JPH06148366A - Method for confining deuterium and temperature nuclear fusion - Google Patents

Method for confining deuterium and temperature nuclear fusion

Info

Publication number
JPH06148366A
JPH06148366A JP4315699A JP31569992A JPH06148366A JP H06148366 A JPH06148366 A JP H06148366A JP 4315699 A JP4315699 A JP 4315699A JP 31569992 A JP31569992 A JP 31569992A JP H06148366 A JPH06148366 A JP H06148366A
Authority
JP
Japan
Prior art keywords
deuterium
plate
cathode
electrolysis
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4315699A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP4315699A priority Critical patent/JPH06148366A/en
Publication of JPH06148366A publication Critical patent/JPH06148366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To easily cause nuclear fusion reaction by setting an electrode made of deuterium occlusion metal as a cathode, performing heavy water electrolysis to cause the cathode to occlude deuterium and forming a barrier layer without permeating deuterium on a cathode surface with electrolysis. CONSTITUTION:A Pd plate 2 is set in an electrolytic cell as a cathode, an Au lead wire of a wire diameter through which deuterium does not permeate is attached thereto and a Pt wire is arranged around the plate 2 in the electrolytic cell as an anode. Electrolysis is performed by means of heavy water as an electrolyte, the heavy water is occluded to the plate 2 and a barrier layer is formed on the cathode surface of the plate 2. In a condition to fit the plate 2 confining deuterium to a ceramic-made packing, sandwiching is performed with two Cu-made jigs 8, 8' with pressurization. Cooling water is allowed to flow and cooled in a channel 9 of one jig 8, the other jig 8' is heated with a heater 10 and a temperature difference is created in the direction of thickness of the plate 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、重水素を吸蔵できる金
属に重水素を吸蔵し、封じ込める方法と、重水素を吸蔵
し封じ込めた金属を用いて常温核融合反応を生起させる
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for occluding and containing deuterium in a metal capable of occluding deuterium, and a method for causing a cold fusion reaction by occluding and storing deuterium.

【0002】[0002]

【従来の技術】従来、重水を電解することによって核融
合を起こす常温核融合は、LiODを電解質にした重水
電解液中で、Pdを陰極に、Ptを陽極にして電解する
のが一般的である。
2. Description of the Related Art Conventionally, cold fusion which causes nuclear fusion by electrolyzing heavy water is generally carried out by electrolyzing Pd as a cathode and Pt as an anode in a heavy water electrolytic solution containing LiOD as an electrolyte. is there.

【0003】ところで、この方法は重水を電解すること
で、Pdに重水素を吸蔵できるのであるが、電流密度を
低下又は電解を止めると、重水素の吸蔵率が低下する。
さらに、重水素を吸蔵したPdを電解液から取り出す
と、重水素がPdの外部に放出され、吸蔵率が益々低下
する。この低下速度は吸蔵率が高い程速い。
By the way, this method can occlude deuterium in Pd by electrolyzing heavy water. However, if the current density is lowered or electrolysis is stopped, the deuterium occlusion rate is lowered.
Furthermore, when Pd that has occluded deuterium is taken out of the electrolytic solution, deuterium is released to the outside of Pd, and the occlusion rate further decreases. The lowering rate is faster as the storage rate is higher.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、重水
素を吸蔵し、高吸蔵率を保持して電解槽外へ取り出せる
ようにした重水素の封じ込め方法と、この方法によって
得た重水素を吸蔵した金属を用いて核融合反応を容易に
生起させることのできる常温核融合方法を提供しようと
するものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a deuterium confinement method that absorbs deuterium and that can be taken out of the electrolytic cell while maintaining a high storage rate. It is intended to provide a cold fusion method capable of easily causing a nuclear fusion reaction by using an occluded metal.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の重水素の封じ込め方法は、重水素吸蔵金属か
らなる電極を陰極として重水電解を行い重水素を陰極に
吸蔵させた後、電解又は無電解メッキ法により陰極表面
に重水素の透過しないバリヤー層を形成することを特徴
とするものである。重水素吸蔵金属としては、Pd、P
d合金、Ti、Ti合金、その他の水素吸蔵金属等が好
ましい。バリヤー層としては、Hg、Au、Ag、C
u、Sn、In、Zn等が好ましい。また本発明の常温
核融合方法は、上記の重水素の封じ込め方法によって得
た重水素を吸蔵した金属に局部的な温度差を付けて核融
合反応を生起させることを特徴とするものである。この
常温核融合方法に於いて、重水素を吸蔵した金属に温度
差を付けるには、大気圧より加圧された状態で行なうこ
とが好ましい。
Means for Solving the Problems The method for confining deuterium of the present invention for solving the above-mentioned problems is as follows. After deuterium electrolysis is performed by deuterium electrolysis using an electrode made of a deuterium storage metal as a cathode, It is characterized by forming a deuterium-impermeable barrier layer on the cathode surface by electrolytic or electroless plating. Deuterium storage metals include Pd and P
D alloy, Ti, Ti alloy, and other hydrogen storage metals are preferable. As the barrier layer, Hg, Au, Ag, C
u, Sn, In, Zn and the like are preferable. Further, the cold fusion method of the present invention is characterized by causing a deuterium-occluded metal obtained by the deuterium confinement method described above to have a local temperature difference to cause a fusion reaction. In this cold fusion method, in order to make a temperature difference between the metals that have occluded deuterium, it is preferable to perform the heating under a pressure higher than atmospheric pressure.

【0006】[0006]

【作用】上記のように本発明の重水素の封じ込め方法
は、重水電解により重水素吸蔵金属の電極(陰極)に重
水素を吸蔵し、電極(陰極)表面に電解又は無電解メッ
キ法により重水素の透過しないバリヤー層を形成するの
で、重水素吸蔵金属の電極(陰極)を電解槽より取り出
しても吸蔵された内部の重水素が外部へ放出されること
がない。特に重水電解により、例えばPd原子当たりの
吸蔵水素原子の数が0.9以上となったものでも安定す
る。
As described above, the deuterium confinement method of the present invention stores deuterium in the electrode (cathode) of the deuterium storage metal by heavy water electrolysis, and the electrode (cathode) surface is subjected to electrolytic or electroless plating. Since the barrier layer is impermeable to hydrogen, even if the electrode (cathode) of the deuterium storage metal is taken out of the electrolytic cell, the stored deuterium is not released to the outside. In particular, heavy water electrolysis stabilizes even when the number of stored hydrogen atoms per Pd atom is 0.9 or more.

【0007】また、本発明の常温核融合方法は、上記の
ように重水素を封じ込めた重水素吸蔵金属に局部的な温
度差を付けるので、内部の重水素原子に局部的な濃縮が
起こり、容易に常温核融合反応が生起される。
Further, in the cold fusion method of the present invention, since a deuterium storage metal containing deuterium has a local temperature difference as described above, local deuterium atoms are locally concentrated. Cold fusion reaction is easily generated.

【0008】[0008]

【実施例】本発明の重水素の封じ込め方法の一実施例を
説明する。図1に示すように電解槽1内に縦50mm、横50
mm、厚さ 1.5mmのPd板2を陰極として配し、これに重
水素の透過しない線径 0.5mmのAuのリード線3を取り
付け、また電解槽1内でPd板2の回りにPt線4を陽
極として配し、電解液5として1MのD2SO4 を含む重水
を用いて電解を行なった。尚、6はガス拡散膜で、分解
して出たO2 、D2 をD2O にして戻すための触媒作用を
持つもので、膜6の構造は反応層を外側にガス拡散層を
内側に向けて配したものである。電解の初期には液温度
を40℃となるように制御して 150mA/cm2 で20時間電解
後、 500mA/cm2 で24時間電解した。その後陽分極を行
い、Pd板2に吸蔵した重水素を酸化して重水素吸蔵率
を求めた結果、0.84であった。前記と同様な操作で再び
Pd板2に重水素を吸蔵させた後、電解液5中にHgイ
オンを1mM添加した。そして30分後に電解を止めた
処、通常では吸蔵された重水素が陰極表面から気泡とし
て放出されるのが、全く放出されず、Pd板2の陰極表
面に電析により、つまり電解メッキによりHgのバリヤ
ー層が形成されていることが確認された。これは電解液
5中より大気中に取り出しても安定で、10日間放置して
も重量変化がなく、吸蔵された重水素の減少は観測され
なかった。同様にAu、Ag、Cu、Sn、In、Zn
等の金属のバリヤー層を形成した場合も、Pd板2に吸
蔵された重水素の減少は観測されなかった。尚、電解液
5中にめっきの平滑剤を混入すると、バリヤー層の形成
が良好に行なわれることが判った。
EXAMPLE An example of the deuterium containment method of the present invention will be described. As shown in Fig. 1, 50 mm in length and 50 in width in the electrolytic cell 1.
mm Pd plate 2 with a thickness of 1.5 mm is used as a cathode, and Au lead wire 3 with a wire diameter of 0.5 mm that does not allow deuterium to pass through is attached to the cathode. Also, in the electrolytic cell 1, a Pt wire is provided around the Pd plate 2. 4 was placed as an anode, and heavy water containing 1 M D 2 SO 4 was used as an electrolytic solution 5 for electrolysis. In addition, 6 is a gas diffusion film, which has a catalytic action for returning decomposed O 2 and D 2 to D 2 O, and the structure of the film 6 is such that the reaction layer is on the outside and the gas diffusion layer is on the inside. It was arranged for. At the initial stage of electrolysis, the solution temperature was controlled to 40 ° C., electrolysis was carried out at 150 mA / cm 2 for 20 hours, and then electrolysis was carried out at 500 mA / cm 2 for 24 hours. After that, anodic polarization was performed, and the deuterium stored in the Pd plate 2 was oxidized to obtain a deuterium storage rate, which was 0.84. After deuterium was occluded in the Pd plate 2 again by the same operation as described above, 1 mM of Hg ion was added to the electrolyte solution 5. Then, when the electrolysis was stopped after 30 minutes, normally the stored deuterium was released as bubbles from the cathode surface, but it was not released at all, and Hg was deposited on the cathode surface of the Pd plate 2, that is, Hg by electrolytic plating. It was confirmed that the barrier layer was formed. It was stable even when taken out from the electrolyte solution 5 into the atmosphere, had no weight change even after being left for 10 days, and a decrease in deuterium occluded was not observed. Similarly, Au, Ag, Cu, Sn, In, Zn
Even when a barrier layer made of a metal such as Pd was formed, a decrease in deuterium occluded in the Pd plate 2 was not observed. It has been found that the barrier layer can be formed well by adding a plating leveling agent to the electrolytic solution 5.

【0009】次に上記のように重水素を封じ込めたPd
板2を用いる本発明の常温核融合方法の一実施例を説明
する。図2に示すように重水素を封じ込めたPd板2を
厚さ1.6mmのセラミックス製パッキン7に嵌込んだ状態
で、2枚のCu製治具8、8′にて加圧しながら挾み、
一方のCu製治具8の通路9に冷却水を流通させて冷却
し、他方のCu製治具8′をヒータ10で加熱し、Pd板
2の厚さ方向に温度差を付けた処、内部の重水素原子に
局部的な濃縮が起こり、常温核融合が生起し、過剰熱が
観測された。
Next, Pd containing deuterium as described above is contained.
An embodiment of the cold fusion method of the present invention using the plate 2 will be described. As shown in FIG. 2, while the Pd plate 2 containing deuterium is fitted in the ceramic packing 7 having a thickness of 1.6 mm, the Pd plate 2 is sandwiched while being pressed by the two Cu jigs 8 and 8 ′.
When the cooling water is circulated through the passage 9 of the one Cu jig 8 to cool it and the other Cu jig 8'is heated by the heater 10 to make a temperature difference in the thickness direction of the Pd plate 2, Local deuterium atoms were locally concentrated, cold fusion occurred, and excess heat was observed.

【0010】上記実施例は、陰極の形状が板であるが、
球状、柱状、円筒状でも良いものである。またリード線
3がAuであるが、これに限るものではなく、重水素を
透過せず通電性の良いものなら何でも良い。さらに電解
液5には重水素の吸蔵率を増加させる目的でAl等のイ
オンを加えても良い。また陽極は、金属に限らずガス拡
散電極、多孔質電極でも良い。しかも対極反応は、酸素
発生、重水素酸化、亜鉛、アルミ等のイオン化反応でも
良い。
In the above embodiment, the shape of the cathode is a plate,
It may be spherical, columnar, or cylindrical. Further, although the lead wire 3 is Au, the lead wire 3 is not limited to this, and any material that does not transmit deuterium and has good electric conductivity may be used. Further, ions such as Al may be added to the electrolytic solution 5 for the purpose of increasing the storage rate of deuterium. Further, the anode is not limited to metal, but may be a gas diffusion electrode or a porous electrode. In addition, the counter electrode reaction may be oxygen generation, deuterium oxidation, ionization reaction of zinc, aluminum or the like.

【0011】然してまた、Pd板2の厚さ方向に温度差
を付ける手段としては、実施例の他、熱媒体である気体
(ヘリウムガス等)、液体(純水)、固体(銀)を接触
させる、光(電磁波)を当てる等の手段がある。さらに
Pd板2を挟む治具はCu製に限らず、他の金属やセラ
ミックスでも良い。
Further, as means for making a temperature difference in the thickness direction of the Pd plate 2, in addition to the embodiment, gas (helium gas etc.) which is a heat medium, liquid (pure water) and solid (silver) are contacted. There are means such as applying light and applying light (electromagnetic waves). Further, the jig for sandwiching the Pd plate 2 is not limited to Cu, and other metals or ceramics may be used.

【0012】[0012]

【発明の効果】以上の説明で判るように本発明の重水素
の封じ込め方法によれば、重水素を吸蔵させた陰極にバ
リヤー層を形成できるので、吸蔵率の高い状態を維持で
きる。また、本発明の常温核融合方法によれば、重水素
を吸蔵した試料に局部的な温度差を付けて重水素濃度で
低温側で高くすることができるので、核融合反応を容易
に生起することができる。
As can be seen from the above description, according to the method for confining deuterium of the present invention, the barrier layer can be formed on the cathode in which deuterium is occluded, so that the state of high occluding rate can be maintained. Further, according to the cold fusion method of the present invention, since a deuterium-occluded sample can have a local temperature difference and the deuterium concentration can be increased on the low temperature side, a nuclear fusion reaction easily occurs. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の重水素の封じ込め方法の一実施例を示
す図である。
FIG. 1 is a diagram showing an embodiment of a deuterium containment method of the present invention.

【図2】本発明の常温核融合方法の実施状況を示す図で
ある。
FIG. 2 is a diagram showing a state of implementation of the cold fusion method of the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽 2 Pd板(陰極) 3 リード線 4 Pt線(陽極) 5 電解液 6 ガス拡散膜 7 セラミックス製パッキン 8、8′ Cu製治具 9 冷却水通路 10 ヒータ 1 Electrolyzer 2 Pd plate (cathode) 3 Lead wire 4 Pt wire (anode) 5 Electrolyte solution 6 Gas diffusion film 7 Ceramic packing 8, 8'Cu jig 9 Cooling water passage 10 Heater

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重水素吸蔵金属からなる電極を陰極とし
て重水電解を行い重水素を陰極に吸蔵させた後、電解又
は無電解メッキ法により陰極表面に重水素の透過しない
バリヤー層を形成することを特徴とする重水素の封じ込
め方法。
1. A deuterium-impermeable barrier layer is formed on the surface of a cathode by electrolysis or electroless plating after deuterium is occluded by deuterium electrolysis using an electrode made of a deuterium storage metal as a cathode. Deuterium containment method characterized by:
【請求項2】 重水素吸蔵金属が、Pd合金、Ti、そ
の他の水素吸蔵金属のいずれかであることを特徴とする
請求項1記載の重水素の封じ込め方法。
2. The method for confining deuterium according to claim 1, wherein the deuterium storage metal is any one of a Pd alloy, Ti, and other hydrogen storage metals.
【請求項3】 バリヤー層が、Hg、Au、Ag、C
u、Sn、In、Znのいずれかであることを特徴とす
る請求項1記載の重水素の封じ込め方法。
3. The barrier layer is Hg, Au, Ag, C.
The method for confining deuterium according to claim 1, wherein the method is any one of u, Sn, In, and Zn.
【請求項4】 請求項1、2、3のいずれかの重水素の
封じ込め方法によって得た重水素を吸蔵した金属に、局
部的な温度差を付けて核融合反応を生起させることを特
徴とする常温核融合方法。
4. A deuterium-occluded metal obtained by the deuterium confinement method according to claim 1, wherein a deuterium-occluded metal is subjected to a local temperature difference to cause a nuclear fusion reaction. Cold fusion method.
【請求項5】 大気圧より加圧された状態で温度差を付
ける操作を行なうことを特徴とする請求項4記載の常温
核融合方法。
5. The cold fusion method according to claim 4, wherein an operation of making a temperature difference is performed under a state of being pressurized from atmospheric pressure.
JP4315699A 1992-10-30 1992-10-30 Method for confining deuterium and temperature nuclear fusion Pending JPH06148366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4315699A JPH06148366A (en) 1992-10-30 1992-10-30 Method for confining deuterium and temperature nuclear fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4315699A JPH06148366A (en) 1992-10-30 1992-10-30 Method for confining deuterium and temperature nuclear fusion

Publications (1)

Publication Number Publication Date
JPH06148366A true JPH06148366A (en) 1994-05-27

Family

ID=18068489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4315699A Pending JPH06148366A (en) 1992-10-30 1992-10-30 Method for confining deuterium and temperature nuclear fusion

Country Status (1)

Country Link
JP (1) JPH06148366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035574A1 (en) * 1994-06-20 1995-12-28 Yoshiaki Arata Heat energy generating method and apparatus
EP0766260A1 (en) * 1995-09-26 1997-04-02 CHIKUMA, Toichi Hydrogen nucleus storage method and hydrogen nucleus storage unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035574A1 (en) * 1994-06-20 1995-12-28 Yoshiaki Arata Heat energy generating method and apparatus
EP0766260A1 (en) * 1995-09-26 1997-04-02 CHIKUMA, Toichi Hydrogen nucleus storage method and hydrogen nucleus storage unit
US5792443A (en) * 1995-09-26 1998-08-11 Chikuma; Toichi Hydrogen nucleus storage method and hydrogen nucleus storage unit
US5863495A (en) * 1995-09-26 1999-01-26 Chikuma; Toichi Hydrogen nucleus storage method and hydrogen nucleus storage unit
EP1158539A3 (en) * 1995-09-26 2004-04-14 CHIKUMA, Toichi Hydrogen nucleus storage unit

Similar Documents

Publication Publication Date Title
US4959132A (en) Preparing in situ electrocatalytic films in solid polymer electrolyte membranes, composite microelectrode structures produced thereby and chloralkali process utilizing the same
Meissner et al. Light-induced generation of hydrogen at CdS-monograin membranes
Schuldiner et al. An Electrochemical Study of Hydrogen Producing Reactions Catalyzed by Gold and Gold–Palladium Cathodes
JP2000234193A (en) Electrolytic cathode and electrolytic cell using the cathode
US3271196A (en) Fuel cell electrodes
Machida et al. Formaldehyde electro-oxidation on copper metal and copper-based amorphous alloys in alkaline media.
JPS58212069A (en) Electrode for fusible carbonate fuel battery
JPH06148366A (en) Method for confining deuterium and temperature nuclear fusion
JP2002246039A (en) Liquid fuel cell
US3455845A (en) Method for the production of finely-divided catalyst coatings on pore-free surfaces of hydrogen-absorbing metallic substances,and product resulting therefrom
JP2562164B2 (en) Decontamination method and device for metal surface
WO1993000683A1 (en) Apparatus for producing heat from deuterated film-coated palladium
JPH06160560A (en) Heavy water electrolysis method, ordinary-temperature nuclear fusion method, and extracting method for its energy
JPH05134098A (en) Production method of useful element from water
WO1993014503A1 (en) Energy generating method based on gravitational collapse
JPH05501305A (en) How to prepare electrodes for use in heat generators
Schuldiner et al. TRANSPORT OF HYDROGEN THROUGH PALLADIUM-CLAD ELECTRODES
Hoare Some Aspects of the Reduction of Oxygen at a Platinum‐Oxygen Alloy Diaphragm
WO1994014163A1 (en) Methods for forming films on cathodes
WO1992022907A1 (en) Methods for forming films on cathodes
WO1994015342A1 (en) Apparatus for storing isotopes of hydrogen
JP2000192272A (en) Aqueous active hydrogen and production of alkaline ionized water containing active hydrogen
WO1992022908A1 (en) Apparatus for producing heat from deuterated palladium
WO1992022906A1 (en) Methods for cleaning cathodes
WO1992022905A1 (en) Method for producing heat from deuterated palladium