8.

【0013】解析部9は、記憶部8に記憶されたフーリ
エ変換データFA (f) ,FB (f) ,FC (f) の夫々のス
ペクトラム包絡線を求め、この包絡線の山部と谷部の高
さ及びこれらの部分の周波数範囲を特徴データとして抽
出する。更に、解析部9には、図2に示すように、不特
定多数の被検者に対して各種の外部刺激等を与えたとき
の心理状態の統計的データS1〜Snと、該外部刺激等
に対して得られる上記ヘモグロビンHbO2 とHbの濃
度変化についてのスペクトラム包絡線の山部と谷部及び
これらの部分の周波数範囲を統計的に処理して得られる
特徴データX1〜Xnとの相関データをルックアップテ
ーブル等の形態で予め記憶するデータベースが内蔵され
ている。
The analysis unit 9 obtains the spectrum envelope of each of the Fourier transform data F A (f), F B (f), and F C (f) stored in the storage unit 8, and the peak portion of this envelope line. And the heights of the valleys and the frequency ranges of these portions are extracted as feature data. Further, as shown in FIG. 2, the analysis unit 9 includes statistical data S1 to Sn of psychological states when various external stimuli are given to an unspecified number of subjects, and the external stimuli and the like. Correlation data with the characteristic data X1 to Xn obtained by statistically processing the peaks and valleys of the spectrum envelope and the frequency ranges of these portions for the concentration changes of the hemoglobins HbO 2 and Hb obtained for A built-in database is stored in advance in the form of a lookup table or the like.

【0014】そして、解析部9は、実際の検診等で特定
の被検者を測定したときに得られるスペクトラム包絡線
の特徴データを該データベースの相関データと比較照合
することによって、外部刺激等の種類及び被検者の心理
状態を判定してその判定結果を出力する。
Then, the analysis unit 9 compares the characteristic data of the spectrum envelope obtained when the specific subject is measured in the actual examination or the like with the correlation data of the database to check the external stimulus or the like. The type and the psychological state of the subject are determined and the determination result is output.

【0015】制御部10は、上記データベースに格納さ
れている典型的な相関データだけでなく、他の判定用パ
ラメータを操作者がマニュアル操作で入力することがで
きるようになっている。即ち、解析部9のデータベース
には不特定多数の被検者を対象として得られた相関デー
タが記憶されているが、これらの相関データは統計処理
された典型的なデータであるので、実際の被検者の個人
差等に応じて、判定基準である相関データの各種パラメ
ータを微調整或いは変更する等の処理を行うことができ
るようになっている。又、相関データの各種パラメータ
を微調整或いは変更する等の処理を行うことができるこ
とから、この制御部9を操作することによって、特定の
被検者における相関データを新規に作成したり、別の不
特定多数の被検者における相関データを新規に作成した
り、更に、操作者が個人的に心理学的・医学的実験を行
う等の処理を支援することができるようになっている。
The control unit 10 allows the operator to manually input not only the typical correlation data stored in the database but also other determination parameters. That is, the database of the analysis unit 9 stores the correlation data obtained for an unspecified number of subjects, but since these correlation data are typical data statistically processed, the actual It is possible to perform processing such as fine adjustment or change of various parameters of the correlation data, which is the criterion, according to the individual difference of the subject. Further, since it is possible to perform processing such as fine adjustment or change of various parameters of the correlation data, by operating the control unit 9, it is possible to newly create correlation data for a specific subject or to perform another processing. Correlation data for a large number of unspecified subjects can be newly created, and further, the operator can support processing such as personal psychological and medical experiments.

【0016】次に、かかる構成の心理状態測定装置の作
用を説明する。まず、判別部9内にデータベース化され
ている相関データの各種パラメータを説明する。データ
ベースは、各種研究機関等において、不特定多数の被検
者に対して図1に示す本発明の心理状態測定装置を適用
した実験を行い、その統計的処理によって得られる典型
的な相関データが半導体読出し専用メモリ(ROM)
や、磁気記録媒体、磁気ディスク等の各種記録媒体に記
憶され、各ユーザーが所有している夫々の心理状態測定
装置の解析部9にこれらの各種記録媒体を装着すること
によって判定動作が可能となる。又、上述したように、
ユーザーが制御部10を操作することによって個人的に
データベースを作成することにより、判定動作が可能と
なる。尚、いずれのデータベース作成手順も原理は以下
に説明する通りである。
Next, the operation of the psychological state measuring apparatus having such a configuration will be described. First, various parameters of the correlation data stored in the discrimination unit 9 as a database will be described. As a database, in various research institutes, an experiment in which the psychological state measuring apparatus of the present invention shown in FIG. 1 is applied to an unspecified number of subjects, and typical correlation data obtained by statistical processing thereof is obtained. Semiconductor read-only memory (ROM)
Alternatively, a determination operation can be performed by mounting these various recording media on the analysis unit 9 of each psychological state measuring device stored in various recording media such as a magnetic recording medium and a magnetic disk and owned by each user. Become. Also, as mentioned above,
When the user operates the control unit 10 to personally create a database, the determination operation becomes possible. The principle of any database creation procedure is as described below.

【0017】まず、図1に示すように、相関データを作
成するための不特定多数の個々の被検者に照射用光プロ
ーブと受光用光プローブを装着させ、様々な外部刺激を
与えた状態で測定を行う。例えば、クレペリン検査の計
算を行わせる等の、外部刺激とそれに対する人間の心理
状態との相関関係が心理学的・医学的に実証されている
各種の検査方法が適用される。
First, as shown in FIG. 1, a state in which a large number of unspecified individual subjects for creating correlation data are fitted with irradiation light probes and light reception light probes and various external stimuli are applied thereto. Measure with. For example, various inspection methods such as calculation of the Kraepelin test, in which the correlation between the external stimulus and the psychological state of the human being against it is psychologically and medically verified, are applied.

【0018】このような外部刺激等を被検者に与えて測
定を行うと、照射用光プローブを介して被検者に光が照
射され、被検者の前頭葉等を透過してきた透過光が受光
用光プローブを介して受光部3に入力され、信号処理部
4がこの透過光からヘモグロビンHbO2 とHbの時間
的濃度変化、及びこれらの和[HbO2 +Hb]のデー
タを記憶部5に格納する。
When such an external stimulus or the like is given to the subject for measurement, the subject is irradiated with light through the irradiation optical probe, and the transmitted light transmitted through the frontal lobe of the subject is changed. The signal processing unit 4 inputs to the light receiving unit 3 via the light receiving optical probe, and the signal processing unit 4 stores, in the storage unit 5, data on the temporal concentration changes of the hemoglobins HbO 2 and Hb and the sum [HbO 2 + Hb] of these. Store.

【0019】図3(a)〜(e)は、ある被検者に対し
て、比較的短時間に5回のクレペリン検査の計算を行わ
せた場合のヘモグロビンHbO2 の時間的濃度変化の一
例を示し、横軸は計測時間(秒)、縦軸は濃度(μmo
l/l)である。そして、測定開始時点t1から夫々の
図(a)〜(e)の時点t2,t3,t4,t5,t6
までの期間に上記クレペリン検査の計算を行わせ、これ
らの時点t2,t3,t4,t5,t6以後は計算を中
止させると、ヘモグロビンHbO2 の濃度は、計算を行
っている間は増加し、計算を行わないと減少するという
結果が得られる。即ち、緊張状態或いはストレスを受け
た心理状態ではヘモグロビンHbO2 の濃度が増加し、
逆にリラックスした状態ではヘモグロビンHbO2 の濃
度が減少するという相関関係がこのような実験結果から
確認され、このような相関関係を示すデータが記憶部5
に格納されることとなる。
FIGS. 3 (a) to 3 (e) show an example of the temporal concentration change of hemoglobin HbO 2 when a certain subject is made to calculate the Kraepelin test five times in a relatively short time. The horizontal axis indicates the measurement time (seconds), and the vertical axis indicates the concentration (μmo
1 / l). Then, from the measurement start time point t1, time points t2, t3, t4, t5, t6 in each of the figures (a) to (e).
If the calculation of the Kraepelin test is performed during the period up to and the calculation is stopped after these time points t2, t3, t4, t5, and t6, the concentration of hemoglobin HbO 2 increases during the calculation, The result is that if no calculation is performed, it will decrease. That is, the concentration of hemoglobin HbO 2 increases in a stressed or stressed psychological state,
On the contrary, a correlation that the concentration of hemoglobin HbO 2 decreases in a relaxed state was confirmed from such experimental results, and data indicating such a correlation is stored in the storage unit 5.
Will be stored in.

【0020】又、他の種類の外部刺激を与えて測定した
場合を図4に示すと、これは、長時間にわたって連続し
て上記計算を行わせた場合の測定例であり、同図(a)
はヘモグロビンHbO2 の濃度変化、同図(b)はヘモ
グロビンHbの濃度変化、同図(c)はこれらの和[H
bO2 +Hb]の変化を示し、時点t1〜t2では緊張
状態でクレペリン検査の計算を行わせ、時点t2〜t3
ではリラックスした状態で計算を行わせ、更に、時点t
3〜t4では再び緊張状態でクレペリン検査の計算を行
わせた場合を示す。尚、図中の「△」印は、40秒毎に
ほぼ同数の計算を行わせたことを示す。この図4から明
らかなことは、所定時間毎の計算量に関係なく、緊張状
態ではヘモグロビンHbO2 の濃度が増加するのに対し
て、ヘモグロビンHbの濃度が暫減し、リラックスした
状態ではヘモグロビンHbO2 の濃度が減少し、更に、
前頭葉内のヘモグロビンの総量[HbO2 +Hb]は、
緊張状態では増加し、リラックスした状態では減少する
という相関関係を確認することができる。
Further, FIG. 4 shows a case where measurement is performed by applying another kind of external stimulus. This is an example of measurement when the above calculation is continuously performed for a long time. )
Indicates changes in the concentration of hemoglobin HbO 2 , changes in the concentration of hemoglobin Hb in the same figure (b), and sum of these [H
bO 2 + Hb], showing the change of the Kraepelin test in the tension state at the time points t1 to t2.
Then, let the calculation be performed in a relaxed state, and at the time t
At 3 to t4, the case where the calculation of the Kraepelin test is performed again in the tension state is shown. Incidentally, the mark “Δ” in the figure indicates that almost the same number of calculations were performed every 40 seconds. It is clear from FIG. 4 that the concentration of hemoglobin HbO 2 increases in the tense state, while the concentration of hemoglobin Hb decreases temporarily and the hemoglobin HbO 2 is relaxed in a relaxed state regardless of the amount of calculation for each predetermined time. The concentration of 2 decreases, and further
The total amount of hemoglobin [HbO 2 + Hb] in the frontal lobe is
It can be seen that there is a correlation that increases in tension and decreases in relaxation.

【0021】更に、図5も同様に、長時間にわたって測
定し、同図(a)はヘモグロビンHbO2 の濃度変化、
同図(b)はヘモグロビンHbの濃度変化、同図(c)
はこれらの和[HbO2 +Hb]の変化を示した場合で
あり、期間τaでは緊張状態で40秒毎にほぼ同数のク
レペリン検査の計算を行わせ、期間τbでは計算を中止
させてリラックスさせた場合を示す。この図5から明ら
かなことは、緊張して計算作業を行わせるとヘモグロビ
ンHbO2 とHbの濃度の振幅変化が小さくなり、逆に
何もしないリラックスした状態では振幅変化が大きくな
る。
Further, similarly in FIG. 5, the measurement was carried out for a long time, and FIG. 5 (a) shows a change in the concentration of hemoglobin HbO 2 .
The figure (b) is a change in the concentration of hemoglobin Hb, and the figure (c).
Shows the change in these sums [HbO 2 + Hb]. In the period τa, almost the same number of Kraepelin tests were calculated every 40 seconds in the tension state, and in the period τb, the calculation was stopped to relax. Indicate the case. It is clear from FIG. 5 that the amplitude change in the concentrations of the hemoglobins HbO 2 and Hb becomes small when the calculation work is performed with tension, and conversely, the amplitude change becomes large in a relaxed state where nothing is done.

【0022】更に、図6は他の思考作業として、英文和
訳を行わせたときの測定結果を示し、同図(a)はヘモ
グロビンHbO2 の濃度変化、同図(b)はヘモグロビ
ンHbの濃度変化、同図(c)はこれらの和[HbO2
+Hb]の変化を示し、期間τaでは約2分間の短時間
の計算作業をさせ、期間τbでは約1分30秒の休息を
とらせ、期間τcでは約9分間の長時間の計算作業を行
わせた場合を示す。この図6から明らかなことは、期間
τaの比較的短期間の作業ではヘモグロビンの濃度の振
幅変化が小さく、休息の期間τbではこの振幅変化が小
さくなり、期間τc中の前半では期間τaの場合と同様
に濃度の振幅変化が小さいが、後半では振幅変化が大き
くなり、作業量の変化に応じて心理状態も変化すること
が確認できる。
Further, FIG. 6 shows the measurement results when an English-Japanese translation was performed as another thinking task. The figure (a) shows the concentration change of hemoglobin HbO 2 , and the figure (b) shows the concentration of hemoglobin Hb. The change in the figure (c) is the sum of these [HbO 2
+ Hb], a calculation work of about 2 minutes is performed in the period τa, a rest of about 1 minute 30 seconds is taken in the period τb, and a calculation work of about 9 minutes is performed in the period τc. The following shows the case where they are combined. It is clear from FIG. 6 that the amplitude change of the hemoglobin concentration is small in the work of the relatively short period of the period τa, the amplitude change is small in the rest period τb, and the period τa in the first half of the period τc. It can be confirmed that the change in the amplitude of the concentration is small, but the change in the amplitude is large in the latter half, and the psychological state changes according to the change in the work amount.

【0023】このように、各種の外部刺激を与えて、夫
々の条件下で図1の多次元酸素濃度計測装置1による測
定を行うことによって、例えば、図7(a)の期間τa
に示すような緊張状態でのヘモグロビンHbO2 のデー
タDA(t) と、図7(c)の期間τcに示すような精神
的疲労を感じた状態でのヘモグロビンHbO2 のデータ
DA(t) と、図7(e)の期間τeに示すようなリラッ
クスした状態でのヘモグロビンHbO2 のデータDA
(t) と、上記の他のデータDB(t) ,DC(t) が記憶部
5に蓄えられることとなる。
As described above, various kinds of external stimuli are applied and the measurement is performed by the multidimensional oxygen concentration measuring apparatus 1 of FIG. 1 under the respective conditions. For example, the period τa of FIG.
The data DA (t) of hemoglobin HbO 2 in a tension state as shown in Fig. 7 and the data DA (t) of hemoglobin HbO 2 in a state of feeling mental fatigue as shown by a period τc in Fig. 7C. , Data DA of hemoglobin HbO 2 in a relaxed state as shown in period τe of FIG. 7 (e)
(t) and the other data DB (t) and DC (t) described above are stored in the storage unit 5.

【0024】フーリエ変換部7は、記憶部5に蓄えられ
た各種条件に対応するヘモグロビンHbO2 のデータD
A(t) と、ヘモグロビンHbのデータDB(t) と、和の
データDC(t) の夫々について高速デジタルフーリエ変
換を行い、データDA(t) のフーリエ変換データF
A (f) と、データDB(t) のフーリエ変換データF
B (f)と、データDC(t) のフーリエ変換データFC (f)
を発生し、記憶部8に格納させる。即ち、図7(a)
のデータDA(t) がフーリエ変換されると、図7(b)
に示すように低周波数でスペクトラムの山部(ピーク)
が発生し、図7(c)のデータDA(t) がフーリエ変換
されると、図7(d)に示すように低周波数と高周波数
でスペクトラムの山部が2個発生し、図7(e)のデー
タDA(t) がフーリエ変換されると、図7(f)に示す
ように何個かのスペクトラムの山部が発生するようにな
る。
The Fourier transform section 7 is a data D of the hemoglobin HbO 2 corresponding to various conditions stored in the storage section 5.
A (t), the data DB (t) of the hemoglobin Hb, and the sum data DC (t) are each subjected to a fast digital Fourier transform, and the Fourier transform data F of the data DA (t) is obtained.
A (f) and Fourier transform data F of the data DB (t)
B (f) and Fourier transform data F C (f) of data DC (t)
Is generated and stored in the storage unit 8. That is, FIG. 7 (a)
When the data DA (t) of FIG.
As shown in, the peak of the spectrum at low frequency (peak)
When the data DA (t) of FIG. 7 (c) is Fourier transformed, two peaks of the spectrum are generated at the low frequency and the high frequency as shown in FIG. 7 (d). When the data DA (t) of e) is Fourier-transformed, some peaks of the spectrum are generated as shown in FIG. 7 (f).

【0025】解析部9は、図7(b)(d)(f)に示
すようなスペクトラム分布の包絡線を求め、山部の高さ
1 〜H6 と周波数範囲W1 〜W6 等を夫々の外部刺激
毎の特徴データとして抽出する。そして、不特定多数の
被検者における多数の解析結果を統計的に処理すること
により、外部刺激及び被検者の心理状態に対する典型的
な特徴データを作成し、これらを相関データとするデー
タベースを作成する。そして、このように作成された相
関データのデータベースが各ユーザーが所有する心理状
態測定装置の解析部9に装着される。
The analysis unit 9 obtains the envelope of the spectrum distribution as shown in FIGS. 7B, 7D and 7F, and the heights H 1 to H 6 of the peaks and the frequency ranges W 1 to W 6 etc. Are extracted as feature data for each external stimulus. Then, by statistically processing a large number of analysis results of a large number of unspecified subjects, typical characteristic data for external stimuli and the psychological state of the subjects are created, and a database that uses these as correlation data is created. create. Then, the database of the correlation data created in this way is attached to the analysis unit 9 of the psychological state measuring device owned by each user.

【0026】次に、各ユーザーが所有する心理状態測定
装置によって特定の被検者を検診等する場合の動作を説
明する。尚、この場合は被検者に外部刺激等を与えるこ
となく測定を行うことによって現在の心理状態を判定す
る。
Next, the operation when a specific subject is examined by the psychological state measuring device owned by each user will be described. In this case, the current psychological state is determined by measuring the subject without applying external stimulus or the like.

【0027】測定を開始すると、上記同様に、照謝用光
プローブを介して被検者に光が照謝され、その透過光が
受光用光プローブを介して測定され、信号処理部4がヘ
モグロビンHbO2 とHbの時間的濃度変化、及び総量
[HbO2 +Hb]の時間的変化のデータが記憶部5に
保持される。そして、フーリエ変換部7がこれらのデー
タについてフーリエ変換して記憶部8に格納する。更
に、解析部9が記憶部8のフーリエ変換データのスペク
トラム包絡線を求めて山部と周波数範囲の特徴データを
抽出し、この特徴データをデータベースの相関データと
比較照合し、最も近似した相関データから被検者の心理
状態を判定し、その判定結果を出力する。
When the measurement is started, light is illuminated on the subject via the illumination optical probe, the transmitted light is measured via the light receiving optical probe, and the signal processing unit 4 causes the hemoglobin HbO 2 to be measured. The data of the temporal concentration change of Hb and Hb and the temporal change of the total amount [HbO 2 + Hb] are held in the storage unit 5. Then, the Fourier transform unit 7 Fourier transforms these data and stores them in the storage unit 8. Further, the analysis unit 9 obtains the spectrum envelope of the Fourier transform data in the storage unit 8 to extract the characteristic data of the mountain portion and the frequency range, compares and collates the characteristic data with the correlation data of the database, and the closest correlation data. Then, the psychological state of the subject is determined, and the determination result is output.

【0028】又、被検者の個人差等によって確定的な判
定結果が得られないような場合に、操作者が、制御部1
0からデータベースの相関データとは異なる各種の特徴
パラメータのデータを入力すると、最も近似した特徴パ
ラメータに対応した判定結果を出力する。
When a definite determination result cannot be obtained due to individual differences among the examinees, the operator controls the control unit 1
When data of various characteristic parameters different from the correlation data of the database is input from 0, the determination result corresponding to the most approximated characteristic parameter is output.

【0029】このように、この実施例によれば、被検者
のヘモグロビン濃度(即ち、体内酸素濃度)の時間的変
化を計測し、その濃度変化を周波数軸上におけるスペク
トラム分布に変換し、そのスペクトラム分布から特徴抽
出を行って、予め実験的に求められた各種の外部刺激等
に対する各スペクトラム分布の相関データとを比較参照
することによって心理状態を判定するようにしたので、
人間の心理状態を容易に解析することが可能となる。こ
の結果、工場などで作業している作業員の心理状態を適
宜計測して作業状況を把握し、精神的な疲労度に応じて
休息を取らせたり、作業内容の改善を行う等の安全性確
保を目的に使用したり、医療診断に適用する等、広範囲
の分野での適用が可能となる。
As described above, according to this embodiment, the temporal change in the hemoglobin concentration (that is, the oxygen concentration in the body) of the subject is measured, the concentration change is converted into the spectrum distribution on the frequency axis, and By extracting features from the spectrum distribution and comparing and referring to the correlation data of each spectrum distribution with respect to various external stimuli that were experimentally obtained in advance, the psychological state was determined.
It becomes possible to easily analyze the human psychological state. As a result, it is safe to measure the psychological state of workers who are working in factories and to grasp the work status, to have a rest depending on the degree of mental fatigue, and to improve the work content. It can be used in a wide range of fields such as use for securing purposes and medical diagnosis.

【0030】尚、この実施例では、被検者の測定部位を
頭部とした場合を述べたが、これに限定されるものでは
なく、他の部位に適用してもよい。
In this embodiment, the case where the measurement site of the subject is the head has been described, but the present invention is not limited to this, and the measurement site may be applied to other sites.

【0031】又、この実施例で示した被検者に対する外
部刺激の種類は一例であって、これらに限定されるもの
ではなく、心理学的・医学的に実証されているものを適
用することが可能である。
Further, the types of external stimuli to the subject shown in this embodiment are merely examples, and the types are not limited to these, and those that are psychologically and medically proven should be applied. Is possible.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、被
検者の体内酸素濃度の時間的変化を計測し、その濃度変
化を周波数軸上におけるスペクトラム分布に変換し、更
に、予め実験的に求められた各種の外部刺激等に対する
被検者の心理状態における体内酸素濃度の変化のスペク
トラム分布の包絡線に基いて求められた相関データと特
定の被検者を診断等した際に求まる上記特徴抽出データ
とを比較することによって、特定の被検者の心理状態を
判定するようにしたので、簡易に人間の心理状態を測定
することが可能となる。
As described above, according to the present invention, the time-dependent change in the oxygen concentration in the body of a subject is measured, and the change in the concentration is converted into a spectrum distribution on the frequency axis. Correlation data obtained based on the envelope of the spectrum distribution of changes in the oxygen concentration in the body in the psychological state of the subject to various external stimuli obtained in Since the psychological state of the specific subject is determined by comparing with the feature extraction data, it becomes possible to easily measure the human psychological state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による心理状態測定装置の概
略構成を示す構成図である。
FIG. 1 is a configuration diagram showing a schematic configuration of a psychological state measuring apparatus according to an embodiment of the present invention.

【図2】解析部に予め備えられる相関データのデータ形
式を示す説明図である。
FIG. 2 is an explanatory diagram showing a data format of correlation data provided in advance in an analysis unit.

【図3】人間の心理状態と体内酸素濃度との間に相関関
係があることを示す実験データ例を示す図である。
FIG. 3 is a diagram showing an example of experimental data showing that there is a correlation between a human psychological state and a body oxygen concentration.

【図4】人間の心理状態と体内酸素濃度との間に相関関
係があることを示す他の実験データ例を示す図である。
FIG. 4 is a diagram showing another example of experimental data showing that there is a correlation between a human psychological state and a body oxygen concentration.

【図5】人間の心理状態と体内酸素濃度との間に相関関
係があることを示す更に他の実験データ例を示す図であ
る。
FIG. 5 is a diagram showing still another example of experimental data showing that there is a correlation between the human psychological state and the oxygen concentration in the body.

【図6】人間の心理状態と体内酸素濃度との間に相関関
係があることを示す更に他の実験データ例を示す図であ
る。
FIG. 6 is a diagram showing still another example of experimental data showing that there is a correlation between the human psychological state and the oxygen concentration in the body.

【図7】実施例の心理状態測定装置における特徴抽出原
理及び心理状態判定の原理を説明するための説明図であ
る。
FIG. 7 is an explanatory diagram for explaining the principle of feature extraction and the principle of psychological state determination in the psychological state measuring apparatus of the embodiment.

【符号の説明】[Explanation of symbols]

1…多次元酸素濃度計測部、2…発光部、3…受光部、
4…信号処理部、5…記憶部、6…照謝用光プローブと
受光用光プローブ、7…フーリエ変換部、8…記憶部、
9…解析部、10…制御部。
1 ... Multi-dimensional oxygen concentration measuring unit, 2 ... Light emitting unit, 3 ... Light receiving unit,
4 ... Signal processing unit, 5 ... Storage unit, 6 ... Illumination optical probe and light receiving optical probe, 7 ... Fourier transform unit, 8 ... Storage unit,
9 ... Analysis unit, 10 ... Control unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検者の体内に向けて光を照射し、その
透過光の時間的変化に基いて体内の酸素濃度の時間的変
化を計測する計測手段と、 該酸素濃度の時間的変化をフーリエ変換処理することに
より周波数に対するスペクトラム分布を求める変換手段
と、 該スペクトラム分布の包絡線に基いて特徴を抽出すると
共に、該特徴抽出されたデータを、予め設定された心理
状態に対する酸素濃度変化のスペクトラム分布の包絡線
に基いて求められた相関データと比較することによって
心理状態を判定する解析手段と、を備えたことを特徴と
する心理状態測定装置。
1. A measuring means for irradiating light into the body of a subject and measuring a temporal change of oxygen concentration in the body based on a temporal change of transmitted light, and a temporal change of the oxygen concentration. A Fourier transform processing to obtain a spectrum distribution with respect to frequency, and a feature is extracted based on the envelope of the spectrum distribution. The feature-extracted data is used to change the oxygen concentration with respect to a preset psychological state. A psychological state measuring device, comprising: an analyzing unit that determines a psychological state by comparing the correlation data obtained based on the envelope curve of the spectrum distribution of FIG.
JP04174287A 1992-07-01 1992-07-01 Mental state measuring device Expired - Fee Related JP3142376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04174287A JP3142376B2 (en) 1992-07-01 1992-07-01 Mental state measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04174287A JP3142376B2 (en) 1992-07-01 1992-07-01 Mental state measuring device

Publications (2)

Publication Number Publication Date
JPH0614908A true JPH0614908A (en) 1994-01-25
JP3142376B2 JP3142376B2 (en) 2001-03-07

Family

ID=15976039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04174287A Expired - Fee Related JP3142376B2 (en) 1992-07-01 1992-07-01 Mental state measuring device

Country Status (1)

Country Link
JP (1) JP3142376B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025504A1 (en) * 2004-09-02 2006-03-09 Nagaoka University Of Technology Sensitive state judging method
US7142906B2 (en) 1995-10-06 2006-11-28 Hitachi, Ltd. Optical measurement instrument for living body
US7231240B2 (en) 2004-01-14 2007-06-12 National Institute Of Information And Communications Technology Psychological state assessment device, psychological state assessment method
US7286870B2 (en) 1994-10-06 2007-10-23 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US7825369B2 (en) 2001-07-03 2010-11-02 Olympus Corporation Displacement sensor, method for detecting the optimal reference position, and method for judging stability of detecting reference position of displacement sensor
CN111681517A (en) * 2018-09-21 2020-09-18 河南大学 Experimental apparatus for psychology
CN112190263A (en) * 2020-10-09 2021-01-08 安徽美心信息科技有限公司 Analysis system and analysis method for psychological measurement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323709B2 (en) * 2009-10-19 2012-12-04 Anatoliy Omelchenko Edible spoon for dissociating into consumable predetermined clumps in order to prevent dissociating into random granules that would make consumption more difficult

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440794B2 (en) 1994-10-06 2008-10-21 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US8050744B2 (en) 1994-10-06 2011-11-01 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US7715904B2 (en) 1994-10-06 2010-05-11 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US7286870B2 (en) 1994-10-06 2007-10-23 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US7774047B2 (en) 1995-10-06 2010-08-10 Hitachi, Ltd. Optical measurement instrument for living body
US7142906B2 (en) 1995-10-06 2006-11-28 Hitachi, Ltd. Optical measurement instrument for living body
US7825369B2 (en) 2001-07-03 2010-11-02 Olympus Corporation Displacement sensor, method for detecting the optimal reference position, and method for judging stability of detecting reference position of displacement sensor
US7231240B2 (en) 2004-01-14 2007-06-12 National Institute Of Information And Communications Technology Psychological state assessment device, psychological state assessment method
WO2006025504A1 (en) * 2004-09-02 2006-03-09 Nagaoka University Of Technology Sensitive state judging method
US8235894B2 (en) 2004-09-02 2012-08-07 Nagaoka University Of Technology Emotional state determination method
CN111681517A (en) * 2018-09-21 2020-09-18 河南大学 Experimental apparatus for psychology
CN112190263A (en) * 2020-10-09 2021-01-08 安徽美心信息科技有限公司 Analysis system and analysis method for psychological measurement
CN112190263B (en) * 2020-10-09 2023-03-24 安徽美心信息科技有限公司 Analysis system and analysis method for psychological measurement

Also Published As

Publication number Publication date
JP3142376B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
Gratton et al. Rapid changes of optical parameters in the human brain during a tapping task
JP4050706B2 (en) Abnormal data erasing method and blood component analysis system using spectroscopy applied to the method
US6985763B2 (en) Method for measuring venous oxygen saturation
US5460177A (en) Method for non-invasive measurement of concentration of analytes in blood using continuous spectrum radiation
DE60023162T2 (en) STETHOSCOPE
US8175686B2 (en) External condition control device based on measurement of brain functions
JP3916985B2 (en) Biological light measurement device
JP4097522B2 (en) Biological light measurement device
JP2004531311A (en) Optically measuring tissue to determine disease state or analyte concentration
DE19840452A1 (en) Method and device for the non-invasive measurement of concentrations of blood components
JPH02191434A (en) Method and apparatus for near infrared quantitative analysis of blood sugar level
JP2003533261A (en) Method and apparatus for non-invasive quantification of hemoglobin and hematocrit
JPS6392335A (en) Method and apparatus for monitoring oxygen saturation degree in blood
US20040184024A1 (en) Optical measurement apparatus for a living body
CN1326491C (en) Biological optical measuring instrument
JP2021532846A (en) Performing transabdominal fetal oximetry using optical tomography
JP3142376B2 (en) Mental state measuring device
JP2002010986A (en) Noninvasive measurement device for intracerebral blood amount
US20050159671A1 (en) Method for diagnosing, detecting, and monitoring brain function including neurological disease and disorders
JP2004141258A (en) Living body measuring device
Nowak et al. Time-frequency analysis of spontaneous fluctuation of the pupil size of the human eye.
JP4651186B2 (en) Biological light measurement device
KR102459360B1 (en) Dementia diagnosis system using olfaction and dementia diagnosis method using olfaction using it
Barschdorff et al. Respiratory rhythm detection with photoplethysmographic methods
JPH07132120A (en) Nonaggressive measuring method and device of specimen concentration using discontinuous emission

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees