JPH06148057A - Method and instrument for measuring fine particle - Google Patents

Method and instrument for measuring fine particle

Info

Publication number
JPH06148057A
JPH06148057A JP4294058A JP29405892A JPH06148057A JP H06148057 A JPH06148057 A JP H06148057A JP 4294058 A JP4294058 A JP 4294058A JP 29405892 A JP29405892 A JP 29405892A JP H06148057 A JPH06148057 A JP H06148057A
Authority
JP
Japan
Prior art keywords
sample
refractive index
solvent
particle
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4294058A
Other languages
Japanese (ja)
Inventor
Kazuo Oguchi
一夫 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4294058A priority Critical patent/JPH06148057A/en
Publication of JPH06148057A publication Critical patent/JPH06148057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a fine particle measuring technique by which the distribu tion of particle sizes in an arbitrary sample to be measured can be automatically measured with high accuracy. CONSTITUTION:A sample 6a and sample diluting liquid 2a are supplied to a mixing tank 9 above a gravimeter 10 from a sample tank 6 and sample diluting liquid tank 2. A sample tube 15 connected with a first fine particle meter 11 and a pressurized gas introducing tube 8 are connected to the tank 9 and the sample diluting liquid 2a and a sample-diluted liquid prepared by diluting the sample 6a with the liquid 2a are supplied to the meter 11 by using a pressurized gas. A refractive index meter 12 for liquid and flowmeter 13 are connected to the sample tube 15 on the downstream side of the meter 11 and respectively measure the refractive index and flow rate of each kind of liquid immediately after passing through the meter 11. The measured results of the meter 11 are corrected by using the refractive index measured by the meter 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微粒子計測技術に関し、
特に、計測・分析機器製造業、化学プラント製造業及び
半導体製造業、半導体材料・化学薬品製造業などに適用
して有効な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring fine particles,
In particular, the present invention relates to a technology effectively applied to the measuring / analyzing instrument manufacturing industry, the chemical plant manufacturing industry, the semiconductor manufacturing industry, the semiconductor material / chemical manufacturing industry, and the like.

【0002】[0002]

【従来の技術】たとえば、半導体装置の製造プロセスで
は、半導体回路の一層の高集積化・微細化に伴って、半
導体ウエハの処理工程に用いられる各種薬液などに含ま
れる極微細な異物も製品歩留りに大きく影響することが
懸念されており、任意の試料溶媒中の当該微細異物に関
する高精度の測定技術の開発が必須となっている。
2. Description of the Related Art For example, in a semiconductor device manufacturing process, as semiconductor circuits become more highly integrated and miniaturized, ultrafine foreign substances contained in various chemicals used in the process of processing semiconductor wafers also result in a product yield. Therefore, it is essential to develop a highly accurate measurement technique for the fine foreign matter in an arbitrary sample solvent.

【0003】[0003]

【発明が解決しようとする課題】ところが、既存の液中
微粒子計測装置に於いては、粒径既知のポリスチレンラ
テックス等の標準粒子を純水等の中に単分散させた較正
標準液を用いて求めた微粒子粒径と散乱光パルス電圧値
との較正曲線(関係A)をそのまま溶媒及び溶質の光学
的屈折率値が較正標準液と異なった測定実試料中の異物
微粒子の粒径別粒子数分布計測に適用しているため、測
定実試料中の異物微粒子に関する粒径および粒子数の測
定結果の信頼性が必ずしも高いとは言えない。特に、最
近の半導体プロセスのように極微細の異物の混入が問題
となるような用途では、上述のような従来の測定技術で
は、測定精度が不十分となる懸念がある。
However, in the existing apparatus for measuring fine particles in liquid, a calibration standard solution in which standard particles such as polystyrene latex having a known particle size are monodispersed in pure water or the like is used. The calibration curve (relation A) between the obtained particle size and the scattered light pulse voltage value is used as it is. The optical refractive index values of the solvent and solute are different from those of the calibration standard solution. Since it is applied to distribution measurement, it cannot be said that the reliability of the measurement results of the particle size and the number of foreign particles in the actual measurement sample is necessarily high. In particular, in applications such as the recent semiconductor process in which the inclusion of extremely fine foreign matter poses a problem, there is a concern that the measurement accuracy will be insufficient with the above-described conventional measurement technique.

【0004】また、既存の装置では、計測微粒子数が高
濃度で装置計数上限値を超えた場合には単にエラーメッ
セージが表示される等だけで粒径別粒子数分布を知るこ
とができない。
Further, in the existing device, when the number of measured fine particles exceeds the upper limit value of the device count at a high concentration, an error message is simply displayed and the particle number distribution by particle size cannot be known.

【0005】従って、本発明の目的は、任意の測定実試
料中における粒径別粒子数分布の測定を高精度かつ自動
的に行うことが可能な微粒子計測技術を提供することに
ある。
Therefore, an object of the present invention is to provide a fine particle measuring technique capable of highly accurately and automatically measuring the particle number distribution by particle size in an arbitrary actual measurement sample.

【0006】本発明の他の目的は、任意の濃度の測定実
試料中における粒径別粒子数分布の測定を高精度かつ自
動的に行うことが可能な微粒子計測技術を提供すること
にある。
Another object of the present invention is to provide a fine particle measuring technique capable of highly accurately and automatically measuring the particle number distribution by particle size in a measurement actual sample having an arbitrary concentration.

【0007】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0008】[0008]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記のとおりである。
Among the inventions disclosed in the present application, a brief description will be given to the outline of typical ones.
It is as follows.

【0009】すなわち、本発明は、粒径既知の標準粒子
を標準溶媒中に単分散させた較正標準液に一定波長の光
を照射した時に発生するMie散乱光のパルス電圧値と
標準粒子の粒径との第1の相関関係(関係A)を調べ、
この第1の相関関係に基づいて測定実試料中における微
粒子粒径と粒子数をそれぞれ散乱光のパルス電圧値とパ
ルス数より計測する微粒子計測方法において、測定実試
料における微粒子を除いた溶液部分である試料溶媒の光
学的屈折率を当該測定実試料の微粒子計測時に測定し、
当該測定実試料の計測時に標準溶媒と試料溶媒との屈折
率の違いで生ずる微粒子粒径と散乱光パルス電圧値との
第2の相関関係(関係B)の第1の相関関係(関係A)
からのズレを自動演算処理で修正することで溶媒屈折率
補正された粒径別粒子数分布を求めるものである。
That is, according to the present invention, the pulse voltage value of Mie scattered light generated when a calibration standard solution in which standard particles of known particle size are monodispersed in a standard solvent is irradiated with light having a constant wavelength and the standard particle size. Check the first correlation with the diameter (relationship A),
According to the first correlation, the particle size and the number of particles in the actual sample are measured from the pulse voltage value and the pulse number of the scattered light, respectively, in the solution part excluding the particles in the actual sample. The optical refractive index of a certain sample solvent is measured when measuring the fine particles of the actual sample,
The first correlation (relation A) of the second correlation (relation B) between the particle size of fine particles and the scattered light pulse voltage value caused by the difference in refractive index between the standard solvent and the sample solvent when measuring the actual sample.
By correcting the deviation from the above by an automatic calculation process, the particle number distribution for each particle size corrected for the solvent refractive index is obtained.

【0010】また、本発明は、請求項1記載の微粒子計
測方法において、微粒子を殆んど含まず測定実試料と可
溶かつ透明で光学的屈折率値が相異なった数種の希釈溶
媒の各々によって測定実試料を希釈して微粒子計測を行
い、測定実試料中の微粒子と希釈溶媒との屈折率が一致
する場合に微粒子の散乱光パルス強度が最小になること
より、測定実試料中の微粒子の屈折率を自動測定し、測
定実試料の計測時に当該測定実試料中の溶質(異物微粒
子)と標準粒子との屈折率の違いで生ずる微粒子粒径と
散乱光パルス電圧値との第3の相関関係(関係C)の第
1の相関関係(関係A)からのズレを自動演算処理で修
正することで溶質屈折率補正された粒径別粒子数分布を
求めるものである。
Further, the present invention provides a method for measuring fine particles according to claim 1, which comprises a plurality of dilution solvents which are almost free of fine particles and which are soluble and transparent to the actual sample to be measured and have different optical refractive index values. The measurement actual sample is diluted by each to measure the fine particles, and when the refractive index of the fine particles in the measurement actual sample and the diluting solvent match, the scattered light pulse intensity of the fine particles is minimized. The refractive index of the fine particles is automatically measured, and when measuring the actual measurement sample, the particle size of the fine particles and the scattered light pulse voltage value generated due to the difference in the refractive index between the solute (foreign matter fine particles) and the standard particles in the actual measurement sample The deviation from the first correlation (relationship A) in the correlation (relationship C) is corrected by an automatic calculation process to obtain the solute refractive index-corrected particle number distribution by particle size.

【0011】また、本発明は、請求項1または2記載の
微粒子計測方法において、測定実試料の溶媒や微粒子の
屈折率が別途既知の場合、屈折率値を外部より操作者
が、または任意の記憶媒体から入力し、微粒子粒径と散
乱光パルス電圧値との第4の相関関係(関係D)の第1
の相関関係(関係A)からのズレを自動演算処理で修正
することで溶媒及び溶質屈折率補正された粒径別粒子数
分布を求めるものである。
Further, according to the present invention, in the method for measuring fine particles according to claim 1 or 2, when the refractive index of the solvent or the fine particles of the actual measurement sample is known separately, the refractive index value can be externally determined by an operator or by an arbitrary operator. The first correlation of the fourth correlation (relation D) between the particle size of fine particles and the scattered light pulse voltage value inputted from the storage medium.
By correcting the deviation from the correlation (relation A) by the automatic calculation process, the particle number distribution by particle size corrected for the solvent and solute refractive index is obtained.

【0012】また、本発明は、請求項1,2または3記
載の微粒子計測方法において、測定実試料中の計測微粒
子数が高濃度のために計測可能上限値を超えた場合に、
自動的に測定実試料中の希釈および再計測を行うもので
ある。
Further, the present invention provides a method for measuring fine particles according to claim 1, 2 or 3, wherein the number of measured fine particles in an actual measurement sample exceeds a measurable upper limit value due to high concentration,
Automatically dilutes and remeasures the actual sample.

【0013】また、本発明は、粒径既知の標準粒子を標
準溶媒中に単分散させた較正標準液に一定波長の光を照
射した時に発生する散乱光のパルス電圧値と標準粒子の
粒径との第1の相関関係(関係A)を調べ、この第1の
相関関係に基づいて測定実試料中における微粒子の粒径
と粒子数をそれぞれ散乱光のパルス電圧値とパルス数よ
り計測する液中微粒子計測装置において、第1の相関関
係を計測する第1微粒子計より後方の流路上に配置さ
れ、較正標準液と異なった測定実試料における微粒子を
除いた溶液部分である試料溶媒の光学的屈折率を自動測
定する屈折率計測手段と、この屈折率計測手段によって
計測された試料溶媒の光学的屈折率に基づいて測定実試
料の計測時に標準溶媒と試料溶媒との屈折率の違いで生
ずる微粒子粒径と散乱光パルス電圧値との第2の相関関
係(関係B)の第1の相関関係(関係A)からのズレを
自動演算処理で修正することで溶媒屈折率補正された粒
径別粒子数分布を求める第1の演算手段とを備えたもの
である。
Further, according to the present invention, a pulse voltage value of scattered light generated when a calibration standard solution obtained by monodispersing standard particles of known particle size in a standard solvent is irradiated with light of a constant wavelength, and the particle size of the standard particles. And a liquid for measuring the particle size and the number of fine particles in the actual measurement sample from the pulse voltage value and the pulse number of the scattered light, respectively, based on this first correlation. In the medium fine particle measuring device, the optical solvent of the sample solvent, which is the solution portion excluding the fine particles in the actual measurement sample different from the calibration standard solution, is arranged on the flow path behind the first fine particle meter for measuring the first correlation. Refractive index measuring means for automatically measuring the refractive index, and measurement based on the optical refractive index of the sample solvent measured by this refractive index measuring means occurs due to the difference in refractive index between the standard solvent and the sample solvent when measuring the actual sample. Particle size and dispersion The deviation from the first correlation (relationship A) of the second correlation (relationship B) with the optical pulse voltage value is corrected by an automatic calculation process to obtain the particle number distribution by particle size corrected for the solvent refractive index. And a first calculating means for obtaining.

【0014】また、本発明は、請求項5記載の微粒子計
測装置において、測定実試料を貯留・供給する試料槽
と、微粒子を殆んど含まず測定実試料と可溶かつ透明な
希釈溶媒を貯留・供給する希釈液槽と、測定実試料およ
び希釈溶媒を所望の割合で混合し、第1の微粒子計に供
給する混合槽と、この混合槽から第1の微粒子計に供給
される測定実試料の流量を計測する流量計測手段と、試
料槽から混合槽に至る希釈溶媒の供給経路に介設された
第2の微粒子計と、光学的屈折率値が相異なった数種の
希釈溶媒の各々で測定実試料を希釈して第1の微粒子計
で微粒子計測し、測定実試料中の異物微粒子と希釈溶媒
との屈折率が一致する場合に微粒子の散乱光パルス強度
が最小になることより、測定実試料中の微粒子の屈折率
を自動測定する第2の演算手段と、測定実試料の計測時
に溶質(異物微粒子)と標準粒子との屈折率の違いで生
ずる微粒子粒径と散乱光パルス電圧値との第3の相関関
係(関係C)の第1の相関関係(関係A)からのズレを
自動演算処理で修正することで溶質屈折率補正された粒
径別粒子数分布を求める第3の演算手段とを備えたもの
である。
Further, according to the present invention, in the fine particle measuring apparatus according to the fifth aspect, a sample tank for storing and supplying the actual measurement sample, a measurement actual sample containing almost no fine particles and a soluble and transparent diluent solvent are provided. A diluting liquid tank to be stored / supplied, a measurement actual sample and a diluent solvent are mixed at a desired ratio and supplied to the first fine particle meter, and a measurement actual solution supplied from this mixing tank to the first fine particle meter. A flow rate measuring means for measuring the flow rate of the sample, a second fine particle meter provided in the diluting solvent supply path from the sample tank to the mixing tank, and a diluting solvent of several kinds having different optical refractive index values. By diluting the actual measurement sample with each and measuring the fine particles with the first fine particle meter, the scattered light pulse intensity of the fine particles is minimized when the foreign particles in the measurement actual sample and the diluting solvent have the same refractive index. , Measuring the refractive index of fine particles in the actual sample automatically The first correlation of the third correlation (relation C) between the particle diameter of the fine particles and the scattered light pulse voltage value, which is generated due to the difference in the refractive index between the solute (foreign particle fine particles) and the standard particles during the measurement of the actual sample to be measured. It is provided with a third calculation means for obtaining a solute refractive index-corrected particle number distribution by particle size by correcting a deviation from the correlation (relation A) by an automatic calculation process.

【0015】また、本発明は、請求項5または6記載の
微粒子計測装置において、測定実試料の溶媒や微粒子の
屈折率が別途既知の場合、当該屈折率値を外部より操作
者が、または任意の記憶媒体から第1または第2の演算
手段に入力し、微粒子粒径と散乱光パルス電圧値との第
4の相関関係(関係D)の第1の相関関係(関係A)か
らのズレを自動演算処理で修正することで溶媒及び溶質
屈折率補正された粒径別粒子数分布を求めるものであ
る。
Further, according to the present invention, in the fine particle measuring apparatus according to the fifth or sixth aspect, when the refractive index of the solvent or the fine particles of the actual measurement sample is known separately, the refractive index value can be externally determined by an operator or arbitrarily. From the first storage medium to the first or second calculating means, and the deviation of the fourth correlation (relationship D) between the particle size of the particles and the scattered light pulse voltage value from the first correlation (relationship A). The particle number distribution for each particle size corrected for the refractive index of the solvent and solute is obtained by correction by the automatic calculation process.

【0016】また、本発明は、請求項6または7記載の
微粒子計測装置において、測定実試料中の計測微粒子数
の濃度が第1の微粒子計の計測可能上限値を超えない範
囲に、混合槽における希釈溶媒による希釈率を制御する
ものである。
Further, according to the present invention, in the fine particle measuring apparatus according to claim 6 or 7, the mixing tank is provided so that the concentration of the number of measured fine particles in the actual measurement sample does not exceed the measurable upper limit value of the first fine particle meter. It controls the dilution ratio by the dilution solvent in.

【0017】[0017]

【作用】上記した本発明の微粒子計測技術によれば、た
とえばフローセルや入射光源、反射光検出部等の第1の
微粒子計個有の光学系諸パラメーターと較正標準液によ
る微粒子粒径と散乱光パルス電圧値との第1の相関関係
(関係A)とを用いてMie散乱光強度式から、試料溶
媒と溶質の光学的屈折率を外部パラメーターとする微粒
子粒径と散乱光パルス電圧値との間の当該第1の微粒子
計に固有の第2〜第4の相関関係(実験式)を求める。
そして、測定又はキー入力した実試料溶媒と溶質の屈折
率値をこの実験式に代入して正確な異物などの微粒子粒
径を計測する。
According to the above-described fine particle measuring technique of the present invention, for example, various optical system parameters of the first fine particle meter such as the flow cell, the incident light source, and the reflected light detecting section, and the fine particle diameter and scattered light by the calibration standard solution. From the Mie scattered light intensity equation using the first correlation (relation A) with the pulse voltage value, the particle diameter of the fine particles and the scattered light pulse voltage value with the optical refractive index of the sample solvent and the solute as external parameters The second to fourth correlations (empirical formulas) unique to the first fine particle meter are obtained.
Then, the measured or key input refractive index values of the actual sample solvent and solute are substituted into this empirical formula to accurately measure the particle size of fine particles such as foreign matter.

【0018】また、高濃度微粒子試料については、たと
えば、異物などの微粒子を殆んど含まないその試料の主
成分溶媒を希釈溶媒として用いることで希釈・再計測値
が装置計数上限値を超えないように希釈倍率を自動設定
させる。
For a high-concentration fine particle sample, for example, the dilution / remeasurement value does not exceed the upper limit value of the device count by using the main component solvent of the sample containing almost no fine particles such as foreign substances as the dilution solvent. To set the dilution ratio automatically.

【0019】[0019]

【実施例】以下、本発明の一例である微粒子計測方法お
よび装置について、図面を参照しながら詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method and apparatus for measuring fine particles, which is an example of the present invention, will be described in detail below with reference to the drawings.

【0020】図1は本発明の一実施例である微粒子計測
装置の構成の一例を示す概念図である。
FIG. 1 is a conceptual diagram showing an example of the structure of a particle measuring apparatus which is an embodiment of the present invention.

【0021】重量計10に載置された混合槽9には、試
料液採取管7および希釈液採取管3を介して、試料槽6
および試料希釈液槽2が接続されている。試料槽6に
は、外部から清浄な与圧気体が供給される加圧気体導入
管5が接続されており、内部の試料6aを試料液採取管
7内に圧送して混合槽9に対する供給を行う。同様に、
試料希釈液槽2には、加圧気体導入管1が接続されてお
り、内部の試料希釈液2aが希釈液採取管3を通じて混
合槽9に供給される。希釈液採取管3の経路には、第2
微粒子計4が介設されており、当該希釈液採取管3を通
過して混合槽9に至る試料希釈液2aにおける微粒子の
有無を監視する。
The mixing tank 9 mounted on the weighing scale 10 is connected to the sample tank 6 via the sample liquid collecting pipe 7 and the diluting liquid collecting pipe 3.
And the sample diluent bath 2 is connected. A pressurized gas introduction pipe 5 to which clean pressurized gas is supplied from the outside is connected to the sample tank 6, and the internal sample 6a is pressure-fed into the sample liquid collecting pipe 7 so as to supply to the mixing tank 9. To do. Similarly,
A pressurized gas introducing pipe 1 is connected to the sample diluting liquid tank 2, and the sample diluting liquid 2 a therein is supplied to the mixing tank 9 through the diluting liquid sampling pipe 3. The diluting liquid collection tube 3 has a second path
A fine particle meter 4 is provided to monitor the presence or absence of fine particles in the sample dilution liquid 2a that passes through the dilution liquid sampling tube 3 and reaches the mixing tank 9.

【0022】混合槽9には、第1微粒子計11が介設さ
れた試料管15および加圧気体導入管8が接続されてお
り、当該加圧気体導入管8を通じて外部から作用する清
浄な与圧気体により、第1微粒子計11に対する試料6
a、試料希釈液2a、試料希釈液2aによって希釈され
た試料6aなどの内容液の供給が行われる。
A sample tube 15 in which a first fine particle meter 11 is provided and a pressurized gas introduction tube 8 are connected to the mixing tank 9, and a clean supply which acts from the outside through the pressurized gas introduction tube 8 is applied. Sample 6 for the first fine particle meter 11 by the pressurized gas
The contents liquid such as a, the sample diluent 2a, and the sample 6a diluted with the sample diluent 2a is supplied.

【0023】また、試料管15における第1微粒子計1
1の下流側には流量計13が介設されており、第1微粒
子計11を通過した直後の各種液体の流量の計測を行
う。
The first fine particle meter 1 in the sample tube 15
A flow meter 13 is provided on the downstream side of 1 to measure the flow rates of various liquids immediately after passing through the first fine particle meter 11.

【0024】なお、前記第1微粒子計11および第2微
粒子計4は、たとえば、測定実試料を光学的に透明で耐
薬品性を有する図示しないフローセル中を通過させ、そ
の際にレーザー光を試料に照射して異物微粒子より放射
される散乱光のパルスを図示しない受光素子で電気信号
として測定するレーザー光散乱方式の微粒子計測機構か
らなる。
The first fine particle meter 11 and the second fine particle meter 4 pass, for example, an actual sample to be measured through a flow cell (not shown) having optical transparency and chemical resistance, and at that time, a laser beam is applied to the sample. It is composed of a laser light scattering type fine particle measuring mechanism that measures the pulse of scattered light emitted from foreign particles by irradiating the surface of the particle with an unillustrated light receiving element as an electric signal.

【0025】この場合、試料管15における第1微粒子
計11の下流側には、液体屈折率計12が介設されてお
り、第1微粒子計11を通過した直後の各種液体の屈折
率の計測を行うことが可能になっている。
In this case, a liquid refractometer 12 is provided downstream of the first fine particle meter 11 in the sample tube 15, and the refractive index of various liquids immediately after passing through the first fine particle meter 11 is measured. It is possible to do.

【0026】加圧気体導入管1〜試料管15の各部は、
システム制御部14の配下で一括して制御される。ま
た、システム制御部14は、第1微粒子計11および液
体屈折率計12、さらには流量計13,重量計10およ
び図示しないキーボードなどを介して操作者から入力さ
れる各種の情報の基づいて、後述のような各種制御動作
および演算を行う。
Each part of the pressurized gas introduction tube 1 to the sample tube 15 is
It is controlled collectively under the control of the system control unit 14. Further, the system control unit 14 is based on various information input by the operator via the first fine particle meter 11 and the liquid refractometer 12, the flow meter 13, the weight meter 10 and a keyboard (not shown). Various control operations and calculations as described below are performed.

【0027】以下、本実施例の微粒子計測方法および装
置の作用について述べる。
The operation of the fine particle measuring method and apparatus of this embodiment will be described below.

【0028】(1)液中微粒子計較正用標準液と測定実
試料溶媒(異物微粒子を除いた溶液部分)との光学的屈
折率が異なる場合 まず、第1微粒子計11の後方に設置した液体屈折率計
12で試料溶媒の光学的屈折率値を測定する。一方、図
示しないフローセルや入射光源、反射光検出部等の第1
微粒子計11の光学系諸パラメーターと較正標準液によ
る微粒子粒径と散乱光パルス電圧値との第1の相関関係
(関係A)とを用いてMie散乱光強度式から、試料溶
媒と溶質との光学的屈折率を外部パラメーターとする第
1微粒子計11に固有の微粒子粒径と散乱光パルス電圧
値との間の実験式(関係B)(関係C)(関係D)を予
め求めておき、システム制御部14には、散乱光パルス
電圧値から屈折率補正された微粒子粒径を自動演算処理
する機能を持たせる。そして、液体屈折率計12で測定
した試料溶媒の屈折率値をシステム制御部14に送信し
て溶媒屈折率補正(関係B)された粒径別粒子数分布を
求める。
(1) In case where the standard solution for calibrating in-liquid fine particle meter and the actual sample solvent (solution portion excluding foreign particle) are different in optical refractive index First, the liquid installed behind the first fine particle meter 11 The refractometer 12 measures the optical refractive index value of the sample solvent. On the other hand, a first flow cell, an incident light source, a reflected light detection unit, etc. not shown
From the Mie scattered light intensity formula using the optical system parameters of the fine particle meter 11 and the first correlation (relation A) between the particle size of fine particles by the calibration standard solution and the scattered light pulse voltage value, the sample solvent and the solute are An empirical formula (relation B) (relation C) (relation D) between the particle diameter of the fine particles and the scattered light pulse voltage value unique to the first fine particle meter 11 having the optical refractive index as an external parameter is obtained in advance, The system control unit 14 has a function of automatically calculating the particle size of the fine particles whose refractive index is corrected from the scattered light pulse voltage value. Then, the refractive index value of the sample solvent measured by the liquid refractometer 12 is transmitted to the system control unit 14, and the solvent refractive index corrected (relation B) particle size distribution by particle size is obtained.

【0029】(2)標準粒子と測定実試料溶質(異物微
粒子)との光学的屈折率が異なる場合 まず、試料6aを試料槽6に入れ、異物微粒子を含まな
い清浄な窒素等の不活性ガスを加圧気体導入管5により
試料槽6中に導入して試料液面を加圧し、混合槽9に試
料6aを圧送する。混合槽9の下に位置する重量計10
で槽中に流入した試料重量を測定し、規定量になる直前
で試料槽6の試料液面下に浸っていた試料液採取管7を
液面上に引上げ、管内に残留している試料液体を加圧気
体導入管5より流出する不活性ガスで混合槽9の中に追
い出す。
(2) When the standard particles and the actual sample solute (foreign matter fine particles) have different optical refractive indices First, the sample 6a is placed in the sample tank 6 and a clean inert gas such as nitrogen containing no foreign matter particles. Is introduced into the sample tank 6 through the pressurized gas introduction pipe 5 to pressurize the sample liquid surface, and the sample 6a is pressure-fed to the mixing tank 9. Weighing scale 10 located below the mixing tank 9
The weight of the sample flowing into the tank was measured, and the sample liquid sampling pipe 7 that had been immersed under the sample liquid surface of the sample tank 6 just before reaching the specified amount was pulled up to the liquid surface, and the sample liquid remaining in the pipe Is expelled into the mixing tank 9 with the inert gas flowing out from the pressurized gas introduction pipe 5.

【0030】また、異物微粒子を殆んど含まず測定実試
料6aと可溶かつ透明で、かつ光学的屈折率値が種々異
なった数種の比較溶媒を用意し、まず、それらの溶媒の
中のひとつを試料希釈液槽2に入れる。同様に異物微粒
子を含まない清浄な窒素等の不活性ガスを加圧気体導入
管1により試料希釈液槽2中に導入して溶媒液面を加圧
し、第2微粒子計4に比較溶媒を圧送して粒径別粒子数
分布を計測して溶媒が異物微粒子を含まないことを確認
の上、混合槽9に流し込む。同様に混合槽9の下に位置
する重量計10で槽中に流入した比較溶媒重量を測定
し、規定量になる直前で試料希釈液槽2の試料液面下に
浸っていた希釈液採取管3を液面上に引上げ、管内に残
留している溶媒液体を加圧気体導入管1より流出する不
活性ガスで混合槽9中に追い出す。
Further, several kinds of comparative solvents which are substantially free of fine foreign particles and are soluble and transparent to the actual sample 6a and have different optical refractive index values are prepared. Put one of them in the sample diluent bath 2. Similarly, a clean inert gas such as nitrogen containing no foreign matter particles is introduced into the sample diluting liquid tank 2 through the pressurized gas introduction pipe 1 to pressurize the liquid surface of the solvent, and the comparative solvent is sent under pressure to the second particle meter 4. Then, the particle number distribution for each particle size is measured, and after confirming that the solvent does not contain foreign particles, the solvent is poured into the mixing tank 9. Similarly, the weight of the comparative solvent that has flowed into the tank is measured by a weight scale 10 located below the mixing tank 9, and the diluting liquid sampling tube that is immersed under the sample liquid level in the sample diluting liquid tank 2 immediately before reaching the specified amount. 3 is pulled above the liquid surface, and the solvent liquid remaining in the pipe is expelled into the mixing tank 9 by the inert gas flowing out from the pressurized gas introduction pipe 1.

【0031】この様にして測定実試料を比較溶媒と適当
な比率で混合希釈した後、異物微粒子を含まない清浄な
窒素等の不活性ガスを加圧気体導入管8により混合槽9
中に導入して混合試料液面を加圧し、第1微粒子計11
に混合試料を圧送して粒径別粒子数分布を計測し、液体
屈折率計12で混合試料の光学的屈折率値を測定する。
In this way, the actual sample to be measured is mixed and diluted with the comparative solvent at an appropriate ratio, and then a clean inert gas such as nitrogen containing no foreign matter particles is mixed by the pressurized gas introduction pipe 8 into the mixing tank 9.
It is introduced into the inside and pressurizes the mixed sample liquid surface, and the first fine particle meter 11
The mixed sample is fed under pressure to measure the particle number distribution by particle size, and the liquid refractive index 12 measures the optical refractive index value of the mixed sample.

【0032】更に、別種の比較溶媒を用いて一連の操作
を同様に行なうため、一種類の比較溶媒を使用した計測
が終了する毎に、試料希釈液槽2、希釈液採取管3、第
2微粒子計4、混合槽9、第1微粒子計11、液体屈折
率計12、流量計13を適切な溶媒で洗浄し、その後、
変更した比較溶媒毎に混合試料中の粒径別粒子数分布を
計測し、液体屈折率計12で混試料の光学的屈折率値を
測定する。
Further, since a series of operations are similarly performed using different kinds of comparison solvents, each time the measurement using one kind of comparison solvent is completed, the sample dilution solution tank 2, the dilution solution collection tube 3, the second The fine particle meter 4, the mixing tank 9, the first fine particle meter 11, the liquid refractometer 12, and the flow meter 13 are washed with an appropriate solvent, and then,
The particle number distribution by particle size in the mixed sample is measured for each of the changed comparative solvents, and the optical refractive index value of the mixed sample is measured by the liquid refractometer 12.

【0033】そして、実試料中異物微粒子の屈折率と混
合試料溶媒(異物微粒子を除いた試料溶液と比較溶媒と
の混合溶液部分)の屈折率が一致する場合に異物微粒子
の散乱光パルス強度が最小になることから、数種の比較
溶媒を用いて計測した混合試料の粒径別粒子数分布が最
も低粒径・低粒子数分布となった時の混合試料溶媒の屈
折率測定値で異物微粒子の光学的屈折率を近似し、前記
の溶媒屈折率補正(関係B)の場合と同様にシステム制
御部14で溶質屈折率補正(関係C)された粒径別粒子
数分布を求める。
When the refractive index of the foreign matter particles in the actual sample and the refractive index of the mixed sample solvent (the mixed solution portion of the sample solution excluding the foreign matter particles and the comparative solvent) match, the scattered light pulse intensity of the foreign matter particles is Since it becomes the minimum, the particle number distribution by particle size of the mixed sample measured using several types of comparative solvents has the lowest particle size / low particle number distribution. The optical refractive index of the fine particles is approximated, and the particle number distribution for each particle size corrected by the solute refractive index (relation C) by the system controller 14 is obtained as in the case of the solvent refractive index correction (relation B).

【0034】(3)実試料の溶媒や異物微粒子の屈折率
が既知の場合 まず、試料6aを混合槽9に入れる。異物微粒子を含ま
ない清浄な窒素等の不活性ガスを加圧気体導入管8によ
り混合槽9中に導入して試料液面を加圧し、第1微粒子
計11に試料6aを圧送して粒径別粒子数分布を計測し
た後、流量計13で試料量を測定して排液する。その
後、システム制御部14に実試料の溶媒や異物微粒子の
屈折率値を、図示しないキーボードなどから入力し溶媒
及び溶質屈折率補正された粒径別粒子数分布(関係D)
を求める。なお、実試料の溶媒や異物微粒子の屈折率値
を予め所定の記憶媒体に格納しておき、必要に応じてシ
ステム制御部14が読みだすようにしてもよい。
(3) When the refractive index of the solvent or foreign particles of the actual sample is known First, the sample 6a is placed in the mixing tank 9. A clean inert gas such as nitrogen containing no foreign matter particles is introduced into the mixing tank 9 through the pressurized gas introduction pipe 8 to pressurize the sample liquid surface, and the sample 6a is pressure-fed to the first particle meter 11 to obtain a particle size. After measuring the different particle number distribution, the sample amount is measured by the flow meter 13 and the liquid is drained. After that, the refractive index values of the solvent and the foreign particles of the actual sample are input to the system control unit 14 from a keyboard (not shown) or the like, and the solvent and solute refractive index-corrected particle number distribution by particle size (relationship D).
Ask for. It should be noted that the refractive index values of the solvent and the foreign particles of the actual sample may be stored in a predetermined storage medium in advance and read by the system control unit 14 as necessary.

【0035】(4)測定に先立って実試料中の計測微粒
子数が全く未知の場合又は高濃度で装置計測可能上限値
を超える恐れのある場合 まず、試料6aを試料槽6に入れ、異物微粒子を含まな
い清浄な窒素等の不活性ガスを加圧気体導入管5により
試料槽6中に導入して試料液面を加圧し、混合槽9に圧
送する。更に異物微粒子を含まない清浄な窒素等の不活
性ガスを加圧気体導入管8により混合槽9中に導入して
試料液面を加圧し、第1微粒子計11に試料を圧送して
粒径別粒子数分布を計測した後、流量計13で試料量を
測定して排液する。
(4) When the number of measured fine particles in an actual sample is completely unknown prior to the measurement, or when there is a possibility that the upper limit of measurable by the apparatus may be exceeded at a high concentration. A clean inert gas such as nitrogen that does not contain nitrogen is introduced into the sample tank 6 through the pressurized gas introduction pipe 5 to pressurize the sample liquid surface and pressure-feed it to the mixing tank 9. Further, a clean inert gas such as nitrogen containing no foreign matter particles is introduced into the mixing tank 9 through the pressurized gas introduction pipe 8 to pressurize the sample liquid surface, and the sample is pressure-fed to the first particle meter 11 to measure the particle size. After measuring the different particle number distribution, the sample amount is measured by the flow meter 13 and the liquid is drained.

【0036】もしも計測微粒子数が高濃度で装置計測可
能上限値を超えた時は、その上限値を超える直前までに
第1微粒子計11を通過した試料量a(ml/分)を流
量計13で測定し、それと第1微粒子計11に固有の規
定試料量b(ml/分)との比(b/a)より決まる最
低倍率以上で自動希釈再計測を行なう。
If the number of fine particles to be measured exceeds the upper limit of device measurement at a high concentration, the flow rate of the sample amount a (ml / min) that has passed through the first fine particle meter 11 immediately before the upper limit is exceeded. And the automatic dilution remeasurement is performed at a minimum magnification determined by the ratio (b / a) between the measured value and the specified sample amount b (ml / min) specific to the first fine particle meter 11.

【0037】その手順は、試料6aを試料槽6に入れ、
異物微粒子を含まない清浄な窒素等の不活性ガスを加圧
気体導入管5により試料槽6中に導入して試料液面を加
圧し、混合槽9に試料6aを圧送する。混合槽9の下に
位置する重量計10で槽中に流入した試料重量を測定
し、規定量になる直前で試料槽6の試料液面下に浸って
いた試料液採取管7を液面上に引上げ、管内に残留して
いる試料液体を加圧気体導入管5より流出する不活性ガ
スで混合槽9の中に追い出す。また、本試料の主成分溶
媒を希釈溶媒(試料希釈液2a)として試料希釈液槽2
に入れ、同様に異物微粒子を含まない清浄な窒素等の不
活性ガスを加圧気体導入管1により試料希釈液槽2中に
導入して溶媒液面を加圧し、第2微粒子計4に比較溶媒
を圧送して粒径別粒子数分布を計測して希釈溶媒が異物
微粒子を含まないことを確認の上、混合槽9に流し込
む。同様に混合槽9の下に位置する重量計10で槽中に
流入した比較溶媒重量を測定し、規定量になる直前で試
料希釈液槽2の試料液面下に浸っていた希釈液採取管3
を液面上に引上げ、管内に残留している溶媒液体を加圧
気体導入管1より流出する不活性ガスで混合槽9中に追
い出す。
The procedure is to put the sample 6a in the sample tank 6 and
A clean inert gas such as nitrogen containing no foreign particles is introduced into the sample tank 6 through the pressurized gas introducing pipe 5 to pressurize the sample liquid surface, and the sample 6a is pressure-fed to the mixing tank 9. The weight of the sample that has flowed into the tank is measured with a weight scale 10 located below the mixing tank 9, and the sample liquid sampling pipe 7 that has been immersed under the sample liquid surface of the sample tank 6 immediately before reaching the specified amount is placed on the liquid surface. And the sample liquid remaining in the tube is expelled into the mixing tank 9 with the inert gas flowing out from the pressurized gas introduction tube 5. Further, the main component solvent of this sample is used as a dilution solvent (sample dilution liquid 2a) and the sample dilution liquid tank 2 is used.
Similarly, a clean inert gas such as nitrogen containing no foreign matter particles is introduced into the sample dilution liquid tank 2 through the pressurized gas introduction pipe 1 to pressurize the liquid surface of the solvent, and then compared with the second fine particle meter 4. The solvent is pressure-fed and the particle number distribution by particle size is measured to confirm that the diluting solvent does not contain foreign fine particles, and then the solvent is poured into the mixing tank 9. Similarly, the weight of the comparative solvent that has flowed into the tank is measured by a weight scale 10 located below the mixing tank 9, and the diluting liquid sampling tube that is immersed under the sample liquid level in the sample diluting liquid tank 2 immediately before reaching the specified amount. Three
Is pulled up to the liquid surface, and the solvent liquid remaining in the pipe is expelled into the mixing tank 9 by the inert gas flowing out from the pressurized gas introduction pipe 1.

【0038】この様にして測定実試料を希釈溶媒と適当
な比率で混合した後、異物微粒子を含まない清浄な窒素
等の不活性ガスを加圧気体導入管8により混合槽9中に
導入して混合試料液面を加圧し、第1微粒子計11に混
合試料を圧送して粒径別粒子数分布を計測する。更に、
液体屈折率計12で混合試料の光学的屈折率値を測定し
てシステム制御部14に送信して溶媒屈折率補正(関係
B)された粒径別粒子数分布を求める。また異物微粒子
の屈折率が既知の場合は、更にシステム制御部14に異
物微粒子の屈折率値を入力し、溶媒及び溶質屈折率補正
された粒径別粒子数分布(関係D)を求める。
In this way, the actual sample to be measured is mixed with the diluting solvent at an appropriate ratio, and then a clean inert gas such as nitrogen containing no foreign matter particles is introduced into the mixing tank 9 through the pressurized gas introducing pipe 8. Then, the liquid surface of the mixed sample is pressurized, and the mixed sample is sent under pressure to the first fine particle meter 11 to measure the particle number distribution by particle size. Furthermore,
The optical refractive index value of the mixed sample is measured by the liquid refractometer 12 and transmitted to the system control unit 14 to obtain the solvent refractive index-corrected (relationship B) particle number distribution by particle size. When the refractive index of the foreign particle is known, the refractive index value of the foreign particle is further input to the system control unit 14 to obtain the particle number distribution (relation D) by the solvent and solute refractive index correction.

【0039】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は前記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変更可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.

【0040】[0040]

【発明の効果】本願において開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.
It is as follows.

【0041】すなわち、測定実試料を光学的に透明で耐
薬品性を有するフローセル中を通過させ、その際にレー
ザー光を試料に照射して異物微粒子より放射される散乱
光のパルスを受光素子で電気信号として測定するレーザ
ー光散乱方式液中微粒子計測装置に於いて、測定実試料
溶液及び異物微粒子の各光学的屈折率を考慮した異物微
粒子粒径補正を行うので、従来よりも粒径計測精度の向
上が図れる。
That is, the actual sample to be measured is passed through a flow cell that is optically transparent and has chemical resistance, and at that time, the sample is irradiated with laser light and a pulse of scattered light emitted from the foreign particles is received by the light receiving element. In the laser light scattering type liquid particle measuring device that measures as an electric signal, the particle size of foreign particles is corrected considering the optical refractive index of the actual sample solution and foreign particles, so the particle size measurement accuracy is better than before. Can be improved.

【0042】また、高濃度微粒子試料を自動希釈・再計
測することができるので、任意の濃度の測定実試料中に
おける粒径別粒子数分布の測定を高精度かつ自動的に行
うことができる。
Further, since the high-concentration fine particle sample can be automatically diluted and re-measured, the particle number distribution according to the particle size in the measurement actual sample having an arbitrary concentration can be measured with high accuracy and automatically.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である微粒子計測装置の構成
の一例を示す概念図である。
FIG. 1 is a conceptual diagram showing an example of the configuration of a particle measuring apparatus that is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 加圧気体導入管 2 試料希釈液槽 2a 試料希釈液 3 希釈液採取管 4 第2微粒子計 5 加圧気体導入管 6 試料槽 6a 試料 7 試料液採取管 8 加圧気体導入管 9 混合槽 10 重量計 11 第1微粒子計 12 液体屈折率計 13 流量計 14 システム制御部 15 試料管 1 Pressurized Gas Introducing Tube 2 Sample Diluting Liquid Tank 2a Sample Diluting Liquid 3 Diluting Liquid Collecting Tube 4 Second Fine Particle Meter 5 Pressurized Gas Introducing Tube 6 Sample Tank 6a Sample 7 Sample Liquid Collecting Tube 8 Pressurized Gas Introducing Tube 9 Mixing Tank 10 Weight Meter 11 First Fine Particle Meter 12 Liquid Refractive Index Meter 13 Flowmeter 14 System Controller 15 Sample Tube

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 粒径既知の標準粒子を標準溶媒中に単分
散させた較正標準液に一定波長の光を照射した時に発生
するMie散乱光のパルス電圧値と標準粒子の粒径との
第1の相関関係(関係A)を調べ、この第1の相関関係
に基づいて測定実試料中における微粒子粒径と粒子数を
それぞれ散乱光のパルス電圧値とパルス数より計測する
微粒子計測方法であって、前記測定実試料における前記
微粒子を除いた溶液部分である試料溶媒の光学的屈折率
を当該測定実試料の微粒子計測時に測定し、当該測定実
試料の計測時に前記標準溶媒と前記試料溶媒との屈折率
の違いで生ずる微粒子粒径と散乱光パルス電圧値との第
2の相関関係(関係B)の前記第1の相関関係(関係
A)からのズレを自動演算処理で修正することで溶媒屈
折率補正された粒径別粒子数分布を求めることを特徴と
する微粒子計測方法。
1. A pulse voltage value of Mie scattered light generated when a calibration standard solution in which standard particles of known particle size are monodispersed in a standard solvent is irradiated with light having a constant wavelength, and the particle size of the standard particles. This is a fine particle measuring method in which the particle size and the number of particles in the actual measurement sample are measured from the pulse voltage value and the pulse number of the scattered light, respectively, based on the first correlation (relation A). The optical refractive index of the sample solvent, which is the solution portion excluding the fine particles in the measurement actual sample, is measured during the measurement of the fine particles of the measurement actual sample, and the standard solvent and the sample solvent are measured during the measurement of the measurement actual sample. By correcting the deviation of the second correlation (relation B) from the first correlation (relation A) between the particle size of fine particles and the scattered light pulse voltage value caused by the difference in the refractive index of Solvent Refractive Index Corrected Particle Size A method for measuring fine particles, characterized by obtaining a particle number distribution.
【請求項2】 前記微粒子を殆んど含まず前記測定実試
料と可溶かつ透明で光学的屈折率値が相異なった数種の
希釈溶媒の各々によって前記測定実試料を希釈して微粒
子計測を行い、前記測定実試料中の前記微粒子と希釈溶
媒との屈折率が一致する場合に前記微粒子の散乱光パル
ス強度が最小になることより、前記測定実試料中の前記
微粒子の屈折率を自動測定し、前記測定実試料の計測時
に当該測定実試料中の溶質(微粒子)と標準粒子との屈
折率の違いで生ずる微粒子粒径と散乱光パルス電圧値と
の第3の相関関係(関係C)の前記第1の相関関係(関
係A)からのズレを自動演算処理で修正することで溶質
屈折率補正された粒径別粒子数分布を求めることを特徴
とする請求項1記載の微粒子計測方法。
2. The measurement actual sample is diluted with each of several kinds of diluent solvents which are substantially free of the fine particles and which are soluble and transparent to the measurement actual sample and have different optical refractive index values, to measure the fine particles. The scattered light pulse intensity of the microparticles is minimized when the refractive index of the microparticles in the measurement actual sample and the dilution solvent match, so that the refractive index of the microparticles in the measurement actual sample is automatically determined. The third correlation (relation C) between the particle size of fine particles and the scattered light pulse voltage value which is caused by the difference in the refractive index between the solute (fine particles) and the standard particles in the actual measurement sample during measurement 3. The particle count distribution according to particle size corrected for solute refractive index is obtained by correcting the deviation from the first correlation (relationship A) of) by an automatic calculation process. Method.
【請求項3】 前記測定実試料の溶媒や前記微粒子の屈
折率が別途既知の場合、屈折率値を外部より操作者が、
または任意の記憶媒体から入力し、微粒子粒径と散乱光
パルス電圧値との第4の相関関係(関係D)の前記第1
の相関関係(関係A)からのズレを自動演算処理で修正
することで溶媒及び溶質屈折率補正された粒径別粒子数
分布を求めることを特徴とする請求項1または2記載の
微粒子計測方法。
3. When the solvent of the actual measurement sample and the refractive index of the fine particles are known separately, the operator can obtain the refractive index value from the outside.
Alternatively, the first correlation of the fourth correlation (relation D) between the particle diameter of the fine particles and the scattered light pulse voltage value is input from any storage medium.
3. The method for measuring fine particles according to claim 1 or 2, wherein the deviation from the correlation (relation A) is corrected by an automatic calculation process to obtain a particle number distribution by particle size for which the solvent and solute refractive indices are corrected. .
【請求項4】 前記測定実試料中の計測微粒子数が高濃
度のために計測可能上限値を超えた場合に、自動的に前
記測定実試料中の希釈および再計測を行うことを特徴と
する請求項1,2または3記載の微粒子計測方法。
4. The measuring actual sample is automatically diluted and re-measured when the number of measured fine particles in the actual measuring sample exceeds a measurable upper limit value due to a high concentration. The fine particle measuring method according to claim 1, 2, or 3.
【請求項5】 粒径既知の標準粒子を標準溶媒中に単分
散させた較正標準液に一定波長の光を照射した時に発生
するMie散乱光のパルス電圧値と標準粒子の粒径との
第1の相関関係(関係A)を調べ、この第1の相関関係
に基づいて測定実試料中における微粒子の粒径と粒子数
をそれぞれ散乱光のパルス電圧値とパルス数より計測す
る液中微粒子計測装置であって、前記第1の相関関係を
計測する第1微粒子計より後方の流路上に配置され、前
記較正標準液と異なった前記測定実試料における前記微
粒子を除いた溶液部分である試料溶媒の光学的屈折率を
自動測定する屈折率計測手段と、この屈折率計測手段に
よって計測された前記試料溶媒の光学的屈折率に基づい
て前記測定実試料の計測時に前記標準溶媒と前記試料溶
媒との屈折率の違いで生ずる微粒子粒径と散乱光パルス
電圧値との第2の相関関係(関係B)の前記第1の相関
関係(関係A)からのズレを自動演算処理で修正するこ
とで溶媒屈折率補正された粒径別粒子数分布を求める第
1の演算手段とを有することを特徴とする微粒子計測装
置。
5. A pulse voltage value of Mie scattered light generated when a calibration standard solution in which standard particles of known particle size are monodispersed in a standard solvent is irradiated with light having a constant wavelength, and the particle size of the standard particles. The measurement of the particle size and the particle number of the particles in the actual measurement sample based on the first correlation (relation A) from the pulse voltage value of the scattered light and the pulse number A sample solvent, which is a device and is a solution portion excluding the fine particles in the actual measurement sample different from the calibration standard solution, the sample solvent being arranged on the flow path after the first fine particle meter for measuring the first correlation. Refractive index measuring means for automatically measuring the optical refractive index of, and the standard solvent and the sample solvent at the time of measuring the measurement actual sample based on the optical refractive index of the sample solvent measured by this refractive index measuring means Difference in refractive index The deviation of the second correlation (relationship B) between the particle size of fine particles and the scattered light pulse voltage value from the first correlation (relationship A) is corrected by an automatic calculation process to correct the solvent refractive index. And a first calculation means for obtaining a particle number distribution for each particle diameter.
【請求項6】 前記測定実試料を貯留・供給する試料槽
と、前記微粒子を殆んど含まず測定実試料と可溶かつ透
明な希釈溶媒を貯留・供給する希釈液槽と、前記測定実
試料および前記希釈溶媒を所望の割合で混合し、前記第
1の微粒子計に供給する混合槽と、この混合槽から前記
第1の微粒子計に供給される前記測定実試料の流量を計
測する流量計測手段と、前記試料槽から前記混合槽に至
る前記希釈溶媒の供給経路に介設された第2の微粒子計
と、光学的屈折率値が相異なった数種の前記希釈溶媒の
各々で前記測定実試料を希釈して前記第1の微粒子計で
微粒子計測し、前記測定実試料中の前記微粒子と希釈溶
媒との屈折率が一致する場合に前記微粒子の散乱光パル
ス強度が最小になることより、前記測定実試料中の前記
微粒子の屈折率を自動測定する第2の演算手段と、前記
測定実試料の計測時に溶質(微粒子)と標準粒子との屈
折率の違いで生ずる微粒子粒径と散乱光パルス電圧値と
の前記第3の相関関係(関係C)の前記第1の相関関係
(関係A)からのズレを自動演算処理で修正することで
溶質屈折率補正された粒径別粒子数分布を求める第3の
演算手段とを有することを特徴とする請求項5記載の微
粒子計測装置。
6. A sample tank for storing / supplying the measurement actual sample, a diluent tank for storing / supplying the measurement actual sample containing almost no fine particles and soluble and transparent, and the measurement actual sample. A mixing tank for mixing the sample and the diluent solvent at a desired ratio and supplying the mixture to the first fine particle meter, and a flow rate for measuring the flow rate of the actual measurement sample supplied from the mixing tank to the first fine particle meter. The measuring means, the second fine particle meter provided in the diluting solvent supply path from the sample tank to the mixing tank, and the diluting solvent of each of several kinds having different optical refractive index values are used. The measurement light sample is diluted and fine particles are measured by the first fine particle meter, and the scattered light pulse intensity of the fine particles is minimized when the fine particles in the measurement actual sample and the diluent solvent have the same refractive index. The refractive index of the fine particles in the actual sample The second correlation between the second calculation means for dynamic measurement and the particle size of fine particles and the scattered light pulse voltage value caused by the difference in refractive index between the solute (fine particles) and the standard particles at the time of measuring the actual measurement sample ( And a third calculation means for obtaining the solute refractive index-corrected particle number distribution by particle size by correcting the deviation of the relationship C) from the first correlation (relation A) by automatic calculation processing. The particle measuring device according to claim 5, which is characterized in that.
【請求項7】 前記測定実試料の溶媒や異物微粒子の屈
折率が別途既知の場合、当該屈折率値を外部より操作者
が、または任意の記憶媒体から前記第1または第2の演
算手段に入力し、微粒子粒径と散乱光パルス電圧値との
第4の相関関係(関係D)の前記第1の相関関係(関係
A)からのズレを自動演算処理で修正することで溶媒及
び溶質屈折率補正された粒径別粒子数分布を求めること
を特徴とする請求項5または6記載の微粒子計測装置。
7. If the refractive index of the solvent or foreign particles of the actual measurement sample is known separately, the refractive index value is externally determined by an operator or from an arbitrary storage medium to the first or second computing means. By inputting and correcting the deviation of the fourth correlation (relationship D) between the particle size of the fine particles and the scattered light pulse voltage value from the first correlation (relationship A) by automatic calculation processing, the solvent and solute refraction The particle number measuring device according to claim 5 or 6, wherein a rate-corrected particle number distribution for each particle size is obtained.
【請求項8】 前記測定実試料中の計測微粒子数の濃度
が前記第1の微粒子計の計測可能上限値を超えない範囲
に、前記混合槽における前記希釈溶媒による希釈率を制
御することを特徴とする請求項6または7記載の微粒子
計測装置。
8. The dilution ratio of the dilution solvent in the mixing tank is controlled so that the concentration of the number of measured fine particles in the actual measurement sample does not exceed the measurable upper limit of the first fine particle meter. The fine particle measuring device according to claim 6 or 7.
JP4294058A 1992-11-02 1992-11-02 Method and instrument for measuring fine particle Pending JPH06148057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4294058A JPH06148057A (en) 1992-11-02 1992-11-02 Method and instrument for measuring fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4294058A JPH06148057A (en) 1992-11-02 1992-11-02 Method and instrument for measuring fine particle

Publications (1)

Publication Number Publication Date
JPH06148057A true JPH06148057A (en) 1994-05-27

Family

ID=17802743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4294058A Pending JPH06148057A (en) 1992-11-02 1992-11-02 Method and instrument for measuring fine particle

Country Status (1)

Country Link
JP (1) JPH06148057A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039935A (en) * 2000-07-25 2002-02-06 Mitsubishi Kakoki Kaisha Ltd Measuring apparatus for particles in oil
JP2009222566A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Microorganism measuring method and system
JP4542682B2 (en) * 2000-08-11 2010-09-15 三菱化工機株式会社 Sample preparation device for measuring particles in oil
WO2016108412A1 (en) * 2014-12-29 2016-07-07 가톨릭대학교 산학협력단 Hematology analysis apparatus
KR102247819B1 (en) * 2020-10-21 2021-05-04 한국지질자원연구원 Diluter and dispenser of smples for icp-aes analysis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039935A (en) * 2000-07-25 2002-02-06 Mitsubishi Kakoki Kaisha Ltd Measuring apparatus for particles in oil
JP4542682B2 (en) * 2000-08-11 2010-09-15 三菱化工機株式会社 Sample preparation device for measuring particles in oil
JP2009222566A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Microorganism measuring method and system
WO2016108412A1 (en) * 2014-12-29 2016-07-07 가톨릭대학교 산학협력단 Hematology analysis apparatus
KR102247819B1 (en) * 2020-10-21 2021-05-04 한국지질자원연구원 Diluter and dispenser of smples for icp-aes analysis
WO2022086031A1 (en) * 2020-10-21 2022-04-28 한국지질자원연구원 Automatic sample dilution apparatus using mass measurement

Similar Documents

Publication Publication Date Title
US6943878B2 (en) Methods and systems for controlling the concentration of a component in a composition with absorption spectroscopy
US7658884B2 (en) Photometric method and apparatus for measuring a liquid's turbidity, fluorescence, phosphorescence and/or absorption coefficient
US3838926A (en) Method of continuously determining the absorbance light of a chemical reaction mixture
EP0534951B1 (en) Measuring apparatus
US10583465B2 (en) 30 nm in-line LPC testing and cleaning of semiconductor processing equipment
JP2009210514A (en) Method and device for confirming cleaning state of coating device
EP2587250A1 (en) Automatic analysis device
US3691391A (en) Optical testing apparatus comprising means for flowing liquids in free fall condition at constant flow rate
JP5067995B2 (en) Method and measuring device for measuring a suspension
CN101960292B (en) Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
EP0180140A2 (en) Method for analyzing impurities in liquid and apparatus therefor
JPH06148057A (en) Method and instrument for measuring fine particle
CN108279193A (en) Dusty gas concentration detection apparatus based on integrating sphere
US20180266939A1 (en) Method and device for determining a substance concentration or a substance in a liquid medium
KR100548112B1 (en) Automatic metal solution dilutor
JPH0694717A (en) Prozone criterion and analysis method in antigen antibody reaction
JPH04204378A (en) Immune reaction automatic analyzer
US20220099545A1 (en) Apparatus and method for monitoring and measuring properties of polymers in solutions
KR100792694B1 (en) Method of measuring a level of contamination in a chemical solution and systems thereof
KR100931788B1 (en) Compliance tester for cleaning parts for substrate cleaning equipment
JP2010243307A (en) Automatic analyzer
CN111175203A (en) Detection system for ultralow dust on-line monitoring
WO2024011064A1 (en) Colorimeter optical measurement interference mitigation
JPS6114459B2 (en)
JP2000105186A (en) Fine particle-measuring device