JPH06148491A - Optical axis fine adjustment device for optical scanning system - Google Patents

Optical axis fine adjustment device for optical scanning system

Info

Publication number
JPH06148491A
JPH06148491A JP31556192A JP31556192A JPH06148491A JP H06148491 A JPH06148491 A JP H06148491A JP 31556192 A JP31556192 A JP 31556192A JP 31556192 A JP31556192 A JP 31556192A JP H06148491 A JPH06148491 A JP H06148491A
Authority
JP
Japan
Prior art keywords
optical
scanning
light
optical element
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31556192A
Other languages
Japanese (ja)
Inventor
Hideki Wakai
秀樹 若井
Hiroshi Inahata
弘 稲畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP31556192A priority Critical patent/JPH06148491A/en
Publication of JPH06148491A publication Critical patent/JPH06148491A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To extremely accurately and easily perform the fine adjustment of the optical path of scanning synchronizing light by turnably arranging an optical member on an axis perpendicular to a scanning plane. CONSTITUTION:Synchronizing light emitted from a light source 5 is reflected on one plane of polarization of a rotary polygon mirror 6 and made incident on a synchronizing light detecting sensor 11 through a reflection mirror 9 and an optical element 10 so as to be detected. The optical element 10 is arranged between the mirror 9 and the sensor 11 and can be rotated and moved around the axis perpendicular to a scanning direction X or the scanning plane. The optical element 10 has refractive index different from peripheral space, and is provided with an incident surface and exiting surface for the scanning synchronizing light. A laser beam L emitted from a light source 1 is guided to one plane of polarization of the mirror 6. The laser beam reflected on the reflection surface passes through an image-formation optical system 12, scans a photosensitive body 4 with the rotation of the mirror 6, and is formed into an image on a photosensitive surface 13. Therefore, the path of the scanning synchronizing light is correctly adjusted by the optical element 10, so that the synchronism is accurately performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、画像信号の出力のタ
イミングを検出するための走査同期光の光路を有する光
走査系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning system having an optical path of scanning synchronizing light for detecting the timing of outputting an image signal.

【0002】[0002]

【従来の技術】例えばレーザプリンタのパターン発生部
は、光走査系(光学ユニット)を備えている。光走査系
では画像信号の出力タイミングを調整するために走査同
期光が用いられている。走査同期光は光源から画像信号
に先だって発射され、SOS同期信号用のセンサに検出
される。走査同期光は通常その経路上に配置された小型
の反射鏡を経てセンサに検出される構成になっている。
2. Description of the Related Art For example, a pattern generating portion of a laser printer has an optical scanning system (optical unit). In the optical scanning system, scanning synchronization light is used to adjust the output timing of image signals. The scanning synchronization light is emitted from the light source prior to the image signal, and is detected by the SOS synchronization signal sensor. The scanning synchronizing light is usually detected by a sensor via a small reflecting mirror arranged on the path.

【0003】光源及び反射鏡の取付け角度に誤差があっ
たり、あるいは、両者の位置関係に誤差が生じている場
合には、走査同期光の経路にずれが生じ、同期光はセン
サに正しく検出されなくなってしまう。
If there is an error in the mounting angle of the light source and the reflecting mirror, or if there is an error in the positional relationship between the two, the path of the scanning synchronization light is deviated, and the synchronization light is correctly detected by the sensor. It's gone.

【0004】[0004]

【発明が解決しようとする課題】一般にレーザプリンタ
においては、走査同期光が前記センサに入射してから実
際の印字情報が送られるまでの時間間隔は回路系によっ
て所定の値に定められている。
Generally, in a laser printer, the time interval from when the scanning synchronizing light is incident on the sensor to when the actual print information is sent is set to a predetermined value by a circuit system.

【0005】走査同期光がセンサに正しく入射せず、そ
の結果、走査同期光の検出時間に見かけ上のずれが生じ
た場合には、紙面上で印字開始位置がずれてしまう。そ
して最悪の場合には紙面外に印字が行われる恐れもあ
る。
If the scanning synchronization light does not properly enter the sensor and as a result an apparent shift occurs in the detection time of the scanning synchronization light, the print start position shifts on the paper surface. In the worst case, printing may be performed out of the page.

【0006】従来、このような走査同期光の経路のずれ
は、装置内に固定されている反射鏡の取付け角を調整す
ることによって修正していた。この方法では、反射鏡の
取付け精度を高めかつ取付け角の調整を念入りに行うこ
とによって、ある程度の精度を得ることはできる。しか
し、反射鏡の取付け角が僅かにずれただけでもセンサ位
置での光路が大きく変化してしまうので、同期光の経路
を正確に微調整することは困難であった。
Conventionally, such deviation of the path of the scanning synchronization light has been corrected by adjusting the mounting angle of the reflecting mirror fixed in the apparatus. In this method, a certain degree of accuracy can be obtained by increasing the accuracy of mounting the reflecting mirror and carefully adjusting the mounting angle. However, even if the mounting angle of the reflecting mirror is slightly deviated, the optical path at the sensor position is greatly changed, so that it is difficult to precisely finely adjust the path of the synchronous light.

【0007】以上のような従来技術の問題点に鑑み、本
発明は、走査同期光の光路をきわめて正確にかつ容易に
微調整することが可能な光軸微調整装置を提供すること
を目的としている。
In view of the above problems of the prior art, an object of the present invention is to provide an optical axis fine adjustment device capable of performing extremely precise and easy fine adjustment of the optical path of scanning synchronization light. There is.

【0008】[0008]

【課題を解決するための手段】この発明は、画像信号の
出力のタイミングを検出するための走査同期光の光路を
有する光走査系において、前記走査同期光の通過領域が
周辺の空間と異なる屈折率を有し、かつ、前記走査同期
光に対する入射面と射出面とを備えた光学部材を備え、
前記光学部材が走査平面に対し垂直な軸上において回動
可能に配置されていることを特徴とする光軸微調整装置
を要旨としている。
According to the present invention, in an optical scanning system having an optical path of scanning synchronous light for detecting the timing of output of an image signal, the passage area of the scanning synchronous light is different from the surrounding space. And an optical member having an incidence surface and an emission surface for the scanning synchronization light,
A gist of an optical axis fine adjustment device is characterized in that the optical member is rotatably arranged on an axis perpendicular to a scanning plane.

【0009】[0009]

【実施例】以下、図面を参照して、本発明の実施例を説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の光軸微調整装置を備えたレ
ーザプリンタを概念的に示す平面図である。
FIG. 1 is a plan view conceptually showing a laser printer provided with an optical axis fine adjustment device of the present invention.

【0011】レーザプリンタ1は、光走査系3及び光走
査系3により生じた走査光束により走査される感光体4
を備えており、光走査系3には、光源5、回転多面鏡
6、結像光学系12、同期手段2などが設けられてい
る。
The laser printer 1 includes an optical scanning system 3 and a photosensitive member 4 which is scanned by a scanning light beam generated by the optical scanning system 3.
The optical scanning system 3 is provided with a light source 5, a rotary polygon mirror 6, an image forming optical system 12, a synchronizing means 2 and the like.

【0012】光源5としては例えば半導体レーザ5を用
いることができる。光源5からは回転多面鏡6の偏向面
に向けてレーザ光が発射される。レーザ光によって走査
同期信号及び画像信号が送られる。
As the light source 5, for example, a semiconductor laser 5 can be used. Laser light is emitted from the light source 5 toward the deflection surface of the rotary polygon mirror 6. A scanning synchronization signal and an image signal are sent by laser light.

【0013】本実施例では回転多面鏡6は6つの偏向面
を有している。回転多面鏡6は例えば毎分3000〜3
0000回転程度の高速で回転し、レーザ光を直線的に
走査する。
In this embodiment, the rotary polygon mirror 6 has six deflecting surfaces. The rotary polygon mirror 6 is, for example, 3000 to 3 per minute.
It rotates at a high speed of about 0000 rotations and linearly scans with laser light.

【0014】回転多面鏡6と感光体4の間には、結像光
学系12が配置されている。結像光学系12は第1レン
ズ7と第2レンズ8から構成されている。第1レンズ7
はfθ特性を有する走査レンズ(fθレンズ)であり、
第2レンズ8はシリンドリカルレンズである。
An image forming optical system 12 is arranged between the rotary polygon mirror 6 and the photosensitive member 4. The image forming optical system 12 includes a first lens 7 and a second lens 8. First lens 7
Is a scanning lens (fθ lens) having fθ characteristics,
The second lens 8 is a cylindrical lens.

【0015】光走査系3の有効走査域外には、同期光検
出光学系2が配置されている。同期光検出部2は反射鏡
9、光学素子10、同期光検出センサ11で構成されて
いる。
The synchronous light detection optical system 2 is arranged outside the effective scanning area of the optical scanning system 3. The synchronous light detecting section 2 is composed of a reflecting mirror 9, an optical element 10, and a synchronous light detecting sensor 11.

【0016】光源5から出た同期光は回転多面鏡6の1
つの偏向面で反射され、反射鏡9及び光学素子10を経
て同期光検出センサ11に入射し検出される。光学素子
10は反射鏡9とセンサ11の間に配置され、走査方向
Xまたは走査面に垂直な軸の回りに回転移動可能であ
る。光学素子10の回転軸は図1〜3では紙面に垂直で
ある。
Synchronous light emitted from the light source 5 is generated by the rotary polygon mirror 1
The light is reflected by one of the deflecting surfaces, enters the synchronous light detecting sensor 11 via the reflecting mirror 9 and the optical element 10, and is detected. The optical element 10 is arranged between the reflecting mirror 9 and the sensor 11, and is rotatable and movable around the scanning direction X or an axis perpendicular to the scanning surface. The rotation axis of the optical element 10 is perpendicular to the paper surface in FIGS.

【0017】光学素子10は、周辺の空間と異なる屈折
率を有していて、走査同期光に対する入射面と射出面を
備えている。光学素子10の形状は図示例では平行平板
であるが、その他の形状にしてもよい。本実施例では、
光学素子10が光軸微調整装置を構成している。
The optical element 10 has a refractive index different from that of the surrounding space and is provided with an entrance surface and an exit surface for the scanning synchronization light. The shape of the optical element 10 is a parallel plate in the illustrated example, but it may be another shape. In this embodiment,
The optical element 10 constitutes an optical axis fine adjustment device.

【0018】光源1から出たレーザ光Lは回転多面鏡6
の1つの偏向面に導かれる。その反射面で反射されたレ
ーザ光は結像光学系12を通り、回転多面鏡6の回転に
ともなって、図1に示すように感光体4上を走査する。
感光体4は感光ドラムであって、レーザ光はその感光面
13に結像される。光軸微調整装置によって走査同期光
の経路を正しく調整することによって同期を正確に行う
ことができ、従って紙面上の所定位置に正しく印字を行
うことができる。
The laser light L emitted from the light source 1 is rotated by the polygon mirror 6.
Is guided to one of the deflection planes. The laser light reflected by the reflecting surface passes through the imaging optical system 12 and scans on the photosensitive member 4 as shown in FIG. 1 as the rotary polygon mirror 6 rotates.
The photosensitive member 4 is a photosensitive drum, and the laser light is focused on the photosensitive surface 13. By accurately adjusting the path of the scanning synchronization light by the optical axis fine adjustment device, the synchronization can be accurately performed, and therefore, the printing can be correctly performed at the predetermined position on the paper surface.

【0019】次に、図2及び図3を参照して光軸の微調
整方法について説明する。
Next, a method of finely adjusting the optical axis will be described with reference to FIGS.

【0020】まず、図2を参照する。反射鏡9が矢印B
のように回転し、その結果、光路に誤差が生じると、入
射したレーザ光LがL2 やL3 のように反射し、そのま
まではセンサ11に正しく検出されなくなる。そこで反
射光がL2 のようにずれた場合には、光学素子10を二
点鎖線のように回転移動する。そして光学素子10を通
過したレーザ光がL′2 の経路を通ってセンサ11に正
しく検出されるようにするのである。また、反射光がL
3 のようにずれた場合には、光学素子10を一点鎖線の
ように回転させ、レーザ光がL′3 の経路を通ってセン
サ11に入射するように調整する。いずれの場合にも、
光学素子10を矢印Dのように回転移動させてレーザ光
の経路を調整することができる。
First, referring to FIG. Reflecting mirror 9 is arrow B
As a result, when an error occurs in the optical path, the incident laser light L is reflected like L 2 or L 3 and cannot be correctly detected by the sensor 11. Therefore, when the reflected light deviates as indicated by L 2 , the optical element 10 is rotationally moved as indicated by a chain double-dashed line. Then, the laser light passing through the optical element 10 is properly detected by the sensor 11 through the path of L' 2 . Also, the reflected light is L
When shifted as 3, the optical element 10 is rotated as indicated by a dot-dash line, to adjust so that the laser beam is incident on the sensor 11 through a path of L '3. In either case,
The path of the laser beam can be adjusted by rotating the optical element 10 as indicated by arrow D.

【0021】次に、図3を参照する。反射鏡9が矢印C
のように平行移動し、その結果、誤差が生じた場合に
も、反射光がセンサ11に正しく検出されなくなる。そ
こで、光学素子10を矢印Eのように回転移動させ、反
射光がL2 のようにずれた場合には光学素子10を二点
鎖線の位置に動かし、また反射光がL3 のようにずれた
場合には光学素子10を一点鎖線の位置に動かす。この
ようにすることによって、レーザ光が経路L′を通って
センサ11に正しく検出されるようにする。
Next, referring to FIG. Reflecting mirror 9 is arrow C
Even if an error occurs as a result of the parallel movement as described above, the reflected light cannot be correctly detected by the sensor 11. Therefore, the optical element 10 is rotationally moved as indicated by arrow E, and when the reflected light is displaced as indicated by L 2 , the optical element 10 is moved to the position indicated by the chain double-dashed line, and the reflected light is displaced as indicated by L 3. If so, the optical element 10 is moved to the position indicated by the alternate long and short dash line. By doing so, the laser light is correctly detected by the sensor 11 through the path L '.

【0022】図2と図3のいずれの場合にも、光学素子
10の角度を比較的大きく動かして、レーザ光の経路を
微調整することができる。従って、光軸調整を高精度で
しかもきわめて容易に行うことができる。なお、実際の
光路のずれは一般に図2と図3のずれの両方を含むと考
えられるが、このような複合的なずれも同様に光学素子
10の回転移動によって修正できる。
2 and 3, the angle of the optical element 10 can be moved relatively large to finely adjust the path of the laser light. Therefore, the optical axis can be adjusted with high accuracy and very easily. It should be noted that the actual deviation of the optical path is generally considered to include both the deviations of FIGS. 2 and 3, but such a compound deviation can be similarly corrected by the rotational movement of the optical element 10.

【0023】なお、図4に示すように平行平板の厚みを
t、屈折率をn、レーザ光の入射角をi、透過レーザ光
のずれ幅をdとすると、ずれ幅dの値は次の計算式で求
めることができる。
As shown in FIG. 4, when the thickness of the parallel plate is t, the refractive index is n, the incident angle of the laser light is i, and the deviation width of the transmitted laser light is d, the deviation width d has the following value. It can be calculated.

【0024】 t〔tan(i)−tan{sin-1(sini/n)}〕T [tan (i) -tan {sin −1 (sini / n)}]

【0025】[0025]

【発明の効果】この発明によれば、光学素子を回転移動
させることによって、走査同期光の光軸を正確にしかも
容易に微調整することができる。
According to the present invention, the optical axis of the scanning synchronization light can be finely adjusted accurately and easily by rotating the optical element.

【0026】なお、本発明は前述の実施例に限定されな
い。例えば回動可能な第二の光学素子を第一の光学素子
の上流又は下流に設けてもよい。ただし、両者の回転軸
は互いに直交するように配置するのが好ましい。この場
合には、第二の光学素子を回動させることによって、同
期光の他方向へのずれ、すなわち図1で紙面に直交する
方向のずれも微調整することが可能になる。
The present invention is not limited to the above embodiment. For example, the rotatable second optical element may be provided upstream or downstream of the first optical element. However, it is preferable to dispose both rotation axes so as to be orthogonal to each other. In this case, by rotating the second optical element, it is possible to finely adjust the deviation of the synchronizing light in the other direction, that is, the deviation in the direction orthogonal to the paper surface in FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光軸微調整装置を備えたレーザプ
リンタを概念的に示す図。
FIG. 1 is a view conceptually showing a laser printer provided with an optical axis fine adjustment device according to the present invention.

【図2】光軸調整方法を示す説明図。FIG. 2 is an explanatory diagram showing an optical axis adjusting method.

【図3】光軸調整方法を示す説明図。FIG. 3 is an explanatory diagram showing an optical axis adjusting method.

【図4】光軸のずれを説明するための図。FIG. 4 is a diagram for explaining a shift of an optical axis.

【符号の説明】[Explanation of symbols]

1 レーザプリンタ 2 同期光検出光学系 3 光走査系 4 感光体 5 光源 6 回転多面鏡 7 第1レンズ 8 第2レンズ 9 反射鏡 10 光学素子 11 同期光検出センサ 12 結像光学系 13 感光面 ◆ 1 Laser Printer 2 Synchronous Light Detection Optical System 3 Optical Scanning System 4 Photoreceptor 5 Light Source 6 Rotating Polygonal Mirror 7 First Lens 8 Second Lens 9 Reflecting Mirror 10 Optical Element 11 Synchronous Light Detection Sensor 12 Imaging Optical System 13 Photosensitive Surface ◆

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 画像信号の出力のタイミングを検出する
ための走査同期光の光路を有する光走査系において、前
記走査同期光の通過領域が周辺の空間と異なる屈折率を
有し、かつ、前記走査同期光に対する入射面と射出面と
を備えた光学部材を備え、前記光学部材が走査平面に対
し垂直な軸上において回動可能に配置されていることを
特徴とする光軸微調整装置。
1. An optical scanning system having an optical path of scanning synchronization light for detecting the timing of output of an image signal, wherein the passage area of the scanning synchronization light has a refractive index different from the surrounding space, and An optical axis fine adjustment device comprising an optical member having an entrance surface and an exit surface for scanning synchronization light, the optical member being rotatably arranged on an axis perpendicular to a scanning plane.
JP31556192A 1992-11-02 1992-11-02 Optical axis fine adjustment device for optical scanning system Pending JPH06148491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31556192A JPH06148491A (en) 1992-11-02 1992-11-02 Optical axis fine adjustment device for optical scanning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31556192A JPH06148491A (en) 1992-11-02 1992-11-02 Optical axis fine adjustment device for optical scanning system

Publications (1)

Publication Number Publication Date
JPH06148491A true JPH06148491A (en) 1994-05-27

Family

ID=18066832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31556192A Pending JPH06148491A (en) 1992-11-02 1992-11-02 Optical axis fine adjustment device for optical scanning system

Country Status (1)

Country Link
JP (1) JPH06148491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768568B2 (en) 1998-03-19 2004-07-27 Pentax Corporation Scanner having a light beam incident position adjusting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768568B2 (en) 1998-03-19 2004-07-27 Pentax Corporation Scanner having a light beam incident position adjusting device
US6825962B2 (en) 1998-03-19 2004-11-30 Pentax Corporation Scanner having a light beam incident position adjusting device
US6850348B2 (en) 1998-03-19 2005-02-01 Pentax Corporation Scanner having a light beam incident position adjusting device
US7158269B2 (en) 1998-03-19 2007-01-02 Pentax Corporation Scanner having a light beam incident position adjusting device

Similar Documents

Publication Publication Date Title
JPH09230276A (en) Optical scanner
US5889545A (en) Method and apparatus for image registration in a single pass ROS printer using a rotatable output window with no optical power
US4907017A (en) Laser optical apparatus
EP0816943B1 (en) Image registration system and method
JPH10197811A (en) Cascade scanning optical system
JP2000227639A (en) Method for detecting and correcting skew between reference beam and lenticule in lenticular material
JPH06148491A (en) Optical axis fine adjustment device for optical scanning system
US6166376A (en) Multi-beam scanning device
JP3672420B2 (en) Wide-area optical scanning device
US4886963A (en) Laser beam scanning apparatus with compact SOS sensor
JPH03131817A (en) Light beam scanning optical device
JPS62278521A (en) Light beam scanning device
KR100677139B1 (en) Light scanning apparatus
JPH08132670A (en) Optical beam synchronization detector and image forming apparatus
KR890004256Y1 (en) Optical detection instrument of laser beam
JP2003107380A (en) Multi-beam light source unit, multi-beam scanning optical device and image forming device
JP3752873B2 (en) Optical scanning device
JP3141597B2 (en) Optical scanning device
JPH05289008A (en) Synchronous detector
JPH0915516A (en) Optical scanner
JPH09236764A (en) Optical scanner
JPH1058740A (en) Multibeam scan type image-forming apparatus-method for detecting scan line pitch and apparatus for detecting scan line pitch
JPS63202713A (en) Light beam scanning device
JP2571589B2 (en) Optical scanning device
JPH07230050A (en) Writing starting position adjusting mechanism for optical scanner