JPH06148425A - Infrared polarizer and manufacture thereof - Google Patents

Infrared polarizer and manufacture thereof

Info

Publication number
JPH06148425A
JPH06148425A JP29561992A JP29561992A JPH06148425A JP H06148425 A JPH06148425 A JP H06148425A JP 29561992 A JP29561992 A JP 29561992A JP 29561992 A JP29561992 A JP 29561992A JP H06148425 A JPH06148425 A JP H06148425A
Authority
JP
Japan
Prior art keywords
substrate
infrared
optical element
polarizer
infrared region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29561992A
Other languages
Japanese (ja)
Inventor
Toshiaki Ogura
敏明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29561992A priority Critical patent/JPH06148425A/en
Publication of JPH06148425A publication Critical patent/JPH06148425A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the infrared polarizer, which is manufactured at low cost and reducible in element size and thickness and can utilize reflected light, and its manufacture. CONSTITUTION:On the surface of a 1st substrate 11 which has a successive waveform shape wherein planes and curved surfaces successively alternate on the top surface and is transparent in an infrared light range, an optical element 12 which performs polarized separating operation in the infrared light range, and an optical element 15 which performs infrared light reflecting or absorbing operation is formed on the curved surfaces; and the surface of the 1st substrate 11 which has the waveform shape is covered with a material which is transparent in another infrared light range and made flat the surface of the 1st substrate 11 which has the waveform shape is connected to a 2nd substrate 16 which is transparent in the infrared light range. Further, an optical element which has reflection prevention characteristics can be formed on the opposite surface from the surface having the waveform shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自然光から直線偏光を取
り出すための偏光子に関するものであり、特に赤外領域
の光スイッチ、光アイソレ−タなどの赤外光学素子に使
用する赤外偏光子とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizer for extracting linearly polarized light from natural light, and particularly to an infrared polarizer used for infrared optical elements such as optical switches and optical isolators in the infrared region. And its manufacturing method.

【0002】[0002]

【従来の技術】従来、赤外偏光子としては、(1)多数
の誘電体板の表面反射を利用したパイル・オブ・プレイ
ツ偏光子、(2)多数の平行導体線配列(グリッド)に
より構成されたグリッド偏光子などがある。
2. Description of the Related Art Conventionally, infrared polarizers are composed of (1) pile-of-plates polarizer using surface reflection of many dielectric plates, and (2) many parallel conductor line arrays (grids). There are grid polarizers.

【0003】以下、図面を参照しながら従来の赤外用偏
光子について説明する。まずパイル・オブ・プレイツ偏
光子について説明する。図8はパイル・オブ・プレイツ
偏光子を示す図であり、セレン(Se)やポリエチレン
などからなる透明板80を多数重ね合わせたものを入射
光81に対してブリュ−スタ−角(θb )となるように
設置すると透過光82はほとんどP偏光となり、透明板
80からの反射光83からはS偏光のみが得られる。
A conventional infrared polarizer will be described below with reference to the drawings. First, the pile of plates polarizer will be described. FIG. 8 is a diagram showing a pile-of-plates polarizer, in which a large number of transparent plates 80 made of selenium (Se), polyethylene, or the like are stacked and the Brewster angle (θb) with respect to the incident light 81. If so, the transmitted light 82 becomes almost P-polarized light, and only the S-polarized light can be obtained from the reflected light 83 from the transparent plate 80.

【0004】次に、多数の平行導体線配列(グリッド)
により構成された赤外偏光子について説明する。これは
シリコンなどの赤外光に透明な基板の表面に金などの導
体(グリッド)を入射光の波長より短いピッチに設けた
ものである。その構成例を図9に示す。シリコン(S
i)からなる基板91の両面に多層反射防止膜92を形
成し、その片面に金のグリッド93を入射赤外光の波長
より短いピッチで設けたものであり、入射光94のうち
グリッドに対して平行な偏光成分(P偏光)95は反射
し、垂直な偏光成分(S偏光)96は透過する。
Next, a large number of parallel conductor wire arrays (grids)
The infrared polarizer configured by will be described. This is one in which a conductor (grid) such as gold is provided on the surface of a substrate such as silicon that is transparent to infrared light at a pitch shorter than the wavelength of incident light. An example of the configuration is shown in FIG. Silicon (S
A multilayer antireflection film 92 is formed on both sides of a substrate 91 made of i), and a gold grid 93 is provided on one side of the substrate 91 at a pitch shorter than the wavelength of incident infrared light. The parallel polarized component (P polarized light) 95 is reflected and the vertical polarized component (S polarized light) 96 is transmitted.

【0005】[0005]

【発明が解決しようとする課題】上記従来の赤外偏光子
において、、パイル・オブ・プレイツ偏光子は何枚もの
透明板を平行に何枚も重ね合わせる必要があり、素子が
大型化するうえ高価なものとなる。また、多数の平行導
体線配列(グリッド)により構成された赤外偏光子はそ
の製造方法としてフォトグラフィック露光法とイオンビ
−ムエッチング法を使用しているが、この製造方法は工
程が複雑であり素子も高価なものとなる。
In the above-mentioned conventional infrared polarizer, the pile-of-plates polarizer requires many transparent plates to be stacked in parallel, which leads to an increase in size of the device. It will be expensive. In addition, an infrared polarizer composed of a large number of parallel conductor wire arrays (grids) uses a photolithographic exposure method and an ion beam etching method as its manufacturing method, but this manufacturing method has complicated steps. The device also becomes expensive.

【0006】本発明は上記課題に鑑み、安価に製造で
き、反射光の利用が可能であり、素子の小型化・薄型化
も可能な赤外偏光子とその製造方法を提供するものであ
る。
In view of the above problems, the present invention provides an infrared polarizer which can be manufactured at low cost, can utilize reflected light, and can be made smaller and thinner, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、本発明の赤外偏光子は、表面に平面と曲面が交互に
連続した波形の形状を有する赤外域で透明な第1の基板
の平面部を含む表面上に赤外域で偏光分離作用を有する
光学要素を設けた構成としており、曲面部の表面上ある
いは曲面部と対向する基板の表面上に赤外光反射作用あ
るいは赤外光吸収作用を有する光学要素を設けることが
できる。
In order to solve the above-mentioned problems, the infrared polarizer of the present invention comprises a first substrate which is transparent in the infrared region and has a corrugated shape in which flat surfaces and curved surfaces are alternately continuous on the surface. The optical element that has a polarization separation effect in the infrared region is provided on the surface including the flat surface of the substrate, and the infrared light reflection function or the infrared light is reflected on the surface of the curved surface or the surface of the substrate facing the curved surface. An optical element having an absorbing effect can be provided.

【0008】また第1の基板の波形の形状の表面を第2
の赤外域で透明な基板と結合して一体として表面を平坦
にすることもできるし、波形の形状の表面を赤外域で透
明な材料で被覆して平坦にすることができる。第1の基
板と第2の基板を結合して一体とする方法としては、接
着剤でもって結合する方法、あるいは第1の基板に第2
の基板を圧着して結合する方法がよい。また波形の形状
の表面を赤外域で透明な材料で被覆する方法としては、
材料を塗布等の方法で表面を被覆した後、場合によって
はそれを硬化する方法がよい。このように波形の形状の
表面を平坦にすることにより、入射光と反射光が平行と
なり、偏光分離作用を有する光学要素の効果を広帯域に
することも容易となる。
Further, the corrugated surface of the first substrate is
The surface can be flattened by combining with a transparent substrate in the infrared region, or the corrugated surface can be covered with a transparent material in the infrared region to be planarized. As a method for combining the first substrate and the second substrate into one body, a method of bonding with an adhesive, or a method of combining the first substrate with the second substrate
It is preferable that the substrates of (1) and (2) are bonded by pressure. Also, as a method of coating the surface of the corrugated shape with a material transparent in the infrared region,
After coating the surface by a method such as coating with a material, it is preferable to cure the surface in some cases. By flattening the corrugated surface in this way, the incident light and the reflected light become parallel, and it becomes easy to broaden the effect of the optical element having the polarization separation action.

【0009】第2の基板の屈折率および表面を被覆する
赤外域で透明な材料の屈折率は第1の基板の屈折率とほ
ぼ等しい屈折率であることが好ましい。
It is preferable that the refractive index of the second substrate and the refractive index of the infrared transparent material covering the surface of the second substrate be substantially the same as the refractive index of the first substrate.

【0010】前記赤外偏光子の基板はシリコン(S
i)、ゲルマニウム(Ge)などの赤外域で透明な半導
体材料、あるいは、塩化銀(AgCl)、臭化銀(Ag
Br)などの赤外域で透明なハロゲン化銀、あるいは、
赤外域で透明なカルコゲンガラスから構成できる。
The substrate of the infrared polarizer is silicon (S
i), semiconductor materials such as germanium (Ge) that are transparent in the infrared region, or silver chloride (AgCl), silver bromide (Ag)
Br) or other transparent silver halide in the infrared region, or
It can be composed of chalcogen glass that is transparent in the infrared region.

【0011】また、前記赤外域で偏光分離作用を有する
光学要素は誘電体および半導体の多層膜からなる形成で
きる。多層膜を構成する材料としては、ZnS,ZnS
e,CaF2 、BaF2 、Sb2 O3 、BiF3 、Pb
F2 、Si、Geなど赤外域で透明な物質が適当であ
る。
Further, the optical element having a polarized light separating action in the infrared region can be formed of a multilayer film of a dielectric and a semiconductor. As the material for forming the multilayer film, ZnS, ZnS
e, CaF2, BaF2, Sb2 O3, BiF3, Pb
Substances transparent in the infrared region such as F2, Si and Ge are suitable.

【0012】また、前記赤外光反射作用を有する光学要
素は金属膜から形成できる。金属膜を構成する材料とし
ては、Al、Ag、Au、Cuなどの赤外光の反射率の
高い金属を使用するのが好ましい。前記誘電体膜、金属
膜は真空蒸着法、スパッタリング法などの方法によって
形成することができる。
Further, the optical element having the infrared light reflecting action can be formed of a metal film. As a material forming the metal film, it is preferable to use a metal having a high reflectance for infrared light, such as Al, Ag, Au, or Cu. The dielectric film and the metal film can be formed by a method such as a vacuum deposition method and a sputtering method.

【0013】また、赤外光吸収作用を有する光学要素に
は黒色顔料を含んだ塗料などが好ましく、これは吹きつ
け法などの方法によって形成することができる。
A coating material containing a black pigment or the like is preferable for the optical element having an infrared ray absorbing function, and this can be formed by a method such as a spraying method.

【0014】第1の基板は表面を波形形状に加工する必
要があるが、従来の切削等によって表面を加工すること
は量産性を考えると適当な方法ではない。この場合、赤
外域で透明な材料、例えば、塩化銀(AgCl)、臭化
銀(AgBr)などのハロゲン化銀やカルコゲンガラス
などプレス可能な材料を、あらかじめ所望の波形の形状
の表面に加工された金型でもってプレス成形することに
より、再現性よく良好な基板を得ることができる。
Although it is necessary to process the surface of the first substrate into a corrugated shape, processing the surface by conventional cutting or the like is not an appropriate method considering mass productivity. In this case, a material that is transparent in the infrared region, for example, a silver halide such as silver chloride (AgCl) or silver bromide (AgBr) or a pressable material such as chalcogen glass is processed in advance into a desired corrugated surface. By press molding with a die, a good substrate with good reproducibility can be obtained.

【0015】従って、前記赤外偏光子は基板材料にハロ
ゲン化銀あるいはカルコゲンガラスを使用し、それを表
面が平面と曲面が交互に連続した波形の形状に加工され
た金型でもってプレス成形し、しかる後にその基板の波
形の形状が転写された面に、赤外域で偏光分離作用を有
する光学要素を形成することによって製造することがで
き、さらにそれを第2の基板と接着剤で結合して一体と
することもできるし、第2の基板と圧着して結合して一
体とすることもできる。あるいは、波形形状を赤外域で
透明な材料で被覆して平坦な面にすることもできる。
Therefore, the infrared polarizer uses silver halide or chalcogen glass as a substrate material, and press-molds it with a die whose surface is processed into a corrugated shape in which planes and curved surfaces are alternately continuous. After that, it can be manufactured by forming an optical element having a polarization separation action in the infrared region on the surface of the corrugated shape of the substrate transferred, and further bonding it to the second substrate with an adhesive. Can be integrated into one body, or can be combined with the second substrate by pressure bonding to form one body. Alternatively, the corrugated shape may be covered with a material transparent in the infrared region to form a flat surface.

【0016】[0016]

【作用】上記構成によれば本発明の赤外偏光子は次の作
用を有する。 (1)第1の基板表面の平面上の偏光分離作用を有する
光学要素で入射赤外光のなかの特定方向の直線偏光成分
のみが透過しそれと直交する直線偏光成分は反射するこ
とによって赤外偏光子としての性能を有する。しかも反
射した直線偏光成分は最初に反射した面と同一入射面を
有する対向面でさらに反射されて入射してきた方向へ戻
っていくので反射赤外光成分の利用も可能である。 (2)基板表面の波形形状を微小にすることによって薄
型の赤外偏光子を実現することができる。 (3)曲面上あるいは曲面と対向する基板平面上に赤外
光反射作用あるいは赤外光吸収作用を有する光学要素が
形成することができ、消光比に優れた赤外偏光子が得ら
れる。 (4)波形形状を有する表面の反対表面に反射防止特性
を有する光学要素等を形成することによって光学特性に
優れた赤外偏光子が得られる。 (5)基板に赤外域で透明な材料をプレス成形したもの
を用いることにより、本発明の赤外偏光子が安価に大量
生産できる。 (6)第1の基板と第2の基板とを結合して一体、ある
いは第1の基板の波形形状を赤外域で透明な材料で被覆
して平坦な面にすることにより、有効波長域を広くしや
すく、また入射光と出射光が平行となる赤外偏光子が実
現できる。
According to the above construction, the infrared polarizer of the present invention has the following functions. (1) An optical element having a polarization separation effect on the plane of the surface of the first substrate transmits only a linearly polarized light component in a specific direction of incident infrared light and reflects a linearly polarized light component orthogonal thereto to generate infrared light. It has the performance as a polarizer. Moreover, the reflected linearly polarized light component is further reflected by the facing surface having the same incident surface as the first reflected surface and returns to the incident direction, so that the reflected infrared light component can also be used. (2) A thin infrared polarizer can be realized by making the corrugated shape of the substrate surface minute. (3) An optical element having an infrared light reflecting action or an infrared light absorbing action can be formed on a curved surface or on a flat surface of a substrate facing the curved surface, and an infrared polarizer having an excellent extinction ratio can be obtained. (4) An infrared polarizer having excellent optical characteristics can be obtained by forming an optical element having antireflection characteristics on the surface opposite to the corrugated surface. (5) The infrared polarizer of the present invention can be mass-produced inexpensively by using a substrate obtained by press-molding a transparent material in the infrared region. (6) By combining the first substrate and the second substrate into one body, or by coating the corrugated shape of the first substrate with a transparent material in the infrared region to form a flat surface, the effective wavelength range is increased. It is possible to realize an infrared polarizer in which the incident light and the emitted light are parallel to each other easily and easily.

【0017】[0017]

【実施例】以下本発明の赤外偏光子の実施例について、
図面を参照しながら説明する。
EXAMPLES Examples of the infrared polarizer of the present invention will be described below.
A description will be given with reference to the drawings.

【0018】[0018]

【表1】 [Table 1]

【0019】図1は本発明の実施例1の赤外偏光子の構
成(断面図)を示し、11はx方向に平面と曲面が交互
に連続した波形形状表面を持つシリコン(Si)からな
る第1の基板、12は赤外域で偏光分離作用を有する光
学要素であり、ゲルマニウム(Ge)と硫化アンチモン
(Sb2 S3 )の多層膜からなる。(表1)にその多層
膜の構成を示す。
FIG. 1 shows the structure (cross-sectional view) of an infrared polarizer of Example 1 of the present invention, and 11 is made of silicon (Si) having a corrugated surface in which planes and curved surfaces are alternately continuous in the x direction. The first substrate 12 is an optical element having a polarized light separating action in the infrared region and is composed of a multilayer film of germanium (Ge) and antimony sulfide (Sb2 S3). Table 1 shows the structure of the multilayer film.

【0020】前記多層膜は真空蒸着法で形成した。さら
に偏光子の消光比(T⊥/(T(資)+T⊥))を向上
するために、シリコン基板表面の曲面上に黒色顔料を使
用した塗料による光吸収作用を有する光学要素15を形
成した。しかる後、第1の基板11を別の第2の基板1
6と結合して一体とした。第2の基板16は第1の基板
11とほぼ同じ波形形状の表面をもつおなじ材質、すな
わちシリコン(Si)の基板であり、18は第1の基板
と第2の基板を結合して一体とするための接着層であ
る。接着層の屈折率は基板の屈折率とほぼ等しい。
The multilayer film was formed by a vacuum vapor deposition method. Further, in order to improve the extinction ratio (T⊥ / (T (material) + T⊥)) of the polarizer, an optical element 15 having a light absorbing action by a paint using a black pigment is formed on the curved surface of the silicon substrate surface. . After that, the first substrate 11 is replaced with another second substrate 1
Combined with 6 to make one. The second substrate 16 is a substrate made of the same material having the same corrugated surface as the first substrate 11, that is, a substrate made of silicon (Si), and 18 is formed by connecting the first substrate and the second substrate together. It is an adhesive layer for The refractive index of the adhesive layer is almost equal to the refractive index of the substrate.

【0021】波形の形状は図1においてθ1 =θ2 =4
5°、d1 =d2 =80μm、d3=d4 =5μmであ
る。図5に本実施例の偏光子の分光透過率特性(但し、
基板の表面反射・吸収は含まず、偏光分離部の特性)を
示す。図5においてT(資),T⊥はそれぞれ直交する
直線偏光成分の特性であり、T(資)は入射面に平行な
直線偏光成分、T⊥は入射面に垂直な直線偏光成分であ
る。
The waveform shape is θ1 = θ2 = 4 in FIG.
5 °, d1 = d2 = 80 .mu.m, d3 = d4 = 5 .mu.m. FIG. 5 shows the spectral transmittance characteristics of the polarizer of the present embodiment (however,
It does not include the surface reflection / absorption of the substrate, and shows the characteristics of the polarization splitting part). In FIG. 5, T (material) and T⊥ are the characteristics of linearly polarized light components orthogonal to each other, T (material) is a linearly polarized light component parallel to the incident surface, and T⊥ is a linearly polarized light component perpendicular to the incident surface.

【0022】以上のように構成された赤外偏光子につい
てその作用を説明する。波形形状の平面部の斜面Aに入
射角45°で入射してきた赤外光10のうち入射面に平
行な直線偏光成分14は透過し、入射面に垂直な直線偏
光成分13は斜面Aに形成された赤外域で偏光分離作用
を有する光学要素で反射したのち、斜面Aと対向した斜
面Bに入射する。斜面Aと斜面Bは共通の入射面を有
す。従って、斜面Bに入射した赤外光13は斜面Bに垂
直な直線偏光成分であるため、さらにその面に形成され
た赤外域で偏光分離作用を有する光学要素で反射して入
射してきた方向へ戻っていく。他の面に入射した赤外光
も同様に振る舞う。また、平面部の斜面以外に入射した
赤外光は赤外光吸収作用を有する光学要素で吸収される
ので、結果として赤外偏光子に入射してきた赤外光のう
ち特定方向の直線偏光成分を透過する。
The operation of the infrared polarizer constructed as above will be described. Of the infrared light 10 incident on the slope A of the corrugated flat surface at an incident angle of 45 °, the linearly polarized light component 14 parallel to the incident surface is transmitted and the linearly polarized light component 13 perpendicular to the incident surface is formed on the slope A. After being reflected by the optical element having the polarized light separating action in the infrared region, the light is incident on the slope B facing the slope A. The slope A and the slope B have a common incident surface. Therefore, since the infrared light 13 that has entered the slope B is a linearly polarized light component that is perpendicular to the slope B, the infrared light that is reflected by an optical element that has a polarization splitting effect in the infrared region formed on that surface is incident in the direction in which it is incident. Go back. Infrared light incident on other surfaces behaves similarly. In addition, since infrared light that is incident on a portion other than the slope of the flat surface is absorbed by the optical element that has an infrared light absorbing action, as a result, the linearly polarized light component in a specific direction of the infrared light that has entered the infrared polarizer. Through.

【0023】また、第1の基板と第2の基板の波形形状
を有する反対面にはそれぞれ保護膜を兼ねたZnSから
なる単層反射防止膜17を形成した。Siは屈折率が
3.3であるため反射防止膜なしの場合の透過率は約5
5%となるが、ZnSの反射防止膜を形成することによ
って最大で約89%に向上することができた。
Further, a single-layer antireflection film 17 made of ZnS, which also serves as a protective film, is formed on the corrugated opposite surfaces of the first substrate and the second substrate. Since Si has a refractive index of 3.3, the transmittance without an antireflection film is about 5
Although it is 5%, it can be improved to about 89% at maximum by forming an antireflection film of ZnS.

【0024】本実施例の赤外偏光子の特性は図5で、波
長およそ5800〜7500nmで消光比1/200以
下の特性が得られた。
The characteristics of the infrared polarizer of this example are shown in FIG. 5, and the characteristics of extinction ratio 1/200 or less were obtained at wavelengths of about 5800 to 7500 nm.

【0025】但し、消光比=T⊥/(T(資)+T⊥)
である。次に本発明の実施例2について説明する。
However, extinction ratio = T⊥ / (T (material) + T⊥)
Is. Next, a second embodiment of the present invention will be described.

【0026】図2は本発明の実施例2の赤外偏光子の構
成を示し、21はx方向に平面と曲面が交互に連続した
波形形状の表面を持つゲルマニウム系カルコゲンガラス
基板、22は偏光分離作用を有する光学要素であり、ゲ
ルマニウム(Ge)と硫化亜鉛(ZnS)の多層膜から
なる。前記多層膜は真空蒸着法で形成した。基板の波形
形状は図2においてθ1 =θ2 =45°、d1 =d2 =
100μm、d3 =d4 =5μmである。また、曲面部
の曲率は約3.5μmである。
FIG. 2 shows the structure of an infrared polarizer according to Example 2 of the present invention. Reference numeral 21 is a germanium-based chalcogen glass substrate having a corrugated surface in which planes and curved surfaces are alternately continuous in the x direction, and 22 is polarized light. It is an optical element having a separating action, and is composed of a multilayer film of germanium (Ge) and zinc sulfide (ZnS). The multilayer film was formed by a vacuum deposition method. The waveform shape of the substrate is shown in FIG. 2 as follows: θ1 = θ2 = 45 °, d1 = d2 =
100 μm and d3 = d4 = 5 μm. The curvature of the curved surface portion is about 3.5 μm.

【0027】(表2)に本実施例で形成した偏光分離作
用を有する光学要素22の構成を示す。ここで、光学的
膜厚は、膜厚と膜の屈折率の積であり、λ0 は光学的膜
厚の基準波長である。また、基板21の平面側に保護膜
を兼ねた反射防止膜25を形成した。
Table 2 shows the structure of the optical element 22 having the polarized light separating action formed in this embodiment. Here, the optical film thickness is the product of the film thickness and the film refractive index, and λ0 is the reference wavelength of the optical film thickness. Further, an antireflection film 25 which also serves as a protective film was formed on the flat surface side of the substrate 21.

【0028】また、本実施例の赤外偏光子は屈折率3.
0のゲルマニウム系カルコゲンガラスを表面が所望の波
形の形状、すなわち図2の形状と同じ形状に加工された
金型でもってプレス成形して基板を得て、しかる後にそ
の基板の波形の形状が転写された面に、赤外域で偏光分
離作用を有する光学要素を形成したものである。金型表
面がなめらかな波形の形状をしているため、金型とカル
コゲンガラス材料との離型性もよく、カケなどの欠陥の
ない良好な基板が得られた。
The infrared polarizer of this embodiment has a refractive index of 3.
The germanium-based chalcogen glass of No. 0 is press-molded with a die whose surface has a desired corrugated shape, that is, the same shape as that of FIG. 2, to obtain a substrate, after which the corrugated shape of the substrate is transferred. An optical element having a polarized light separating action in the infrared region is formed on the formed surface. Since the surface of the mold had a smooth corrugated shape, the mold and the chalcogen glass material were easily released, and a good substrate without defects such as chipping was obtained.

【0029】[0029]

【表2】 [Table 2]

【0030】図6に本実施例の赤外偏光子の分光透過率
特性(但し、基板の表面反射・吸収は含まず、偏光分離
部の特性)を示す。図6においてT//,T⊥はそれぞれ
直交する直線偏光成分の特性であり、T//は入射面に平
行な直線偏光成分、T⊥は入射面に垂直な直線偏光成分
である。
FIG. 6 shows the spectral transmittance characteristics of the infrared polarizer of the present embodiment (however, the characteristics of the polarization splitting portion are not included in the surface reflection / absorption of the substrate). In FIG. 6, T // and T⊥ are characteristics of linearly polarized light components orthogonal to each other, T // is a linearly polarized light component parallel to the incident surface, and T⊥ is a linearly polarized light component perpendicular to the incident surface.

【0031】赤外偏光子の特性は図6で、波長およそ7
250nmで消光比1/15以下の特性が得られた。但
し、消光比=T⊥/(T//+T⊥)である。
The characteristics of the infrared polarizer are shown in FIG.
A characteristic of extinction ratio of 1/15 or less was obtained at 250 nm. However, extinction ratio = T⊥ / (T // + T⊥).

【0032】但し、本実施例の赤外偏光子の場合、図2
に示すように、入射光の斜面に対する入射角θ0 と屈折
角θS は、スネルの法則より、 n0 ・sinθ0 =nS ・sinθS (但し、n0 、nS はそれぞれ入射媒質、出射媒質の屈
折率)であるので、θ0 =45°で入射してきた光はθ
S =45°とならないので入射光20と出射光24は平
行にならない。従って、対向する斜面に入射した光の出
射光どうしも平行にならないので使用にあたって注意を
要する。
However, in the case of the infrared polarizer of this embodiment, FIG.
As shown in, the incident angle θ0 and the refraction angle θS with respect to the slope of the incident light are n0 · sin θ0 = nS · sin θS (where n0 and nS are the refractive indices of the incident medium and the outgoing medium, respectively) according to Snell's law. Therefore, the incident light at θ 0 = 45 ° is θ
Since S = 45 ° is not achieved, the incident light 20 and the outgoing light 24 are not parallel. Therefore, the emitted lights of the lights incident on the opposite slopes are not parallel to each other, so that caution is required in use.

【0033】本実施例では基板材料にカルコゲンガラス
を用いたがその代わりに塩化銀(AgCl)などの赤外
域で透明で成形可能なハロゲン化銀を用いることもでき
る。
In this embodiment, chalcogen glass is used as the substrate material, but silver chloride (AgCl) or other silver halide which is transparent and moldable in the infrared region may be used instead.

【0034】次に本発明の実施例3について説明する。
図3は本発明の実施例3の赤外偏光子の構成を示し、前
記実施例2で使用した第1の基板と同じ基板31を使用
し、その波形の形状の表面上に(表3)に示すような赤
外域で偏光分離作用を有する光学要素32を形成し、そ
れを別の第2の基板36と結合して一体とした偏光子で
あり、36は第1の基板とおなじ材質、すなわちカルコ
ゲンガラス基板であり、第1の基板の波形の形状の表面
と圧着させて一体とした。
Next, a third embodiment of the present invention will be described.
FIG. 3 shows the structure of an infrared polarizer according to Example 3 of the present invention, which uses the same substrate 31 as the first substrate used in Example 2 above, and has a corrugated surface (Table 3). Is a polarizer formed by forming an optical element 32 having a polarized light separating action in the infrared region as shown in (1) and combining it with another second substrate 36, where 36 is the same material as the first substrate, That is, it was a chalcogen glass substrate, and was pressed and integrated with the corrugated surface of the first substrate.

【0035】消光比を向上するために曲面部と対向する
面に黒色顔料を使用した塗料による赤外光吸収作用を有
する光学要素35を形成した。また、その後に両平面に
反射防止膜を兼ねた保護膜37を実施例2と同様形成し
た。
In order to improve the extinction ratio, an optical element 35 having a function of absorbing infrared light is formed on the surface facing the curved surface by a paint using a black pigment. After that, a protective film 37 also serving as an antireflection film was formed on both planes as in Example 2.

【0036】[0036]

【表3】 [Table 3]

【0037】偏光子としての分光透過率特性(但し、基
板の表面反射・吸収は含まず、偏光分離部の特性)は図
7のようになり有効帯域を広くすることができ、入射光
と出射光も、前記のスネルの法則から、n0 ・sinθ
0 =nS ・sinθS でn0 =nS であるから、 θ0 =θS となり、平行となる。
The spectral transmittance characteristics of the polarizer (however, the characteristics of the polarization splitting portion not including the surface reflection / absorption of the substrate, are as shown in FIG. 7) are shown in FIG. According to Snell's law, the incident light is n0 · sin θ
Since 0 = nS.sin .theta.S and n0 = nS, .theta.0 = .theta.S, which is parallel.

【0038】次に本発明の実施例4について説明する。
図4は本発明の実施例4の赤外偏光子の構成を示し、前
記実施例3で使用した第1の基板と同じ基板41を使用
し、その波形の形状の表面上に実施例3と同じ(表3)
に示すような赤外域で偏光分離作用を有する光学要素4
2を形成し、さらにその表面を第2の基板と結合する代
わりに赤外域で透明な有機材料43で被覆、硬化させて
表面を平坦な面にしたものである。これも消光比を向上
するために曲面部と対向する第1の基板の平面上に赤外
光反射作用を有する光学要素としてアルミニウム(A
l)からなる金属膜44を真空蒸着法によって約1μm
の膜厚に形成し、さらに平面上に保護膜を兼ねた反射防
止膜45を形成した。偏光子としての分光透過率特性
(但し、基板の表面反射・吸収は含まず、偏光分離部の
特性)は実施例3と同様であり図7のようになった。
Next, a fourth embodiment of the present invention will be described.
FIG. 4 shows the structure of an infrared polarizer according to Example 4 of the present invention. The same substrate 41 as the first substrate used in Example 3 is used, and Example 3 is formed on the corrugated surface. Same (Table 3)
Optical element 4 having polarized light separating action in the infrared region as shown in
2 is formed, and the surface is covered with an organic material 43 which is transparent in the infrared region instead of being bonded to the second substrate and cured to form a flat surface. In order to improve the extinction ratio, aluminum (A) is used as an optical element having an infrared light reflecting action on the plane of the first substrate facing the curved surface portion.
The metal film 44 of 1) is formed by vacuum deposition to a thickness of about 1 μm
Then, an antireflection film 45 which also serves as a protective film was formed on the flat surface. The spectral transmittance characteristics of the polarizer (however, the characteristics of the polarization splitting portion, which does not include the surface reflection / absorption of the substrate, are the same as in Example 3, are shown in FIG. 7.

【0039】なお、赤外偏光分離作用、赤外光反射作
用、赤外光吸収作用、反射防止作用を有する光学要素は
前記それぞれの実施例のものに限定されるものではな
く、設計に応じてそれぞれの作用を有する光学要素を用
いればよい。また、波長を選択する必要がある場合には
波長選択特性を有する光学要素を基板表面に形成すれば
よい。
The optical elements having the infrared polarized light separating action, the infrared light reflecting action, the infrared light absorbing action, and the antireflection action are not limited to those of the above-mentioned respective embodiments, and may be designed according to the design. Optical elements having respective functions may be used. When it is necessary to select the wavelength, an optical element having wavelength selection characteristics may be formed on the surface of the substrate.

【0040】[0040]

【発明の効果】以上のように本発明によれば、表面に平
面と曲面が交互に連続した波形の形状を有する赤外域で
透明な第1の基板の平面部を含む表面上に赤外域で偏光
分離作用を有する光学要素を設けて赤外偏光子となすの
で容易に安価な、さらに反射光の利用が可能な赤外偏光
子を実現することができる。また、波形形状を微小にす
ることにより、素子の小型化、薄型化が可能であり、各
種の大きさの赤外偏光子が実現できる。さらに、基板に
ハロゲン化銀、カルコゲンガラスを成形したものを使用
することによって量産性にも優れている。この赤外偏光
子は曲面部の表面上または曲面と対向する平面上に赤外
光反射作用あるいは赤外光吸収作用を有する光学要素を
設けて消光比を向上することができる。
As described above, according to the present invention, in the infrared region on the surface including the flat portion of the first substrate which is transparent in the infrared region and has a corrugated shape in which flat and curved surfaces are alternately continuous. Since an infrared polarizer is provided by providing an optical element having a polarization separating action, it is possible to easily and inexpensively realize an infrared polarizer which can utilize reflected light. Further, by making the waveform shape minute, the device can be made smaller and thinner, and infrared polarizers of various sizes can be realized. Further, by using a substrate formed of silver halide or chalcogen glass, mass productivity is excellent. In this infrared polarizer, an extinction ratio can be improved by providing an optical element having an infrared light reflecting action or an infrared light absorbing action on the surface of the curved surface portion or on a plane facing the curved surface.

【0041】また、第1の基板と第2の基板を接着剤で
結合あるいは圧着して一体とすることができ、あるい
は、第1の基板の波形の形状を赤外域で透明な材料で被
覆して平坦にした赤外偏光子とすることができる。
Further, the first substrate and the second substrate may be bonded or pressure-bonded with an adhesive to be integrated, or the corrugated shape of the first substrate may be covered with a material transparent in the infrared region. Can be a flattened infrared polarizer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の赤外偏光子の構成を示す断
面図
FIG. 1 is a cross-sectional view showing the configuration of an infrared polarizer according to Example 1 of the present invention.

【図2】本発明の実施例2の赤外偏光子の構成を示す断
面図
FIG. 2 is a cross-sectional view showing the configuration of an infrared polarizer according to Example 2 of the present invention.

【図3】本発明の実施例3の赤外偏光子の構成を示す断
面図
FIG. 3 is a sectional view showing the configuration of an infrared polarizer according to Example 3 of the present invention.

【図4】本発明の実施例4の赤外偏光子の構成を示す断
面図
FIG. 4 is a sectional view showing the structure of an infrared polarizer according to Example 4 of the present invention.

【図5】本発明の実施例1の赤外偏光子の分光透過率特
性図
FIG. 5 is a spectral transmittance characteristic diagram of the infrared polarizer of Example 1 of the present invention.

【図6】本発明の実施例2の赤外偏光子の分光透過率特
性図
FIG. 6 is a spectral transmittance characteristic diagram of an infrared polarizer of Example 2 of the present invention.

【図7】本発明の実施例3の赤外偏光子の分光透過率特
性図
FIG. 7 is a spectral transmittance characteristic diagram of an infrared polarizer according to Example 3 of the present invention.

【図8】従来の赤外偏光子の1つであるパイル・オブ・
プレイツの構成図
FIG. 8 is a pile of one of conventional infrared polarizers.
Plates block diagram

【図9】従来の赤外偏光子の1つであるグリッド偏光子
の構成図
FIG. 9 is a configuration diagram of a grid polarizer, which is one of conventional infrared polarizers.

【符号の説明】[Explanation of symbols]

11、21、31、41 第1の基板 12、22、32、42 光学要素 16、36 第2の基板 18 接着層 15、35、44 光学要素 17、25、37、45 反射防止膜 43 透明材料 11, 21, 31, 41 First substrate 12, 22, 32, 42 Optical element 16, 36 Second substrate 18 Adhesive layer 15, 35, 44 Optical element 17, 25, 37, 45 Antireflection film 43 Transparent material

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】表面に平面と曲面が交互に連続した波形の
形状を有する赤外域で透明な第1の基板の平面部を含む
表面上に赤外域で偏光分離作用を有する光学要素を設け
た赤外偏光子。
1. An optical element having a polarization separating action in the infrared region is provided on a surface including a plane portion of a first substrate which is transparent in the infrared region and has a corrugated shape in which planes and curved surfaces are alternately continuous. Infrared polarizer.
【請求項2】表面に平面と曲面が交互に連続した波形の
形状を有する赤外域で透明な第1の基板の平面部を含む
表面上に赤外域で偏光分離作用を有する光学要素を設
け、第1の基板の波形の形状の表面を第2の赤外域で透
明な基板と結合して一体とした赤外偏光子。
2. An optical element having a polarization separating action in the infrared region is provided on the surface including the plane portion of the first substrate which is transparent in the infrared region and has a corrugated shape in which flat surfaces and curved surfaces are alternately continuous. An infrared polarizer in which the corrugated surface of the first substrate is combined with a substrate transparent in the second infrared region to form an integral body.
【請求項3】表面に平面と曲面が交互に連続した波形の
形状を有する赤外域で透明な第1の基板の平面部を含む
表面上に赤外域で偏光分離作用を有する光学要素を設
け、第1の基板の波形の形状を赤外域で透明な材料で被
覆して平坦にした赤外偏光子。
3. An optical element having a polarization separating action in the infrared region is provided on the surface including the flat portion of the first substrate which is transparent in the infrared region and has a corrugated shape in which planes and curved surfaces are alternately continuous. An infrared polarizer in which the corrugated shape of the first substrate is covered with a transparent material in the infrared region to be flat.
【請求項4】第2の赤外域で透明な基板の屈折率は第1
の基板の屈折率とほぼ等しい請求項2記載の赤外偏光
子。
4. The second transparent substrate in the infrared region has a refractive index of the first
The infrared polarizer according to claim 2, wherein the refractive index of the substrate is substantially the same.
【請求項5】赤外域で透明な材料の屈折率は第1の基板
の屈折率とほぼ等しい請求項3記載の赤外偏光子。
5. The infrared polarizer according to claim 3, wherein the refractive index of the transparent material in the infrared region is substantially equal to the refractive index of the first substrate.
【請求項6】曲面部の表面上に赤外光反射作用あるいは
赤外光吸収作用を有する光学要素を設けた請求項1〜3
のいずれかに記載の赤外偏光子。
6. An optical element having an infrared light reflecting action or an infrared light absorbing action is provided on the surface of the curved surface portion.
The infrared polarizer according to any one of 1.
【請求項7】曲面部と対向する第1および第2の基板の
表面上に赤外光反射作用あるいは赤外光吸収作用を有す
る光学要素を設けた請求項1〜3のいずれかに記載の赤
外偏光子。
7. The optical element having an infrared light reflecting action or an infrared light absorbing action is provided on the surfaces of the first and second substrates facing the curved surface portion. Infrared polarizer.
【請求項8】基板は赤外域で透明な半導体材料からなる
請求項1〜7のいずれかに記載の赤外偏光子。
8. The infrared polarizer according to claim 1, wherein the substrate is made of a semiconductor material transparent in the infrared region.
【請求項9】基板はハロゲン化銀からなる請求項1〜7
のいずれかに記載の赤外偏光子。
9. The substrate comprises silver halide.
The infrared polarizer according to any one of 1.
【請求項10】基板は赤外域で透明なカルコゲンガラス
からなる請求項1〜7のいずれかに記載の赤外偏光子。
10. The infrared polarizer according to claim 1, wherein the substrate is made of chalcogen glass which is transparent in the infrared region.
【請求項11】赤外域で偏光分離作用を有する光学要素
は誘電体および半導体の多層膜からなる請求項1〜7の
いずれかに記載の赤外偏光子。
11. The infrared polarizer according to claim 1, wherein the optical element having a polarization separating action in the infrared region is composed of a dielectric and semiconductor multilayer film.
【請求項12】赤外光反射作用を有する光学要素は金属
膜からなる請求項6または7記載の赤外偏光子。
12. The infrared polarizer according to claim 6, wherein the optical element having an infrared light reflecting action is made of a metal film.
【請求項13】赤外光吸収作用を有する光学要素は顔料
を含んだ塗料の膜からなる請求項6または7記載の赤外
偏光子。
13. The infrared polarizer according to claim 6 or 7, wherein the optical element having an infrared light absorbing function comprises a coating film containing a pigment.
【請求項14】第1の基板材料にハロゲン化銀を使用
し、それを表面が平面と曲面が交互に連続した波形の形
状に加工された金型でもってプレス成形し、しかる後に
その基板の波形の形状が転写された面に、赤外域で偏光
分離作用を有する光学要素を形成する赤外偏光子の製造
方法。
14. A silver halide is used as a material for a first substrate, which is press-molded with a die whose surface is processed into a corrugated shape in which planes and curved surfaces are alternately continuous. A method for producing an infrared polarizer, wherein an optical element having a polarization separating action in the infrared region is formed on a surface on which a wavy shape is transferred.
【請求項15】第1の基板材料にカルコゲンガラスを使
用し、それを表面が平面と曲面が交互に連続した波形の
形状に加工された金型でもってプレス成形し、しかる後
にその基板の波形の形状が転写された面に、赤外域で偏
光分離作用を有する光学要素を形成する赤外偏光子の製
造方法。
15. A chalcogen glass is used as a material for a first substrate, and the chalcogen glass is press-molded by a die having a corrugated shape in which a surface and a curved surface are alternately continuous, and then the corrugated substrate is corrugated. A method for producing an infrared polarizer, in which an optical element having a polarized light separating action in the infrared region is formed on the surface on which the above shape is transferred.
【請求項16】表面に平面と曲面が交互に連続した波形
の形状をもつ基板の該表面に赤外域で偏光分離作用を有
する光学要素を形成した第1の基板と、前記第1の基板
とほぼ同じ表面形状をもつ第2の基板を、接着剤で結合
して一体とする赤外偏光子の製造方法。
16. A first substrate, which has an optical element having a polarization separation action in the infrared region on the surface of a substrate having a corrugated shape in which planes and curved surfaces are alternately continuous on the surface, and the first substrate. A method for manufacturing an infrared polarizer, wherein a second substrate having substantially the same surface shape is bonded with an adhesive to be integrated.
【請求項17】表面に平面と曲面が交互に連続した波形
の形状をもつ基板の該表面に赤外域で偏光分離作用を有
する光学要素を形成した第1の基板と第2の基板を圧着
して結合して一体とする赤外偏光子の製造方法。
17. A first substrate and a second substrate, which have an optical element having a polarization separating action in the infrared region formed on the surface of a substrate having a corrugated shape in which planes and curved surfaces are alternately continuous on the surface, are pressure-bonded to each other. A method for manufacturing an infrared polarizer that is bonded and integrated.
【請求項18】表面に平面と曲面が交互に連続した波形
の形状をもつ基板の該表面に赤外域で偏光分離作用を有
する光学要素を形成した第1の基板の表面を赤外域で透
明な材料で被覆することによって波形の形状をもつ第1
の基板の表面を平坦にする赤外偏光子の製造方法。
18. A substrate having a corrugated shape in which planes and curved surfaces are alternately continuous on the surface, and an optical element having a polarization separating action in the infrared region is formed on the surface of the substrate, and the surface of the first substrate is transparent in the infrared region. First with corrugated shape by coating with material
Manufacturing method of an infrared polarizer for flattening the surface of a substrate.
JP29561992A 1992-11-05 1992-11-05 Infrared polarizer and manufacture thereof Pending JPH06148425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29561992A JPH06148425A (en) 1992-11-05 1992-11-05 Infrared polarizer and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29561992A JPH06148425A (en) 1992-11-05 1992-11-05 Infrared polarizer and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06148425A true JPH06148425A (en) 1994-05-27

Family

ID=17822980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29561992A Pending JPH06148425A (en) 1992-11-05 1992-11-05 Infrared polarizer and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06148425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232313A (en) * 1997-02-18 1998-09-02 Dainippon Printing Co Ltd Polarized light separating film, back light and liquid crystal liquid crystal display device
JP2007041207A (en) * 2005-08-02 2007-02-15 Mitsubishi Electric Corp Polarized beam splitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232313A (en) * 1997-02-18 1998-09-02 Dainippon Printing Co Ltd Polarized light separating film, back light and liquid crystal liquid crystal display device
JP2007041207A (en) * 2005-08-02 2007-02-15 Mitsubishi Electric Corp Polarized beam splitter

Similar Documents

Publication Publication Date Title
US5061050A (en) Polarizer
JP4809929B2 (en) Embedded wire grid polarizer for the visible spectrum
US7961393B2 (en) Selectively absorptive wire-grid polarizer
US20100328770A1 (en) Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
JPH01259301A (en) Optical element
US3753822A (en) Method of making a multi-layer optical isolation
US11835743B2 (en) Innovative solutions to improve laser damage thresholds of optical structures
JP2002510062A5 (en)
JP2002510062A (en) Inorganic visible light reflective polarizer
US6317264B1 (en) Thin film polarizing device having metal-dielectric films
JPS5860701A (en) Reflection preventing film
US6396630B1 (en) Device and method for a folded transmissive phase retarder
JPH06148425A (en) Infrared polarizer and manufacture thereof
JPH06230221A (en) Ir polarizer and its production
JP3584257B2 (en) Polarizing beam splitter
CN113568099B (en) Visible light beam splitting filter film based on nanometer microcavity and design method thereof
JP2005128241A (en) Polarization conversion element
JP2019028083A (en) Optical element
JP2006509240A (en) High refractive index coated light control film
JPH04355702A (en) Polarizer for infrared light
JPS59107304A (en) Semi-transmitting mirror
JPH03295834A (en) Heat ray reflecting glass
US11315975B2 (en) Image sensor and method for manufacturing the same
JP2538100B2 (en) Polarizer and optical element using the polarizer
JPS6239801A (en) Semi-transparent mirror