JPH06147893A - Inclination detector - Google Patents

Inclination detector

Info

Publication number
JPH06147893A
JPH06147893A JP32729292A JP32729292A JPH06147893A JP H06147893 A JPH06147893 A JP H06147893A JP 32729292 A JP32729292 A JP 32729292A JP 32729292 A JP32729292 A JP 32729292A JP H06147893 A JPH06147893 A JP H06147893A
Authority
JP
Japan
Prior art keywords
light receiving
liquid surface
free liquid
light
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32729292A
Other languages
Japanese (ja)
Other versions
JP3210451B2 (en
Inventor
Fumio Otomo
文夫 大友
Hiroo Sugai
博雄 菅井
Ikuo Ishinabe
郁夫 石鍋
Junichi Furuhira
純一 古平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP32729292A priority Critical patent/JP3210451B2/en
Publication of JPH06147893A publication Critical patent/JPH06147893A/en
Application granted granted Critical
Publication of JP3210451B2 publication Critical patent/JP3210451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow detection of inclination only through a unilateral optical system by providing a light receiving unit for receiving reflection luminous flux transmitted through an anamorphic prism and detecting inclination amount at a position on the light receiving plane of the light receiving unit where the reflection luminous flux is received. CONSTITUTION:A light receiving unit 10 is arranged to receive luminous flux transmitted through an anamorphic prism system 9. The light receiving unit 10 has light receiving part split in checkered pattern into four sections, i.e., light receiving parts 10a, 10c having outputs connected with a differential amplifier 11 and light receiving parts 10b, 10d having outputs connected with a differential amplifier 12. The amplifier 11 outputs z-axis component of the displacement angle of reflection luminous flux whereas the amplifier 12 outputs x- direction component thereof. Outputs from the amplifiers 11, 12 are fed to an operating unit 13. The operating unit 13 operates the position of the optical axis of reflection luminous flux at the light receiving unit 10 based on outputs from the amplifiers 11, 12 and measures inclination angle and inclining direction of the liquid plane 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、測量機器、測定機器等
に用いられ傾き量の変化の測定をし、或は機器の傾きの
補正をする為に、傾き量を検出する傾斜検知装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tilt detecting device used in surveying equipment, measuring equipment, etc., for detecting a change in tilt amount or for correcting the tilt of the device so as to detect the tilt amount. It is a thing.

【0002】[0002]

【従来の技術】測量機器、測定機器等の基準面が水平面
に対してどの様に傾斜しているかを測定するには、基準
面内の少なくとも2軸方向の傾斜を検知しなれけばなら
ない。
2. Description of the Related Art In order to measure how a reference plane of a surveying instrument, measuring instrument or the like is inclined with respect to a horizontal plane, it is necessary to detect an inclination in at least two axial directions within the reference plane.

【0003】測量機器、測定機器等の基準面の傾斜を検
知する方法として自由液面を利用したものがある。
As a method of detecting the inclination of the reference surface of a surveying instrument, measuring instrument, etc., there is a method utilizing the free liquid surface.

【0004】これは、自由液面に光束を入射させ、該光
束の反射光の光軸の変化量を受光器によって検知するも
のである。自由液面を有する液体として水銀等を使用し
た場合、この自由液面に対して垂直に光束を入射させれ
ば2次元方向全てに於いて自由液面の傾きに対して同じ
感度の反射角を得ることが可能であり、基準面の傾斜を
検知することができる。
In this method, a light beam is made incident on the free liquid surface and the amount of change in the optical axis of the reflected light of the light beam is detected by a light receiver. When mercury or the like is used as a liquid having a free liquid surface, if a light beam is incident perpendicularly to this free liquid surface, a reflection angle with the same sensitivity with respect to the inclination of the free liquid surface is obtained in all two-dimensional directions. It is possible to obtain the inclination of the reference plane.

【0005】ところが、実際にはコスト的にも安全性か
ら見ても前記した水銀等の液体は使用しにくく、実用的
にはシリコンオイル等の透明液体を使用している。透明
液体を使用した場合、全反射を利用するが、液体と空気
との臨界角が存在する為、自由液面で光束を全反射させ
る為には、自由液面への光束の入射は前記臨界角に対応
した入射角θが必要となる。而して、自由液面を利用し
た従来の傾斜検知装置では所定角度をもって自由液面に
光束を入射させている。
However, in practice, it is difficult to use the liquid such as mercury described above in terms of cost and safety, and a transparent liquid such as silicon oil is practically used. When a transparent liquid is used, total reflection is used, but since there is a critical angle between the liquid and air, in order to totally reflect the light beam on the free liquid surface, the incidence of the light beam on the free liquid surface is the above-mentioned critical value. An incident angle θ corresponding to the angle is required. Thus, in the conventional inclination detecting device using the free liquid surface, the light beam is incident on the free liquid surface at a predetermined angle.

【0006】自由液面に対して光束を所定角度をもって
入射させた場合、自由液面の傾きに対して、異なった2
軸方向に関する反射光の反射角度の変化は一様でなくな
る。従って、自由液面を利用した傾斜検知装置ではこの
反射角の変化が一様で無いことに対する対策を講じてい
る。
When a light beam is incident on the free liquid surface at a predetermined angle, it is different by 2 with respect to the inclination of the free liquid surface.
The change in the reflection angle of the reflected light with respect to the axial direction is not uniform. Therefore, in the inclination detecting device using the free liquid surface, measures are taken against the uneven variation of the reflection angle.

【0007】従来の傾斜検知装置の1つは、異なる2光
軸の光束を前記自由液面に所定の角度をもって入射さ
せ、それぞれ反射光を受光器により受光し、受光器それ
ぞれの受光位置の変化により、前記2光軸に関する傾斜
を検知し、検知した該2光軸の傾斜より水平面に対する
測量機器、測定機器等基準面傾きを演算により求めるも
のである。
[0007] One of the conventional tilt detection devices is to make light beams of two different optical axes incident on the free liquid surface at a predetermined angle, receive reflected light by a light receiver, and change the light receiving position of each light receiver. The inclination of the two optical axes is detected, and the inclination of the reference plane such as a surveying instrument or measuring instrument with respect to the horizontal plane is calculated from the detected inclination of the two optical axes.

【0008】自由液面に所定の角度をもって光束を入射
させ、前記自由液面の全反射を利用する他の従来の傾斜
検知装置として、1光軸のみの光束を自由液面に入射さ
せ、該光束を受光器で検知し、該受光器での光束の2軸
方向、即ち該光束の光軸方向と他の軸方向との2方向の
受光位置の変化量を求め、更に演算により測量機器、測
定機器等基準面傾きを求めるものがある。該他の従来の
傾斜検知装置では光束の光軸方向と他の軸方向との2方
向のでは傾斜の変化に対する受光面状での位置変化の感
度が異なるので、感度の相違は電気的に補正している。
As another conventional inclination detecting device which makes a light beam incident on a free liquid surface at a predetermined angle and utilizes the total reflection of the free liquid surface, a light beam having only one optical axis is made incident on the free liquid surface. The light beam is detected by the light receiver, the change amount of the light receiving position in the two axis directions of the light beam in the light receiver, that is, in the two directions of the optical axis direction of the light beam and the other axis direction is obtained, and further calculated by a surveying instrument, There is a device that obtains the reference plane inclination such as measuring equipment. In the other conventional tilt detecting device, the sensitivity of the position change on the light receiving surface with respect to the tilt change is different in two directions, that is, the optical axis direction of the light beam and the other axis direction. Therefore, the difference in sensitivity is electrically corrected. is doing.

【0009】[0009]

【発明が解決しようとする課題】従来の傾斜検知装置の
内、前者では光束の投影系が2つの光学系となることか
ら、装置の構成が複雑になるという不具合があり、又従
来の傾斜検知装置の後者では、自由液面からの光束の反
射角が、自由液面の傾斜量に対して受光面での2軸方向
で感度差があることから、少なくとも1方の検知結果に
対しては電気的に補正を必要とし、別途補正の為の電気
的処理系を設けなければならず、処理系が複雑になると
いう不具合があった。
Among the conventional tilt detecting devices, the former one has a drawback that the structure of the device is complicated because the projection system of the light flux is two optical systems, and the conventional tilt detecting device. In the latter case of the device, since the reflection angle of the light flux from the free liquid surface has a sensitivity difference in the biaxial direction on the light receiving surface with respect to the tilt amount of the free liquid surface, at least one detection result is obtained. There is a problem that an electrical correction is required and an electrical processing system for the correction needs to be separately provided, which makes the processing system complicated.

【0010】本発明は斯かる実情に鑑み、1軸の光学系
のみで而も別途補正の為の電気的処理系を設けることな
く基準面の傾斜を検知しようとするものである。
In view of the above situation, the present invention is intended to detect the inclination of the reference plane by using only a uniaxial optical system and without providing an electrical processing system for additional correction.

【0011】[0011]

【課題を解決するための手段】本発明は、自由液面を形
成する様透明液体を封入した液体封入容器と、前記自由
液面で全反射させる様光束を該自由液面に所定の角度で
投射する投光系と、前記自由液面で反射された光束を透
過させるアナモルフィックプリズム系と、該アナモルフ
ィックプリズム系を透過した反射光束を受光する受光器
を有し、該受光器の受光面での反射光束の受光位置で自
由液面の傾斜量を検知する様にし、更に透明液体の温度
変化に対する温度分布の均一性を向上させようとするも
のである。
SUMMARY OF THE INVENTION According to the present invention, a liquid encapsulation container in which a transparent liquid is enclosed so as to form a free liquid surface, and a light beam for totally reflecting the free liquid surface at a predetermined angle on the free liquid surface. A projection system for projecting, an anamorphic prism system for transmitting the light flux reflected by the free liquid surface, and a light receiver for receiving the reflected light flux transmitted through the anamorphic prism system, The inclination amount of the free liquid surface is detected at the light receiving position of the reflected light beam on the light receiving surface, and the uniformity of the temperature distribution with respect to the temperature change of the transparent liquid is further improved.

【0012】[0012]

【作用】液体封入容器が傾斜し、自由液面に対する光束
の入射角が相対的に変化した場合の反射角の変化は自由
液面の傾斜方向によって感度が異なる。この感度の相違
を、アナモルフィックプリズム系によって光学的に補正
し、受光器で受光した反射光束の検知結果を電気的に補
正することなく自由液面の傾斜量を測定することができ
る。更に、透明液体に温度分布を生ずると透明液体の屈
折率が一様でなくなり、光軸の屈折等を生じ、測定結果
に影響を及ぼすが、透明液体の温度分布の均一性を向上
させることで環境の温度変化に対する測定の安定性、信
頼性が向上する。
When the liquid sealing container is tilted and the incident angle of the light beam with respect to the free liquid surface is relatively changed, the change of the reflection angle has different sensitivity depending on the tilt direction of the free liquid surface. This difference in sensitivity can be optically corrected by the anamorphic prism system, and the tilt amount of the free liquid surface can be measured without electrically correcting the detection result of the reflected light beam received by the light receiver. Furthermore, when a temperature distribution is generated in the transparent liquid, the refractive index of the transparent liquid becomes uneven, which causes refraction of the optical axis and the like, which affects the measurement results, but by improving the uniformity of the temperature distribution of the transparent liquid. Improves measurement stability and reliability with respect to environmental temperature changes.

【0013】[0013]

【実施例】以下、図面を参照しつつ本発明の一実施例を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】先ず、自由液面に所定の角度をもって光束
を入射させ、前記自由液面で光束が全反射した場合に於
いて、自由液面が光束に対して相対的に傾斜した時、自
由液面の傾斜方向に対して反射角の変化の感度が相違す
ることを図1、図2に於いて説明する。
First, when a light beam is incident on the free liquid surface at a predetermined angle and the light beam is totally reflected by the free liquid surface, when the free liquid surface is inclined relative to the light beam, It will be described with reference to FIGS. 1 and 2 that the sensitivities of changes in the reflection angle differ depending on the direction of inclination of the surface.

【0015】実際は自由液面が水平を保ち光束の入射方
向が変化するが、以下の説明は、光束の入射方向が一定
とし、自由液面が傾斜したと仮定して説明してある。
In practice, the free liquid surface is kept horizontal and the incident direction of the light beam changes, but the following description is made assuming that the incident direction of the light beam is constant and the free liquid surface is inclined.

【0016】図中1は自由液面であり、該自由液面1に
入射光束2が角度θで入射したとする。前記自由液面1
と座標軸x,座標軸zが形成するxz座標平面とが略一
致するものとし、又該座標平面に垂直な座標軸をyとす
る。前記入射光束2の光軸は前記座標軸z,座標軸yが
形成するzy座標平面内に存在するとする。この状態か
ら前記自由液面1が座標軸xを中心に角度αだけ傾斜し
たとすると反射光束3の光軸は前記yz座標平面内を移
動して、yz座標平面内で反射角がξ1xだけ変化する。
この場合液面変位角αと反射変位角ξ1xとの関係は、ξ
1x=2αとなり、この場合にはxy座標平面内での反射
変位角ξ2xは生じない。図中、14はミラーを示す。
In the figure, 1 is a free liquid surface, and it is assumed that an incident light beam 2 is incident on the free liquid surface 1 at an angle θ. Free liquid level 1
And an xz coordinate plane formed by the coordinate axes x and z are substantially coincident with each other, and a coordinate axis perpendicular to the coordinate plane is y. It is assumed that the optical axis of the incident light beam 2 exists in the zy coordinate plane formed by the coordinate axes z and y. If the free liquid surface 1 is tilted by an angle α about the coordinate axis x from this state, the optical axis of the reflected light beam 3 moves in the yz coordinate plane, and the reflection angle changes by ξ1x in the yz coordinate plane. .
In this case, the relationship between the liquid surface displacement angle α and the reflection displacement angle ξ1x is ξ
1x = 2α, and in this case, the reflection displacement angle ξ2x in the xy coordinate plane does not occur. In the figure, 14 indicates a mirror.

【0017】これに対して前記自由液面1が座標軸zを
中心に角度αだけ傾斜したとすると前記反射光束3は前
記xy座標平面、前記yz座標平面からそれぞれ離反し
て移動する。従って、前記xy座標平面、前記yz座標
平面それぞれに、反射変位角ξ1zと反射変位角ξ2zが現
れる。更に、反射変位角ξ1zと自由液面1の液面変位角
αとの関係は、
On the other hand, if the free liquid surface 1 is inclined by the angle α about the coordinate axis z, the reflected light flux 3 moves away from the xy coordinate plane and the yz coordinate plane, respectively. Therefore, the reflection displacement angle ξ1z and the reflection displacement angle ξ2z appear on the xy coordinate plane and the yz coordinate plane, respectively. Furthermore, the relationship between the reflection displacement angle ξ1z and the liquid surface displacement angle α of the free liquid surface 1 is

【0018】[0018]

【数1】 ξ1z= cos-1( cos2 θ cos2α+ sin2 θ) ξ2z=π/2− cos-1((1− cos2α) sinθ cosθ)[Equation 1] ξ1z = cos -1 (cos 2 θ cos 2α + sin 2 θ) ξ 2z = π / 2-cos -1 ((1- cos 2α) sin θ cos θ)

【0019】となるが、例えば、α=10′、θ=50
°とすると、ξ2z=1.7″となり、ξ2zは、精度上無
視できる値である。更に、液体透過後の光軸は、液体の
屈折率をnとすると、
For example, α = 10 ', θ = 50
If it is °, then ξ2z = 1.7 ″, and ξ2z is a value that can be neglected in terms of precision.

【0020】[0020]

【数2】ξ1x′=2nα ξ1z′=n・ cos-1( cos2 θ cos2α+ sin2 θ)と
なる。
[Number 2] ξ1x '= 2nα ξ1z' = n · cos -1 a (cos 2 θ cos2α + sin 2 θ).

【0021】従って、前記反射変位角ξ1x′、反射変位
角ξ1z′とでは前記液面変位角αに対する感度が異な
る。本発明では、この反射変位角ξ1x′と反射変位角ξ
1z′との変位角の感度の相違を光学的手段によって補正
し、同じ感度にすることで、全方向に対して常に一定の
割合で偏角する光軸を得る様にする。
Therefore, the sensitivity to the liquid surface displacement angle α is different between the reflective displacement angle ξ1x 'and the reflective displacement angle ξ1z'. In the present invention, the reflection displacement angle ξ1x ′ and the reflection displacement angle ξ
The difference in the sensitivity of the displacement angle from 1z 'is corrected by the optical means so that the sensitivity becomes the same, so that the optical axis that deviates at a constant rate in all directions can be obtained.

【0022】図3に於いて更に説明する。Further explanation will be given with reference to FIG.

【0023】図中4は、測定機等機器の本体に設けられ
た液体封入容器であり、該液体封入容器4に封入された
液体によって自由液面1が形成されている。又該自由液
面1には光源6から発した光束をコリメートレンズ5を
介して自由液面1に対して全反射される様に所定の角度
をもって投射しており、該光束の光軸は前記した様にy
z座標平面内に位置させる。
In the figure, reference numeral 4 denotes a liquid sealing container provided in the main body of a device such as a measuring machine, and the free liquid level 1 is formed by the liquid sealed in the liquid sealing container 4. Further, the light beam emitted from the light source 6 is projected onto the free liquid surface 1 through the collimator lens 5 at a predetermined angle so as to be totally reflected with respect to the free liquid surface 1, and the optical axis of the light beam is as described above. As you did
Position in the z coordinate plane.

【0024】前記自由液面1が傾斜していない状態で、
該自由液面1で全反射される反射光束3の光軸に沿って
一対の楔状プリズム7,8から構成されるアナモルフィ
ックプリズム系9を配設する。
With the free liquid surface 1 not tilted,
An anamorphic prism system 9 including a pair of wedge-shaped prisms 7 and 8 is arranged along the optical axis of a reflected light beam 3 that is totally reflected by the free liquid surface 1.

【0025】前記アナモルフィックプリズム系9を透過
した光束を受光する様に受光器10を配置する。該受光
器10は受光部が碁盤状に4分割されており、分割され
た受光部10a,10cの出力は差動増幅器11に入力
され、分割された受光部10b,10dの出力は差動増
幅器12に入力される。前記差動増幅器11は反射光束
3の変位角のz軸方向の成分を出力し、前記差動増幅器
12は反射光束3の変位角のx軸方向の成分を出力し、
前記差動増幅器11と前記差動増幅器12の出力は演算
器13に入力される。該演算器13は前記差動増幅器1
1と前記差動増幅器12の出力を基に受光器10での反
射光束の光軸の位置を演算し、前記自由液面1の傾斜方
向、傾斜角αを演算し、演算結果をプリンタ、ディスプ
レイ等の表示装置に表示する。
The photodetector 10 is arranged so as to receive the light flux transmitted through the anamorphic prism system 9. The photodetector 10 has a photodetector section divided into four in a checkerboard pattern, outputs of the divided photodetection sections 10a and 10c are input to a differential amplifier 11, and outputs of the divided photodetection sections 10b and 10d are differential amplifier. 12 is input. The differential amplifier 11 outputs a component of the displacement angle of the reflected light beam 3 in the z-axis direction, and the differential amplifier 12 outputs a component of the displacement angle of the reflected light beam 3 in the x-axis direction,
The outputs of the differential amplifier 11 and the differential amplifier 12 are input to the calculator 13. The arithmetic unit 13 is the differential amplifier 1
1 and the output of the differential amplifier 12, the position of the optical axis of the reflected light beam at the light receiver 10 is calculated, the tilt direction and tilt angle α of the free liquid surface 1 are calculated, and the calculation result is printed by a printer or a display. Etc. are displayed on the display device.

【0026】以下、作動を説明する。The operation will be described below.

【0027】図3に於いて液体への設定入射角θ=50
°、機器の傾き角即ち自由液面1の傾き角α=10′、
液体の屈折率n=1.4とすると、数式2により、自由
液面1がx軸を中心に傾斜した場合の反射変位角ξ1x′
と自由液面1がz軸中心に傾斜した場合の反射変位角ξ
1z′は、それぞれξ1x′=28′,ξ1z′=18′とな
る。従って、前記反射変位角ξ1x′と反射変位角ξ1z′
とでは(ξ1x′/ξ1z′)=1.555倍の感度の差が
ある。よって、この条件では、
In FIG. 3, the incident angle θ on the liquid is θ = 50.
°, the tilt angle of the device, that is, the tilt angle α of the free liquid level 1 = 10 ',
Assuming that the refractive index of the liquid is n = 1.4, the reflection displacement angle ξ1x ′ when the free liquid surface 1 is tilted around the x-axis is calculated by Equation 2.
And the reflection displacement angle ξ when the free liquid surface 1 is tilted about the z-axis
1z 'becomes ξ1x' = 28 'and ξ1z' = 18 ', respectively. Therefore, the reflection displacement angle ξ1x ′ and the reflection displacement angle ξ1z ′ are
And there is a difference in sensitivity of (ξ1x ′ / ξ1z ′) = 1.555 times. Therefore, under this condition,

【0028】[0028]

【数3】ξ1x′=2nα、ξ1z′=1.286nαとな
る。
## EQU3 ## ξ1x '= 2nα and ξ1z' = 1.286nα.

【0029】前記アナモルフィックプリズム系9は前記
感度差を光学的に補正する。
The anamorphic prism system 9 optically corrects the sensitivity difference.

【0030】ここでアナモルフィックプリズム系9につ
いて説明する。
Now, the anamorphic prism system 9 will be described.

【0031】アナモルフィックプリズム系9を構成する
前記楔状プリズム7,8のプリズム頂角をa7 ,a8 、
楔状プリズム7,8の相対角をb、屈折率をng とし、
入射光束Din,射出光束Dout とすると、
The prism apex angles of the wedge-shaped prisms 7 and 8 constituting the anamorphic prism system 9 are a7 and a8,
The relative angle between the wedge-shaped prisms 7 and 8 is b, and the refractive index is ng,
Letting incident light flux Din and outgoing light flux Dout be

【0032】[0032]

【数4】 倍率M=(Din/Dout )= cos2 a/(1−ng 2 ・ sin2 a)## EQU00004 ## Magnification M = (Din / Dout) = cos 2 a / (1-ng 2 .sin 2 a)

【0033】となるので、角倍率は近似的に1/Mであ
る。よって、
Therefore, the angular magnification is approximately 1 / M. Therefore,

【0034】[0034]

【数5】M=2nα/1.286nα=1.555(5) M = 2nα / 1.286nα = 1.555

【0035】となる様に、前記プリズム頂角をa7 ,a
8 、楔状プリズム7,8の相対角をbとし、屈折率ng
を選べば(例えば、ng =1.51とした場合、a7 ,
a8 =27.732°、b=44.793°である)、
前記アナモルフィックプリズム系9透過後のξ1x′は、
2nα/1.555=1.286nαに変換され、アナ
モルフィックプリズム系9を透過後はξ1x′=ξ1z′と
なる。
The prism apex angle is set to a7, a
8, the relative angle between the wedge prisms 7 and 8 is b, and the refractive index is ng
If, for example, ng = 1.51, then a7,
a8 = 27.732 °, b = 44.793 °),
Ξ1x ′ after passing through the anamorphic prism system 9 is
It is converted into 2nα / 1.555 = 1.286nα, and after passing through the anamorphic prism system 9, ξ1x ′ = ξ1z ′.

【0036】而して、アナモルフィックプリズム系9透
過後の反射光束3の光軸は、前記自由液面1の全方向の
傾きに対して、常に一様の反射変位角を有し、受光面上
での光束の移動量は同じ感度を示す。従って、前記受光
器10の受光面での位置の変化は、前記自由液面1の傾
斜に対応し、前記受光部10a,10c,10b,10
dの出力差を前記差動増幅器11、差動増幅器12が検
出し、更に前記差動増幅器11、差動増幅器12の検出
結果を前記演算器13が演算することで、前記自由液面
1の傾斜角α、傾斜方向を測定することができる。
Thus, the optical axis of the reflected light flux 3 after passing through the anamorphic prism system 9 always has a uniform reflection displacement angle with respect to the inclination of the free liquid surface 1 in all directions, and the received light is received. The amount of movement of the light flux on the surface shows the same sensitivity. Therefore, the change of the position on the light receiving surface of the light receiver 10 corresponds to the inclination of the free liquid surface 1, and the light receiving portions 10a, 10c, 10b, 10
The differential amplifier 11 and the differential amplifier 12 detect the output difference of d, and the computing unit 13 computes the detection results of the differential amplifier 11 and the differential amplifier 12. The inclination angle α and the inclination direction can be measured.

【0037】尚、上記受光器10を4分割した受光部を
有するものに変え、PSD、或はCCD素子を用いても
よい。
The photodetector 10 may be replaced with one having a photodetector divided into four parts, and a PSD or CCD element may be used.

【0038】次に、図3で示した実施例に対して、前記
アナモルフィックプリズム系9を90°回転させ、M=
1/1.555となる様に、前記楔状プリズム7,8の
プリズム頂角をa7 ,a8 、楔状プリズム7,8の相対
角をb、屈折率をng を適宜選択してもよい。
Next, as compared with the embodiment shown in FIG. 3, the anamorphic prism system 9 is rotated by 90 °, and M =
The apex angles of the wedge-shaped prisms 7 and 8 may be appropriately selected to be a7 and a8, the relative angles of the wedge-shaped prisms 7 and 8 to be b, and the refractive index to ng so as to be 1 / 1.555.

【0039】次に、図6、図7により前記液体封入容器
4の具体例を説明する。
Next, a concrete example of the liquid enclosure 4 will be described with reference to FIGS.

【0040】前記液体封入容器4は、他のレンズ系と共
に装置本体に固定されるか、或は装置の一部として構成
される。この場合、温度差の生ずる環境での装置の使用
があった場合、例えば室内から屋外へ運び出した場合等
に、液体封入容器4に封入した液体内部に温度分布が生
ずる。液体内部に温度分布が生じると、屈折率も該温度
分布に対応した分布を示す為、液内部で光軸の屈折が生
じてしまう。図7、図8で示す液体封入容器4の具体例
は斯かる不具合を解決する。
The liquid-filled container 4 is fixed to the main body of the apparatus together with another lens system, or is constructed as a part of the apparatus. In this case, when the device is used in an environment where a temperature difference occurs, for example, when it is carried out from the room to the outdoors, a temperature distribution occurs inside the liquid sealed in the liquid sealing container 4. When a temperature distribution is generated inside the liquid, the refractive index also shows a distribution corresponding to the temperature distribution, so that refraction of the optical axis occurs inside the liquid. The specific example of the liquid sealing container 4 shown in FIGS. 7 and 8 solves such a problem.

【0041】以下、詳述する。The details will be described below.

【0042】逆台形形状の外ケース20の内部に該外ケ
ース20と相似形の内ケース21を設ける。該内ケース
21の上辺面に沿って平板状の空間22を形成し、又該
空間22に連通する光導入路23、光導出路24を形成
する。該光導入路23の軸心は入射する光束の光軸に一
致させ、又前記光導出路24の軸心は前記自由液面1が
水平の状態での反射光束3の光軸と一致させてある。
An inner case 21 similar to the outer case 20 is provided inside the outer case 20 having an inverted trapezoidal shape. A plate-like space 22 is formed along the upper side surface of the inner case 21, and a light introducing path 23 and a light guiding path 24 communicating with the space 22 are formed. The axis of the light introducing path 23 is aligned with the optical axis of the incident light beam, and the axis of the light guiding path 24 is aligned with the optical axis of the reflected light beam 3 when the free liquid surface 1 is horizontal. .

【0043】前記空間22の底面に伝熱板25を固着す
る。該伝熱板25は中央に入射光束、反射光束が通過可
能な様に窓孔26を穿設してある。又、前記光導入路2
3と、前記光導出路24それぞれの上端に透明ガラス製
の栓27を固着し、栓27により透明液体28は密閉封
入される。該透明液体28は自由液面を形成する様、封
入量が決定される。
A heat transfer plate 25 is fixed to the bottom surface of the space 22. The heat transfer plate 25 has a window hole 26 formed in the center thereof so that the incident light flux and the reflected light flux can pass therethrough. In addition, the light introduction path 2
3, and a plug 27 made of transparent glass is fixed to the upper end of each of the light guiding paths 24, and the transparent liquid 28 is hermetically sealed by the plug 27. The amount of the transparent liquid 28 enclosed is determined so as to form a free liquid surface.

【0044】前記外ケース20は前記内ケース21を収
納すると共に該内ケース21の周囲に所要の囲繞空間2
9を形成する。又、該外ケース20の前記光導入路23
と、前記光導出路24それぞれの軸心が通過する位置に
透明なガラス窓30、ガラス窓31を設ける。又、前記
外ケース20は気密構造として、前記囲繞空間29は真
空とするか或は気体を封入する。
The outer case 20 accommodates the inner case 21, and a required surrounding space 2 is provided around the inner case 21.
9 is formed. In addition, the light introduction path 23 of the outer case 20
Then, a transparent glass window 30 and a glass window 31 are provided at positions where the respective axes of the light guiding paths 24 pass. The outer case 20 has an airtight structure, and the surrounding space 29 is evacuated or filled with gas.

【0045】更に、前記外ケース20、内ケース21は
外部に対する放熱、吸熱を抑制する為、その材質を合成
樹脂等の熱伝導率の小さい材質とする。
Further, the outer case 20 and the inner case 21 are made of a material having a small thermal conductivity such as synthetic resin in order to suppress heat radiation and heat absorption to the outside.

【0046】前記した様に、透明液体28が封入されて
いる空間22は平板状で薄く、更に底面には伝熱板25
が設けられている為、熱の伝播速度が高められ、透明液
体28の温度変化状態での温度の均一性が向上する。
又、前記囲繞空間29が前記内ケース21に対する熱の
授受に関しての断熱層を形成し、前記透明液体28の温
度変化の抑制、或は温度変化速度を抑制する。
As described above, the space 22 in which the transparent liquid 28 is sealed is flat and thin, and the bottom surface has a heat transfer plate 25.
Is provided, the heat propagation speed is increased and the temperature uniformity of the transparent liquid 28 in the temperature changing state is improved.
Further, the surrounding space 29 forms a heat insulating layer for transferring heat to and from the inner case 21 to suppress the temperature change of the transparent liquid 28 or the temperature change speed.

【0047】而して、透明液体28内部での温度分布差
が生じるのが抑制され、光束の光軸の屈折、又屈折率の
変化に起因する光束の断面形状の変化を防止することが
でき、環境の温度変化に対しても安定性が増大し、測定
精度が向上する。
Thus, the difference in temperature distribution inside the transparent liquid 28 is suppressed, and it is possible to prevent the refraction of the optical axis of the light flux and the change in the cross-sectional shape of the light flux due to the change in the refractive index. In addition, the stability is increased even when the environmental temperature changes, and the measurement accuracy is improved.

【0048】次に、図8は液体封入容器4の他の具体例
を示し、内ケース21の周囲に囲繞空間29を形成する
ことなく、断熱材から成る外ケース20で前記内ケース
21を覆い、該外ケース20により前記内ケース21の
周囲に断熱層を形成したものである。
Next, FIG. 8 shows another specific example of the liquid sealing container 4, in which the inner case 21 is covered with the outer case 20 made of a heat insulating material without forming the surrounding space 29 around the inner case 21. A heat insulating layer is formed around the inner case 21 by the outer case 20.

【0049】尚、液体封入容器4の形状については、上
記実施例に限定されるものでないことは言う迄もない。
Needless to say, the shape of the liquid container 4 is not limited to the above embodiment.

【0050】[0050]

【発明の効果】以上述べた如く本発明によれば、自由液
面での入射光束の全反射を利用して傾きを検出する傾斜
検知装置で、一軸の光束投射系のみの構成で全ての方向
の傾斜量を検出することができ、又アナモルフィックプ
リズム系による光学的な補正のみで電気的な補正をする
必要がないので構成が簡単で測定精度、信頼性が向上
し、更に温度変化のある環境でも安定した測定を行うこ
とができる。
As described above, according to the present invention, the tilt detecting device detects the tilt by utilizing the total reflection of the incident light beam on the free liquid surface, and has a uniaxial light beam projection system in all directions. Of the anamorphic prism system, it is possible to detect the tilt amount of the anamorphic prism system, and there is no need to make electrical correction by only optical correction by the anamorphic prism system. Stable measurements can be performed even in certain environments.

【図面の簡単な説明】[Brief description of drawings]

【図1】自由液面が傾斜した場合の反射光束の反射角の
変化を説明する説明図である。
FIG. 1 is an explanatory diagram illustrating a change in a reflection angle of a reflected light beam when a free liquid surface is inclined.

【図2】自由液面が傾斜した場合の反射光束の反射角の
変化を説明する説明図である。
FIG. 2 is an explanatory diagram illustrating a change in a reflection angle of a reflected light beam when a free liquid surface is inclined.

【図3】本発明の一実施例の構成図である。FIG. 3 is a configuration diagram of an embodiment of the present invention.

【図4】アナモルフィックプリズム系に対する透過光束
の光軸の変化を示す説明図である。
FIG. 4 is an explanatory diagram showing a change of an optical axis of a transmitted light flux with respect to an anamorphic prism system.

【図5】(A)(B)はアナモルフィックプリズム系に
対する透過光束の光軸の変化を示す説明図である。
5A and 5B are explanatory diagrams showing changes in the optical axis of a transmitted light flux with respect to an anamorphic prism system.

【図6】液体封入容器の具体例を示す正断面図である。FIG. 6 is a front sectional view showing a specific example of a liquid sealing container.

【図7】図6のA−A矢視図である。FIG. 7 is a view on arrow AA of FIG.

【図8】液体封入容器の他の具体例を示す正断面図であ
る。
FIG. 8 is a front sectional view showing another specific example of the liquid sealing container.

【符号の説明】[Explanation of symbols]

1 自由液面 2 入射光束 3 反射光束 4 液体封入容器 6 光源 9 アナモルフィックプリズム系 10 受光器 28 透明液体 1 Free liquid level 2 Incident light flux 3 Reflected light flux 4 Liquid enclosure 6 Light source 9 Anamorphic prism system 10 Light receiver 28 Transparent liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古平 純一 東京都板橋区蓮沼町75番1号 株式会社ト プコン内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Junichi Kodaira 75-1 Hasunumacho, Itabashi-ku, Tokyo Topcon Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 自由液面を形成する様透明液体を封入し
た液体封入容器と、前記自由液面で全反射させる様、光
束を該自由液面に所定の角度で投射する投光系と、前記
自由液面で反射された光束を透過させるアナモルフィッ
クプリズム系と、該アナモルフィックプリズム系を透過
した反射光束を受光する受光器を有し、該受光器の受光
面での反射光束の受光位置で自由液面の傾斜量を検知す
る様にしたことを特徴とする傾斜検知装置。
1. A liquid enclosing container in which a transparent liquid is enclosed so as to form a free liquid surface, and a light projecting system for projecting a light beam onto the free liquid surface at a predetermined angle so as to totally reflect on the free liquid surface. An anamorphic prism system that transmits the light flux reflected by the free liquid surface and a light receiver that receives the reflected light flux that has passed through the anamorphic prism system are provided. A tilt detecting device characterized in that the tilt amount of a free liquid surface is detected at a light receiving position.
【請求項2】 透明液体を板状空間に封入した請求項1
の傾斜検知装置。
2. The transparent liquid is enclosed in a plate-like space.
Tilt detection device.
【請求項3】 板状空間の底面に伝熱板を設けた請求項
2の傾斜検知装置。
3. The inclination detecting device according to claim 2, wherein a heat transfer plate is provided on the bottom surface of the plate-shaped space.
【請求項4】 透明液体を封入した内ケースの周囲に断
熱層を形成した請求項1の傾斜検知装置。
4. The tilt detecting device according to claim 1, wherein a heat insulating layer is formed around an inner case enclosing a transparent liquid.
JP32729292A 1992-11-12 1992-11-12 Tilt detector Expired - Lifetime JP3210451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32729292A JP3210451B2 (en) 1992-11-12 1992-11-12 Tilt detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32729292A JP3210451B2 (en) 1992-11-12 1992-11-12 Tilt detector

Publications (2)

Publication Number Publication Date
JPH06147893A true JPH06147893A (en) 1994-05-27
JP3210451B2 JP3210451B2 (en) 2001-09-17

Family

ID=18197503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32729292A Expired - Lifetime JP3210451B2 (en) 1992-11-12 1992-11-12 Tilt detector

Country Status (1)

Country Link
JP (1) JP3210451B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797071A2 (en) 1995-12-29 1997-09-24 Nikon Corporation Automatic inclination correction for a laser beam surveying instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797071A2 (en) 1995-12-29 1997-09-24 Nikon Corporation Automatic inclination correction for a laser beam surveying instrument

Also Published As

Publication number Publication date
JP3210451B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
US10444300B2 (en) Magnetic field measuring device and method for manufacturing magnetic field measuring device
US10082521B2 (en) System for measuring six degrees of freedom
US9903934B2 (en) Apparatus and method of measuring six degrees of freedom
JP2913984B2 (en) Tilt angle measuring device
EP0626561A1 (en) Automatic inclination angle compensator
US4307516A (en) Directional two-axis differential optical inclinometer
EP2793042B1 (en) Positioning device comprising a light beam
JP3210451B2 (en) Tilt detector
JP3210450B2 (en) Tilt detector
JP2002286448A (en) Tilt detecting device
JP3228578B2 (en) Automatic vertical angle compensator
JP3228577B2 (en) Automatic vertical angle compensator
JPS58127184A (en) Triaxial sensor detecting angular attitude of remote body together with transceiver and target device
JPH04268433A (en) Measuring apparatus for aspherical lens eccentricity
WO2017155244A1 (en) Tilt measurement sensor using interferometer
JP2004012203A (en) Optical inclination angle detecting device
Zhukov et al. High-accuracy device for measuring the twist angle
JPS6140506A (en) Angle sensor
JP2001235308A (en) Alignment variation measuring apparatus
JPH01233307A (en) Differential autocollimation sensor
JP2783252B2 (en) Angle difference measuring device between two surfaces
JPH10176927A (en) Inclination sensor
CN117367323A (en) Spatial rotation angle detection device and method
SU1753261A1 (en) Method to measure right angle of bp-180 @@@ prisms
GB2184866A (en) A contactless interferometric sensor for incremental scanning of variable interference structures

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130713

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130713