JPH06147886A - Surface profile measuring equipment - Google Patents

Surface profile measuring equipment

Info

Publication number
JPH06147886A
JPH06147886A JP29612392A JP29612392A JPH06147886A JP H06147886 A JPH06147886 A JP H06147886A JP 29612392 A JP29612392 A JP 29612392A JP 29612392 A JP29612392 A JP 29612392A JP H06147886 A JPH06147886 A JP H06147886A
Authority
JP
Japan
Prior art keywords
displacement
moving body
measured
load
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29612392A
Other languages
Japanese (ja)
Other versions
JP2966214B2 (en
Inventor
Yoshifumi Nonaka
義史 野中
Takao Yokomatsu
孝夫 横松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29612392A priority Critical patent/JP2966214B2/en
Publication of JPH06147886A publication Critical patent/JPH06147886A/en
Application granted granted Critical
Publication of JP2966214B2 publication Critical patent/JP2966214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To deal with complicated profile including nonspherical profile by satisfying contradictory requirements of suppression of damage on the surface to be measured and high speed measurement through high response load control while enhancing accuracy and speed of measurement and enlarging the measuring range. CONSTITUTION:The body of the equipment comprises a frame 4 which functions as the reference of movement of a mover 3, and a controller (not shown), wherein the mover 3 is formed on the frame 4 such that an actuator 5 drives the mover 3 vertically by a microdistance. A mover displacement detecting means 7 for detecting displacement of the mover 3 is disposed on the top surface of the mover 3 having bottom surface secured with a parallel spring 2. A probe 1 is provided integrally or detacluably to one end part of the parallel spring 2 while directing vertically downward and an elastic body displacement detecting means 6 for detecting the displacement of the parallel spring 2 is disposed while spaced apart therefrom. An object 9 to be measured is held on a stage 8 below the probe 1 while directing the surface to be measured upward and the stage 8 is installed movably up and down.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業の利用分野】本発明は、接触式の表面形状計測装
置に関するもので、特に触針あるいはスタイラスによる
測定時のきずの発生や測定荷重の変動が計測結果に及ぼ
す影響を排除し、表面形状に高い応答性で追随し高速測
定を行なう装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact type surface profile measuring apparatus, and in particular, it eliminates the influence of flaw generation or measurement load variation on a measurement result when measuring with a stylus or stylus, The present invention relates to a device for performing high-speed measurement by following highly responsiveness.

【0002】[0002]

【従来の技術】接触式の表面形状計測装置によるnmオ
ーダの計測において、触針あるいはスタイラス(以下、
総称して「触針」とする)による測定時のきず(走査
痕)や測定荷重に起因する被測定面上の触針接触点にお
ける弾性変形が測定結果に悪影響を与えている。測定時
のきずの発生は被測定物材質とともに触針の形状、寸法
と測定荷重の関係により左右される。例えば精密機械5
1/4/1985,P.674〜P.680(宮本紘
三:接触式と非接触式による表面形状測定)では、同一
材質に対して同一測定荷重であっても触針先端半径の大
小によって触針試料間の塑性変換領域、つまりきずとし
て表れる領域の面積が異なってくることがHertzの
弾性接触理論から解析的に示されている。また触針やス
タイラスの形状、寸法はきずの発生以外にも測定対象と
なる表面形状への幾何学的形状追随性により制約を受
け、この点に関して例えばAPPLIED OPTIC
S,15May1981,Vol.20,No.10,
P.1785−1802(J.M.Bennett: Stylus profili
ng instrument for measuring statistical properties
of smooth optical surfaces)に形状追随性およびきず
の発生に関して報告がある。このような走査時のきずや
形状追随性に関する問題点を解決する方法としてSTM
やAFMの様に表面特性(例えばトンネル電流や原子間
力等)を利用した非接触走査を行なうものや極軽荷重
(nN〜μNオーダ)での接触走査が挙げられる。これ
らは極微細構造を観察するため一般に先端半径0.1μ
m以下の触針を用いるが、触針と被測定面の接触点にお
ける応力状態は厳しく、測定荷重による被測定面の弾性
変形量が測定結果に誤差として影響してくる。この点に
関する検討および計測装置の開発はNational
Technical Report,Vol.36,N
o.2,Apr.1990,P.232−239(吉住
恵一他)や1989年度精密工学会秋季学術講演会論文
集P.541−542(小口、金子:超軽荷重触針式表
面形状測定器の開発)において報告され、特開平1−1
95301にも一例がみられる。
2. Description of the Related Art A stylus (hereinafter referred to as a stylus) for measuring nm order by a contact type surface profile measuring device.
Elastic deformation at the contact point of the stylus on the surface to be measured due to flaws (scanning traces) at the time of measurement by the "stylus" collectively and measurement load adversely affects the measurement results. The generation of flaws during measurement depends on the material of the object to be measured and the relationship between the shape and size of the stylus and the measured load. For example, precision machine 5
1/4/1985, p. 674-P. 680 (Kouzo Miyamoto: Surface shape measurement by contact type and non-contact type) appears as a plastic conversion region between the stylus samples, that is, a flaw, depending on the size of the stylus tip radius even if the same measurement load is applied to the same material. It is analytically shown from Hertz's elastic contact theory that the areas of the regions are different. Further, the shape and size of the stylus and stylus are restricted by the geometric shape conformability to the surface shape to be measured in addition to the generation of flaws. In this respect, for example, APPLIED OPTIC
S, 15 May 1981, Vol. 20, No. 10,
P. 1785-1802 (JMBennett: Stylus profili
ng instrument for measuring statistical properties
of smooth optical surfaces) has a report on shape tracking and the occurrence of flaws. As a method for solving the problems related to the flaws and the shape followability during scanning, the STM
And AFM, which perform non-contact scanning utilizing surface characteristics (for example, tunneling current and interatomic force) and contact scanning with an extremely light load (nN to μN order). These are generally 0.1μ in tip radius for observing ultrafine structures.
Although a stylus of m or less is used, the stress state at the contact point between the stylus and the surface to be measured is severe, and the amount of elastic deformation of the surface to be measured due to the measurement load affects the measurement result as an error. The study on this point and the development of the measuring device are National
Technical Report, Vol. 36, N
o. 2, Apr. 1990, P.I. 232-239 (Keiichi Yoshizumi et al.) And 1989 Precision Engineering Society Autumn Academic Lecture Proceedings. 541-542 (Oguchi, Kaneko: Development of ultra-light load stylus type surface profile measuring instrument)
An example can be seen in 95301.

【0003】[0003]

【発明が解決しようとする課題】このような触針による
きずの発生、弾性変形の問題に対して従来の接触式の表
面形状計測装置をみると、粗さ計では仕様としてJIS
B0651に示されるような触針先端半径とそれに対
応する測定荷重を満足する装置が多い。薄膜段差測定器
等においては、測定荷重の極低荷重化による被測定面へ
のダメージ低減の対応がみられるにとどまり、三次元測
定機では測定荷重の制御を行っているもののスタイラス
径がmmオーダと大きいこともあり、スタイラス自身の
形状精度等を含めて考えると効果的なアプローチが採ら
れているとは言い難い。特に粗さ計においては特開昭6
1−25009に見られるようにてこ式の構成が一般に
多く、味岡成康:精密測定器の機構設計、開発社、19
70にも指摘されるような走査時の測定荷重変動に対し
て対策が施されていない。
A conventional contact-type surface profile measuring device for the problems of the generation of flaws and elastic deformation due to the stylus is as follows.
Many devices satisfy the probe tip radius and the corresponding measurement load as shown in B0651. In thin-film step measuring instruments, etc., the only way to reduce damage to the surface to be measured by making the measuring load extremely low is that the coordinate measuring machine controls the measuring load, but the stylus diameter is on the order of mm. Therefore, it is difficult to say that an effective approach is taken when considering the shape accuracy of the stylus itself. Especially in the roughness meter
As shown in 1-200509, generally, there are a lot of eccentric constitutions. Shigeyasu Amioka: Mechanism design of precision measuring instrument, development company, 19
No measures are taken against the fluctuation of the measured load during scanning as pointed out in 70 as well.

【0004】計測の高精度化に起因して測定時のきず、
弾性変形問題の解決が必要となってきている一方で、同
時に計測の高速化が要求されている。CDピックアップ
レンズを代表とした光学部品の非球面化が進むにつれ複
雑形状の評価が重要になっているが、複雑形状の評価に
はより多い計測点あるいはより広い範囲の形状データが
必要となり走査回数、計測時間の増加を招く。光学部品
の非球面化は走査光学系用トーリックレンズ、プロジェ
クタレンズ、短波長光学素子(トロイダルミラ、放物面
鏡等)と普及する模様で、測定対象も大型化の傾向にあ
り、この点からも高速化の実現が重要である。
Flaws at the time of measurement due to high precision of measurement,
While it is necessary to solve the elastic deformation problem, at the same time, high speed measurement is required. As aspherical optical components such as CD pickup lenses are becoming more aspherical, evaluation of complex shapes is becoming more important. However, evaluation of complex shapes requires more measurement points or a wider range of shape data, and the number of scans However, the measurement time is increased. It seems that the aspherical surface of optical parts will be widely used in toric lenses for scanning optical systems, projector lenses, and short-wavelength optical elements (toroidal mirrors, parabolic mirrors, etc.). It is important to realize high speed.

【0005】接触式表面計測の高速化において問題とな
るのは触針と被測定面間の接触剛性と触針の質量からな
る系の共振周波数である。高速走査において被測定面の
持つ空間周波数と走査速度の積で表される周波数成分に
触針は追随することが求められる。ところが、きずの発
生や弾性変形量といった被測定面へのダメージを低減す
るためには測定荷重を極低荷重にする必要があり、この
ときHertzの弾性接触理論からもわかるように触針
と被測定面間の接触剛性は低いものとなる。結果として
触針と被測定面からなるばね質量系の共振周波数は低く
なり、このような点が被測定面へのダメージを低減する
測定荷重の低荷重化と計測の高速化の両立を困難にして
いる。接触剛性と触針からなるばね質量系の共振周波数
を上げる効果的な対策は触針の軽量化である。その点、
粗さ計は触針部が数十mgと軽量であるため有利である
が、測定荷重の積極的な制御がないうえに測定範囲が狭
いため複雑形状の計測への対応は難しい。三次元測定機
の場合、荷重制御と計測を1軸に負荷させているため高
速計測が困難となっている。特開昭60−64206,
特開昭62−277501,特開平3−100415等
に見られるように測定プローブはスタイラスを平行ばね
で支持し、コイルマグネットにより測定荷重が制御さ
れ、差動トランスで変位を検出するものが多い。スタイ
ラス径が大きいためスタイラスと被測定面間の接触剛性
が高く接触は安定しているが、構成要素が大きいため荷
重制御の高い応答性は望めず、計測点数の増加に伴う計
測時間の増加は避けられない。またスタイラス自身の寸
法から幾何学的に追随可能な形状に制約を受け、非球面
光学部品に要求されるような複雑形状への対応は難し
い。
A problem in increasing the speed of contact-type surface measurement is the resonance frequency of the system consisting of the contact rigidity between the stylus and the surface to be measured and the mass of the stylus. In high-speed scanning, the stylus is required to follow the frequency component represented by the product of the spatial frequency of the surface to be measured and the scanning speed. However, in order to reduce damage to the surface to be measured, such as the occurrence of flaws and the amount of elastic deformation, it is necessary to make the measurement load extremely low. At this time, as can be seen from Hertz's elastic contact theory, The contact rigidity between the measurement surfaces is low. As a result, the resonance frequency of the spring-mass system consisting of the stylus and the surface to be measured becomes low, and such a point makes it difficult to achieve both a low load and a high measurement speed that reduces damage to the surface to be measured. ing. An effective measure to increase the resonance frequency of the spring-mass system consisting of contact rigidity and stylus is to reduce the weight of the stylus. That point,
The roughness meter is advantageous because the stylus portion is light, weighing several tens of mg, but it is difficult to measure complex shapes because the measurement range is narrow and the measurement load is narrow. In the case of a coordinate measuring machine, high-speed measurement is difficult because load control and measurement are applied to one axis. JP-A-60-64206,
As can be seen in JP-A-62-277501, JP-A-3-100415 and the like, there are many measuring probes in which a stylus is supported by a parallel spring, a measuring load is controlled by a coil magnet, and a displacement is detected by a differential transformer. Since the stylus diameter is large, the contact rigidity between the stylus and the surface to be measured is high and the contact is stable.However, since the components are large, high response of load control cannot be expected, and the increase in measurement time with the increase in the number of measurement points Inevitable. Also, the size of the stylus itself limits the geometrically conformable shape, and it is difficult to deal with the complicated shape required for aspherical optical components.

【0006】本発明は、上記従来技術の有する問題点に
鑑みてなされたものであり、きずの発生、触針接触点に
おける弾性変形といった被測定面へのダメージの低減と
応答性の高い荷重制御による計測の高速化という相反す
る要求を満たし、計測の高精度化、高速化と共に測定範
囲の拡大により非球面形状を始めとする複雑形状に対応
可能な表面形状計測装置を提供することを目的としてい
る。
The present invention has been made in view of the above problems of the prior art, and reduces the damage to the surface to be measured such as the generation of scratches and the elastic deformation at the contact point of the stylus and the load control with high responsiveness. The object is to provide a surface profile measuring device that meets the contradictory requirements of high-speed measurement by using, and is capable of dealing with complex shapes such as aspherical shapes by increasing the measurement accuracy and speed and expanding the measurement range. There is.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明は、被測定物の被測定面に対して触針を用いて
接触走査し、前記被測定面の変位量をもとに表面形状を
計測する表面形状計測装置において、前記被測定面と対
向する位置に、前記被測定面と対向する方向に高い応答
性を有するとともに微小移動可能に設けられた移動体
と、該移動体に固設されて、前記被測定面に先端部を向
けた前記触針が前記被測定面に対して変位可能に、かつ
装着可能あるいは一体的に設けられた弾性体とで構成さ
れる荷重制御機構と、前記弾性体および前記移動体の各
々に離隔配置され、前記弾性体および前記移動体の各変
位量をそれぞれ検出する変位検出手段と、前記変位検出
手段による検出結果に応じて、前記荷重制御機構を制御
する制御装置を有し、前記制御装置は前記移動体の移動
により前記被測定面に前記触針を接触させつつ設定荷重
まで荷重をかけ、前記移動体の変位量と前記弾性体の変
位量との差が前記設定荷重に相当する変位量と常に等し
くなるように前記移動体の位置を制御することを特徴と
する。
According to the present invention for achieving the above object, a contact surface of a measured object is contact-scanned with a stylus, and a displacement amount of the measured surface is used. In a surface shape measuring device for measuring a surface shape, a moving body provided at a position facing the surface to be measured, which has high responsiveness in a direction facing the surface to be measured and is capable of minute movement, and the moving body. A load control that is fixedly attached to the measuring surface, and the stylus whose tip is directed to the measuring surface is configured to be displaceable with respect to the measuring surface and attachable or integrally provided with an elastic body. A mechanism, a displacement detection unit that is disposed separately from each of the elastic body and the moving body, and that detects each displacement amount of the elastic body and the moving body; and the load according to the detection result of the displacement detection unit. Has a control device that controls the control mechanism The control device applies a load to a set load while bringing the stylus into contact with the surface to be measured by the movement of the moving body, and a difference between a displacement amount of the moving body and a displacement amount of the elastic body is equal to the set load. It is characterized in that the position of the moving body is controlled so as to be always equal to the corresponding displacement amount.

【0008】また、前記測定物あるいは前記荷重制御機
構のいずれか一方を搭載し、前記測定物あるいは前記荷
重制御機構に対して対向移動可能な保持台を有し、前記
制御装置は、前記移動体が移動範囲を超えた場合には前
記保持台を移動させ、前記移動体の変位量と前記弾性体
の変位量との差が常に前記設定荷重に相当する変位量と
等しくなるように前記移動体の位置制御とともに前記保
持台の位置を制御するものであってもよい。
[0008] Further, the measuring device or the load control mechanism is equipped with one of them, and a holding base movable opposite to the measuring object or the load control mechanism is provided. Is above the movement range, the holding table is moved so that the difference between the displacement amount of the movable body and the displacement amount of the elastic body is always equal to the displacement amount corresponding to the set load. The position of the holding table may be controlled together with the position control.

【0009】[0009]

【作用】本発明の表面形状計測装置では、被測定面に対
して高い応答性を有するとともに微小移動可能に設けら
れた移動体を、制御装置により被測定面に向けて移動さ
せ、移動体に固設された弾性体に設けられた触針の先端
部を被測定面に接近させていくと同時に、移動体および
弾性体の各々に離隔配置された各変位検出手段により各
変位量を監視し、移動体および弾性体の変位量を検出す
る。このとき、配置された各変位検出手段から監視した
移動体と弾性体の変位量とが等しいかどうか確認し、等
しいときは触針がまだ被測定面に接触していない状態で
あると判断し、移動体を移動し続ける。等しくない場合
は触針が接触していると判断し、移動体と弾性体の変位
量の差分を検出する。この変位量の差分は弾性体自身の
変位量に相当し、弾性体のばね定数がわかれば、被測定
面にかかる荷重が求められる。この荷重を予め設定され
る設定荷重と常に等しくなるように荷重制御して被測定
面の表面を接触走査し、弾性体の変位検出手段より弾性
体の変位量の変化分を出力させることで、被測定面の表
面形状が計測される。
In the surface shape measuring apparatus of the present invention, the moving body provided with a high responsiveness to the surface to be measured and capable of making a minute movement is moved toward the surface to be measured by the control device, and is moved to the moving body. At the same time as the tip of the stylus provided on the fixed elastic body is brought closer to the surface to be measured, each displacement amount is monitored by each displacement detection means separately arranged on the moving body and the elastic body. , The amount of displacement of the moving body and the elastic body is detected. At this time, it is confirmed whether or not the displacement amounts of the moving body and the elastic body monitored from the respective displacement detecting means arranged are equal, and when they are equal, it is determined that the stylus is not in contact with the surface to be measured yet. , Keep moving the moving body. If they are not equal, it is determined that the stylus is in contact, and the difference between the displacement amounts of the moving body and the elastic body is detected. This difference in the amount of displacement corresponds to the amount of displacement of the elastic body itself, and if the spring constant of the elastic body is known, the load applied to the measured surface can be obtained. The load is controlled so that the load is always equal to a preset load, and the surface of the surface to be measured is contact-scanned, and the change amount of the displacement amount of the elastic body is output from the displacement detecting means of the elastic body. The surface shape of the measured surface is measured.

【0010】さらに、装置全体の構成として移動体およ
び弾性体とから構成される荷重制御機構とは別に、触針
の先端部を被測定面に向けた荷重制御機構、あるいは触
針先端部に被測定面を向けた被測定物のいずれか一方が
搭載される保持台を設け、対向移動可能にすることで、
制御装置は、計測する際の被測定面の表面形状変化が大
きいために、移動体がその移動範囲を超えた場合には保
持台を移動させ、被測定面にかかる荷重を予め設定され
る設定荷重と常に等しくなるように荷重制御する。この
場合、弾性体の変位検出手段より出力された弾性体の変
位量の変化分に保持台の変位量を加算することで、被測
定面の表面形状が計測される。
Further, in addition to a load control mechanism composed of a movable body and an elastic body as a configuration of the entire apparatus, a load control mechanism in which the tip of the stylus is directed to the surface to be measured or the tip of the stylus is covered. By providing a holding table on which either one of the measured objects facing the measurement surface is mounted and making it possible to move oppositely,
The control device changes the surface shape of the surface to be measured at the time of measurement, so when the moving body exceeds the moving range, the holding table is moved and the load applied to the surface to be measured is set in advance. The load is controlled so that it is always equal to the load. In this case, the surface shape of the surface to be measured is measured by adding the displacement amount of the holding table to the change amount of the displacement amount of the elastic body output from the displacement detecting means of the elastic body.

【0011】[0011]

【実施例】次に本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0012】(第1実施例)図1は本発明の表面形状計
測装置の第1実施例の主構成の特徴を示す斜視図であ
る。図2は本発明の表面形状計測装置の第1実施例の側
面図である。
(First Embodiment) FIG. 1 is a perspective view showing the features of the main constitution of the first embodiment of the surface profile measuring apparatus of the present invention. FIG. 2 is a side view of the first embodiment of the surface profile measuring apparatus of the present invention.

【0013】本実施例の装置本体10は、移動体3の移
動基準となるフレーム4と不図示の制御装置を有し、フ
レーム4には平行ばね微動ステージである移動体3が圧
電素子などのアクチュエータ5の駆動により上下方向に
微小移動可能に形成されている。移動体3の上面には移
動体3の変位量を検出するための移動体変位検出手段7
が離隔配置され、一方、移動体3の下面には弾性体とし
ての平行ばね2が固設されている。平行ばね2の一端部
には先端部を鉛直下向きにした触針1が装着可能あるい
は一体的に設けられているとともに、平行ばね2の変位
量を検出する弾性体変位検出手段6が離隔配置されてい
る。
The apparatus main body 10 of the present embodiment has a frame 4 serving as a movement reference of the moving body 3 and a control device (not shown). The moving body 3 which is a parallel spring fine movement stage includes a piezoelectric element or the like in the frame 4. The actuator 5 is formed so as to be finely movable in the vertical direction by being driven. On the upper surface of the moving body 3, moving body displacement detecting means 7 for detecting the amount of displacement of the moving body 3.
, And the parallel spring 2 as an elastic body is fixedly installed on the lower surface of the moving body 3. A stylus 1 having its tip end facing vertically downward is attached to or integrally provided at one end of the parallel spring 2, and an elastic body displacement detecting means 6 for detecting the displacement amount of the parallel spring 2 is arranged separately. ing.

【0014】本実施例の平行ばねは荷重検出用の弾性体
2として、組立式の平行ばねの各部材締結部の低荷重下
における非線形挙動を懸念し、ワイヤカットによる一体
式の平行ばねを用いている。この平行ばねの製作は、通
常のワイヤカット加工機を用いればワイヤ径0.2mm
で板ばね部寸法 3×7×0.07mm程度、ばね定数
1000N/m以下を実現できる。上述の移動体変位検
出手段7および弾性体変位検出手段6は、例えばフィー
ドバック制御を用いた高速な荷重制御を実現するため
に、レーザー干渉測長器や光ファイバ式変位計など応答
周波数が高く位相遅れの少ないものがよい。
In the parallel spring of this embodiment, as the elastic body 2 for load detection, an integrated parallel spring formed by wire cutting is used because of concern about the non-linear behavior of each member fastening portion of the assembly type parallel spring under a low load. ing. This parallel spring can be manufactured using a normal wire cutting machine with a wire diameter of 0.2 mm.
Thus, it is possible to realize a leaf spring dimension of about 3 × 7 × 0.07 mm and a spring constant of 1000 N / m or less. The above-mentioned moving body displacement detecting means 7 and elastic body displacement detecting means 6 have a high response frequency such as a laser interferometer or an optical fiber type displacement meter in order to realize high-speed load control using feedback control. Those with less delay are better.

【0015】触針1の下方には表面形状を計測する被測
定物9がステージ8上に保持されており、ステージ8は
移動体3の移動とは別に垂直方向に移動可能に設置され
ている。
An object to be measured 9 whose surface shape is measured is held below the stylus 1 on a stage 8. The stage 8 is installed so as to be movable in the vertical direction separately from the movement of the moving body 3. .

【0016】次に本発明に係る表面形状計測装置の制御
装置による第1実施例の動作について図3をもとに説明
する。図3は、本発明の第1実施例の動作を示すフロチ
ャートである。
Next, the operation of the first embodiment by the controller of the surface profile measuring apparatus according to the present invention will be described with reference to FIG. FIG. 3 is a flow chart showing the operation of the first embodiment of the present invention.

【0017】本実施例の制御装置は、まず移動体3を下
方に移動し、触針1を被測定物9の被測定面に接触する
まで接近させていく(ステップS1)。このとき、移動
基準となるフレーム4からの移動体3および弾性体とし
ての平行ばね2の各変位量を移動体変位検出手段7およ
び弾性体変位検出手段6によりそれぞれ監視する。
The control device of this embodiment first moves the moving body 3 downward, and brings the stylus 1 closer until it comes into contact with the surface to be measured of the object 9 to be measured (step S1). At this time, the displacement amounts of the moving body 3 and the parallel spring 2 as the elastic body from the frame 4 which is the movement reference are monitored by the moving body displacement detecting means 7 and the elastic body displacement detecting means 6, respectively.

【0018】次いで、移動体3の変位量と平行ばね2の
変位量が等しいかどうか確認し(ステップS2)、各変
位量が等しいときは再びS1に戻り移動動作をくりかえ
し、各変位量が等しくないことが確認されると触針が接
触していると判断する(S3)。これは接触後に平行ば
ね2が被測定面により上方に押し戻され、可動体3の変
位量は平行ばね2の変位量よりも大きくなるためであ
る。このとき、平行ばね2と移動体3の変位量の差分が
弾性体としての平行ばね2自身の変位量である。
Then, it is confirmed whether or not the displacement amount of the moving body 3 and the displacement amount of the parallel spring 2 are equal (step S2). When the displacement amounts are equal, the process returns to S1 again and repeats the movement operation so that the displacement amounts are equal. If it is confirmed that there is no stylus, it is determined that the stylus is in contact (S3). This is because the parallel spring 2 is pushed upward by the surface to be measured after the contact, and the displacement amount of the movable body 3 becomes larger than the displacement amount of the parallel spring 2. At this time, the difference between the amounts of displacement of the parallel spring 2 and the moving body 3 is the amount of displacement of the parallel spring 2 itself as an elastic body.

【0019】S3により接触していると判断すると、こ
の平行ばね2と移動体3の変位量の差分が設定荷重に相
当する弾性体変位量よりも小さいかどうか確認し(S
4)、小さいときには移動体3を下方に移動し続ける
(ステップS4)。S4により平行ばね2と移動体3の
変位量の差分が設定荷重に相当する弾性体変位量に等し
くなったことが確認されると、移動体3の移動を一時停
止し(ステップS6)、荷重制御を開始する(ステップ
S7)。
When it is determined in S3 that they are in contact with each other, it is confirmed whether the difference between the displacement amounts of the parallel spring 2 and the moving body 3 is smaller than the elastic body displacement amount corresponding to the set load (S).
4) If it is smaller, the mobile unit 3 continues to move downward (step S4). When it is confirmed in S4 that the difference between the displacement amounts of the parallel spring 2 and the moving body 3 becomes equal to the elastic body displacement amount corresponding to the set load, the movement of the moving body 3 is temporarily stopped (step S6), and the load is changed. Control is started (step S7).

【0020】図4は、本発明の表面形状測定装置におけ
る測定走査時の荷重制御状態を表わした摸式図である。
FIG. 4 is a schematic diagram showing a load control state during measurement scanning in the surface profile measuring apparatus of the present invention.

【0021】被測定面9の表面を接触走査する際、図4
に示すように荷重制御は平行ばね2と移動体3の変位量
の差分が設定荷重に相当する弾性体変位量と常に等しく
なるように、圧電素子などのアクチュエーター5により
移動体3の位置制御を行なうことで達成される。
When the surface of the surface to be measured 9 is contact-scanned, as shown in FIG.
As shown in Fig. 4, the position control of the moving body 3 is performed by the actuator 5 such as a piezoelectric element so that the difference between the displacement amounts of the parallel spring 2 and the moving body 3 is always equal to the elastic body displacement amount corresponding to the set load. It is achieved by doing.

【0022】計測する際にアクチュエーター5のストロ
ークを超えるような表面形状の変化が生じた場合、ステ
ージ8を垂直方向に移動させ、平行ばね2と移動体3の
変位量の差分が設定荷重に相当する弾性体変位量と常に
等しくなるようにステージ8の位置制御を行なう。
When the surface shape changes exceeding the stroke of the actuator 5 during measurement, the stage 8 is moved in the vertical direction, and the difference between the displacement amounts of the parallel spring 2 and the moving body 3 corresponds to the set load. The position of the stage 8 is controlled so as to be always equal to the elastic body displacement amount.

【0023】測定データは、通常弾性体変位検出手段6
で検出される変位量の変化分であるが、上記のような場
合は弾性体変位検出手段6で検出される変位量とステー
ジ8の変位量を加算することにより得られる。
The measurement data is usually the elastic body displacement detection means 6
In the above case, it is obtained by adding the displacement amount detected by the elastic body displacement detecting means 6 and the displacement amount of the stage 8.

【0024】本実施例では被測定面へのダメージを荷重
制御を行なうことにより抑制し、高速応答可能な移動体
3により被測定面形状の高い空間周波数成分への追随を
確保し、ステージ8と移動体3の協調動作により広範囲
の測定を可能にする。
In the present embodiment, damage to the surface to be measured is suppressed by controlling the load, and the moving body 3 capable of high-speed response ensures tracking of the high spatial frequency component of the shape of the surface to be measured. The cooperative operation of the mobile unit 3 enables a wide range of measurement.

【0025】(第2実施例)図5は本発明の表面形状計
測装置の主要構成の第2実施例を示す斜視図である。図
6は本発明の表面形状計測装置の第2実施例の正面図で
ある。
(Second Embodiment) FIG. 5 is a perspective view showing a second embodiment of the main structure of the surface profile measuring apparatus of the present invention. FIG. 6 is a front view of the second embodiment of the surface profile measuring apparatus of the present invention.

【0026】図5および図6に示すように装置本体20
には上下方向の移動を支持するためのステージ18と不
図示の制御装置を有しており、ステージ18には移動体
取り付け案内部14が搭載されている。移動体取り付け
案内部14は、移動体13の取り付け部材であり空気静
圧軸受面を持ちリニアモータコイルが一体になった案内
部である。この移動体取り付け案内部14には移動体1
3が上下方向に移動可能に取り付けられており、移動体
13は移動体13の上面に設置された圧電素子などを用
いたアクチュエータ15により微小移動される。
As shown in FIGS. 5 and 6, the apparatus main body 20
Has a stage 18 for supporting the movement in the vertical direction and a controller (not shown), and the stage 18 is equipped with a moving body attachment guide portion 14. The moving body mounting guide portion 14 is a mounting member of the moving body 13 and is a guide portion having an aerostatic bearing surface and a linear motor coil integrated therewith. The moving body 1 is attached to the moving body attachment guide portion 14.
3 is attached so as to be movable in the vertical direction, and the moving body 13 is finely moved by an actuator 15 using a piezoelectric element or the like installed on the upper surface of the moving body 13.

【0027】移動体13には円弧切り欠きを利用した弾
性ヒンジを採用しており、弾性ヒンジ変形時の横移動を
相殺するために機械工学会誌、55/1/1989P.
146〜151(津田展宏他:大ストロークSTM)に
示されるような一体構造で折り返し多段の弾性ヒンジを
用いている。
An elastic hinge utilizing a circular arc notch is adopted for the moving body 13, and in order to offset the lateral movement when the elastic hinge is deformed, the mechanical engineering journal, 55/1 / 1989P.
146 to 151 (Nobuhiro Tsuda et al .: Large stroke STM) uses an elastic hinge having a multi-folded and folded structure with an integral structure.

【0028】また移動体13の上面には最初の基準位置
からの変位量を検出する移動体変位検出手段17が離隔
配置されている。一方、移動体13の下面には、AFM
に用いられるカンチレバーと同様な薄板ばね12が荷重
検出用の弾性体として取り付けられている。薄板ばね1
2の加工は薄板部材のエッチングにより寸法形状が整え
られるので比較的設計形状の自由度が高く、広い範囲で
ばね設定を変えやすい。また本実施例では触針先端に働
く摩擦力によるモーメントに対して剛な構造であるよう
にV字型形状の薄板ばねに構成されている。このV字型
形状の薄板ばねの先端部には、先端を鉛直下向きにした
触針11が装着自在あるいは一体的に取り付けられてい
るとともに、薄板ばね12の変位量を検出する弾性体変
位検出手段16が離隔配置されている。
On the upper surface of the moving body 13, moving body displacement detecting means 17 for detecting the amount of displacement from the first reference position is arranged separately. On the other hand, on the lower surface of the moving body 13, the AFM
A thin leaf spring 12 similar to the cantilever used for is attached as an elastic body for load detection. Thin leaf spring 1
In the processing of No. 2, since the dimension and shape are adjusted by etching the thin plate member, the degree of freedom of the design shape is relatively high, and the spring setting can be easily changed in a wide range. Further, in this embodiment, the thin leaf spring having a V-shape is constructed so as to have a rigid structure against a moment due to a frictional force acting on the tip of the stylus. A stylus 11 having a vertically downward tip is freely or integrally attached to the tip of the V-shaped thin leaf spring, and an elastic body displacement detecting means for detecting the amount of displacement of the thin leaf spring 12. 16 are spaced apart.

【0029】本実施例の制御装置による動作は、第1実
施例と同様に移動体変位検出手段17および弾性体変位
検出手段16によりそれぞれ変位量を検出して、荷重制
御を行ない表面形状を計測する。移動体13のストロー
クを超えるような形状変化に対しては移動体取り付け案
内部14により移動体13を移動させて対応する。
In the operation by the control device of this embodiment, the displacement amount is detected by the moving body displacement detecting means 17 and the elastic body displacement detecting means 16 as in the first embodiment, and the load is controlled to measure the surface shape. To do. If the shape of the moving body 13 exceeds the stroke, the moving body 13 is moved by the moving body mounting guide portion 14 to deal with the change.

【0030】以上の構成により第1実施例と同様の効果
を奏する。
With the above structure, the same effect as that of the first embodiment can be obtained.

【0031】(第3実施例)図7は本発明の表面形状計
測装置の主要構成の第3実施例を示す斜視図である。
(Third Embodiment) FIG. 7 is a perspective view showing a third embodiment of the main constitution of the surface profile measuring apparatus of the present invention.

【0032】本実施例の装置本体には移動体23を上下
方向に空気静圧案内するための移動体案内部24aおよ
び24bと不図示の制御装置を有するとともに、移動体
23を上下方向に移動させるためのコイル部25が設置
されている。コイル部25にはリニアモータとしてのコ
イルが設けられており、コイル部25の上面にはヨーク
部26が設置されている。ヨーク部26には移動体23
が固設されており、移動体23は移動体案内部24aお
よび24bにより上下方向に微小移動可能に設けられて
いる。移動体案内部24aおよび24bの各近傍に位置
する移動体23の上面にはそれぞれ移動体23の変位量
を検出するための移動体変位検出手段28aおよび28
bが離隔配置されている。移動体23の中央部には孔が
穿設されており、孔の各上下端部にはそれぞれ荷重検出
用の弾性体としての十字型の薄板ばね22aおよび22
bが固定されている。移動体23の上下に固定された十
字型の薄板ばね22aおよび22bには各薄板ばねの中
央部を通るように触針21が先端を鉛直下向きに向けて
着脱自在あるいは一体的に取り付けられている。この十
字型の薄板ばね22aおよび22bは、接触走査時に触
針21の先端に働くモーメント荷重(例えば摩擦力)に
対する剛性の向上を図る構成である。触針21の一端部
には弾性体としての十字型の薄板ばねの変位量を検出す
るための弾性体変位検出手段27が離隔配置されてい
る。
The apparatus main body of this embodiment has moving body guide portions 24a and 24b for guiding the moving body 23 in the vertical direction by static pressure and a controller (not shown), and moves the moving body 23 in the vertical direction. A coil portion 25 for causing the movement is installed. A coil as a linear motor is provided in the coil portion 25, and a yoke portion 26 is installed on the upper surface of the coil portion 25. The moving body 23 is provided on the yoke portion 26.
Is fixed, and the moving body 23 is provided so as to be finely movable in the vertical direction by the moving body guide portions 24a and 24b. Moving body displacement detecting means 28a and 28 for detecting the amount of displacement of the moving body 23 are provided on the upper surface of the moving body 23 located in the vicinity of the respective moving body guiding portions 24a and 24b.
b are spaced apart. A hole is formed in the center of the moving body 23, and cross-shaped thin leaf springs 22a and 22 as elastic bodies for load detection are provided at the upper and lower ends of the hole, respectively.
b is fixed. A stylus 21 is detachably or integrally attached to the cross-shaped thin leaf springs 22a and 22b fixed above and below the moving body 23 so as to pass through the central portion of each thin leaf spring with its tip facing vertically downward. . The cross-shaped thin leaf springs 22a and 22b are configured to improve rigidity against moment load (for example, frictional force) acting on the tip of the stylus 21 during contact scanning. Elastic body displacement detection means 27 for detecting the amount of displacement of a cross-shaped thin leaf spring as an elastic body is spaced apart from one end of the stylus 21.

【0033】本実施例の制御装置による表面形状の測定
動作は、第1実施例および第2実施例とほぼ同様である
が、測定時における移動体23のヨーイングの影響を補
正するため、移動体変位検出手段28aおよび28bを
用いて検出された両者の変位量の平均値を移動体23の
変位量とし、弾性体変位検出手段27より検出された変
位量との差分をとり、この差分が一定になるように荷重
制御を行なう。
The operation of measuring the surface shape by the control device of this embodiment is almost the same as that of the first and second embodiments, but in order to correct the influence of yawing of the moving body 23 at the time of measurement, the moving body is moved. The average value of the displacement amounts of both detected by the displacement detection means 28a and 28b is taken as the displacement amount of the moving body 23, and the difference from the displacement amount detected by the elastic body displacement detection means 27 is calculated, and this difference is constant. The load is controlled so that

【0034】(第4実施例)図8は、本発明の表面形状
計測装置の第4実施例の計測ヘッドの構成を示す部分断
面斜視図である。図9は、本発明の表面形状計測装置の
第4実施例を示す斜視図である。
(Fourth Embodiment) FIG. 8 is a partial sectional perspective view showing the structure of a measuring head of a fourth embodiment of the surface profile measuring apparatus of the present invention. FIG. 9 is a perspective view showing a fourth embodiment of the surface profile measuring apparatus of the present invention.

【0035】これらの図に示すように、本実施例の装置
本体43は不図示の制御装置を有し、装置本体43上面
には、計測ヘッド39と被測定物40を保持するステー
ジ41とが対向配置され、計測ヘッド39に対してステ
ージ41を移動可能なステージ用スライダ42が設けら
れている。計測ヘッド39はベース38を有し、ベース
38上面には上述した第1実施例と同様な移動体33の
移動基準となるフレーム34が設けられており、フレー
ム34には平行ばね微動ステージである移動体33がP
ZT素子などのアクチュエータ5の駆動により微小移動
可能に形成されている。移動体33のアクチュエータ3
5により変位される面には、移動体33の変位量を検出
するための移動体変位検出手段37が離隔配置され、一
方、移動体33の被測定物40側の一面には弾性体とし
ての平行ばね32が固設されている。平行ばね32の一
端部には先端部を被測定物40に向けた触針31が装着
可能あるいは一体的に設けられているとともに、平行ば
ね32の変位量を検出する弾性体変位検出手段36が離
隔配置されている。
As shown in these figures, the apparatus main body 43 of this embodiment has a control device (not shown), and a measuring head 39 and a stage 41 holding an object 40 to be measured are provided on the upper surface of the apparatus main body 43. A stage slider 42 is provided so as to be opposed to the measurement head 39 and the stage 41 is movable with respect to the measurement head 39. The measuring head 39 has a base 38, and on the upper surface of the base 38 is provided a frame 34 that is the movement reference of the moving body 33 similar to the above-described first embodiment. The frame 34 is a parallel spring fine movement stage. The moving body 33 is P
It is formed so that it can be moved minutely by driving an actuator 5 such as a ZT element. Actuator 3 of moving body 33
The moving body displacement detecting means 37 for detecting the amount of displacement of the moving body 33 is spaced apart from the surface displaced by 5, and on the other hand, one surface of the moving body 33 on the side of the object to be measured 40 serves as an elastic body. The parallel spring 32 is fixedly installed. A stylus 31 having a tip end facing the object to be measured 40 can be attached to or integrally provided with one end of the parallel spring 32, and an elastic body displacement detection means 36 for detecting the displacement amount of the parallel spring 32 is provided. It is separated.

【0036】本実施例の制御装置による動作は、第1実
施例と同様に移動体変位検出手段37および弾性体変位
検出手段36によりそれぞれ変位量を検出して、荷重制
御を行ない表面形状を計測する。移動体33のストロー
クを超えるような形状変化に対してはステージ41を移
動させて対応する。
In the operation by the control device of this embodiment, the displacement amount is detected by the moving body displacement detecting means 37 and the elastic body displacement detecting means 36 as in the first embodiment, and the load is controlled to measure the surface shape. To do. The stage 41 is moved to deal with a change in shape that exceeds the stroke of the moving body 33.

【0037】このように構成された本実施例も第1実施
例、第2実施例および第3実施例と同様な効果を奏す
る。
This embodiment, which is constructed in this way, also exhibits the same effects as the first, second and third embodiments.

【0038】また、第1実施例乃至第3実施例に示され
る構成以外にも、荷重検出用の弾性体は単一の板ばねな
ど、また、移動体は転がり軸受けにボールねじを用いた
ステージなどの様々な形態を用いてもよい。
Besides the structures shown in the first to third embodiments, the load detecting elastic body is a single leaf spring or the like, and the moving body is a stage using a ball screw as a rolling bearing. Various forms such as

【0039】以上これまでに説明したように、被測定面
へのダメージを低減するために測定荷重を低荷重化する
必要があるがnN〜μNオーダの感度を持ち、かつ形状
計測装置への応用が容易な荷重計は従来では見当たらな
かったが、STM,AFMのように荷重を弾性体の変形
量に変換することで高感度な荷重検出が可能である。こ
の荷重を検出する弾性体は触針が装着可能かあるいは触
針と一体でなければならないが、軽量化する観点から弾
性体自身も小型化する必要がある。本実施例ではワイヤ
カットにより一体化された平行ばねを製作する、あるい
は薄板ばねをエッチングにより所定の寸法形状に加工す
ることで実現できる。また高感度の荷重検出の観点から
弾性体はばね定数が1000N/m以下の弱いばねでな
ければならないが、現状のワイヤカットやエッチングに
よる加工技術の範囲で対応可能である。
As described above, it is necessary to lower the measurement load in order to reduce damage to the surface to be measured, but it has a sensitivity of the order of nN to μN and is applied to a shape measuring device. Although a load cell that is easy to find has not been found in the past, it is possible to detect the load with high sensitivity by converting the load into the deformation amount of the elastic body like STM and AFM. The elastic body that detects this load must be attachable to the stylus or integrated with the stylus, but the elastic body itself must be miniaturized from the viewpoint of weight reduction. In the present embodiment, it can be realized by manufacturing a parallel spring integrated by wire cutting or by processing a thin leaf spring into a predetermined size and shape by etching. Further, from the viewpoint of highly sensitive load detection, the elastic body must be a weak spring having a spring constant of 1000 N / m or less, but it can be applied within the current range of processing technology by wire cutting or etching.

【0040】一定荷重で被測定面の形状に高速で追随す
るためには荷重制御にも高い応答性が要求される。これ
には荷重制御方向に対して応答性の良い移動体に荷重検
出用の弾性体を搭載することで対応できる。この移動体
は例えば圧電素子のような応答性の高いアクチュエータ
で駆動される平行ばねステージや空気静圧軸受に案内さ
れたリニアモータ駆動のステージがある。弾性体の小型
化に加え移動体の小型化によって移動部全体の質量は数
100g程度の軽さにおさまり、圧電素子に代表される
アクチュエータの剛性等を考慮すると数100Hz〜1
kHzの共振周波数を有する移動体を構成できる。
In order to follow the shape of the surface to be measured with a constant load at a high speed, the load control is also required to have high responsiveness. This can be dealt with by mounting an elastic body for load detection on a moving body having a good response in the load control direction. This moving body is, for example, a parallel spring stage driven by a highly responsive actuator such as a piezoelectric element or a linear motor driven stage guided by an aerostatic bearing. Due to the miniaturization of the elastic body and the miniaturization of the moving body, the mass of the entire moving section is kept to a light weight of about several 100 g, and considering the rigidity of an actuator represented by a piezoelectric element, several hundred Hz to 1 Hz.
A moving body having a resonance frequency of kHz can be constructed.

【0041】測定荷重を弾性体の変形量に変換するには
移動体上に搭載された弾性体自身の変位量を検出する必
要がある。本実施例では移動体の移動の基準となる部
材、例えば移動体取り付け部材から弾性体及び移動体両
者の変位量をそれぞれ監視する。この時、弾性体自身の
変位量は移動体取り付け部からみた両者の変位量の差分
に相当する。予め弾性体のばね定数を把握していれば設
定荷重に相当する弾性体の変位量がわかり、この変位量
と、弾性体と移動体の変位量の差分が等しくなるように
移動体を駆動することで荷重の設定が行える。一旦荷重
が設定された後は荷重制御の状態に移る。弾性体が一定
変位量を保つように、つまり設定荷重を保つように移動
体の駆動を制御し被測定面形状に追随される。この間、
移動体取付け部からみた弾性体の変位量の変化分は被測
定面形状と等しくなる。本発明による荷重制御機構は単
体においても移動体の移動範囲内で形状計測を行える。
この時、形状データは弾性体変位検出手段の出力と一致
する。
In order to convert the measured load into the deformation amount of the elastic body, it is necessary to detect the displacement amount of the elastic body itself mounted on the moving body. In this embodiment, the displacement amount of both the elastic body and the moving body is monitored from a member serving as a reference of the movement of the moving body, for example, the moving body mounting member. At this time, the displacement amount of the elastic body itself corresponds to the difference between the displacement amounts of the two as viewed from the moving body mounting portion. If the spring constant of the elastic body is known in advance, the displacement amount of the elastic body corresponding to the set load can be known, and the moving body is driven so that the difference between this displacement amount and the displacement amount of the elastic body and the moving body becomes equal. This makes it possible to set the load. Once the load is set, the load control state is entered. The elastic body is controlled to drive the moving body so as to maintain a constant displacement amount, that is, to maintain a set load, and follows the surface shape to be measured. During this time,
The amount of change in the amount of displacement of the elastic body viewed from the moving body mounting portion is equal to the shape of the surface to be measured. The load control mechanism according to the present invention can measure the shape even within the moving range of the moving body even by itself.
At this time, the shape data matches the output of the elastic body displacement detection means.

【0042】更に装置全体構成として荷重制御機構とは
別に荷重制御機構あるいは被測定物のいずれか一方が搭
載される保持台としてのステージを有することで計測範
囲を拡大することができる。荷重制御機構の移動範囲を
超えるような形状の変化が生じた場合、これをステージ
側のストロークで吸収することにより、計測範囲をステ
ージの移動距離まで拡大できる。また設計形状が把握で
きている場合、ステージを被測定物の設計形状通りに駆
動し誤差成分を含む形状は応答性の高い荷重制御に追随
させる、つまりステージ側に被測定面形状の低周波成分
を追随させ、荷重制御機構に高周波成分を追随させるこ
とで計測を行う。このように荷重制御と計測の機能負担
を分配し、荷重制御機構とステージの協調動作により高
速計測が可能となる。この時、形状データはステージの
変位と弾性体の変位を加算することによって得られる。
Furthermore, by providing a stage as a holding table on which either the load control mechanism or the object to be measured is mounted separately from the load control mechanism as the entire structure of the apparatus, the measurement range can be expanded. When a shape change occurs that exceeds the movement range of the load control mechanism, the measurement range can be expanded to the movement distance of the stage by absorbing the change in the stroke on the stage side. If the design shape is known, the stage is driven according to the design shape of the object to be measured, and the shape including the error component is made to follow the load control with high response, that is, the low frequency component of the surface to be measured on the stage side. And the high-frequency component is made to follow the load control mechanism to perform measurement. In this way, the load of function control and load of measurement is distributed, and high-speed measurement is possible by the coordinated operation of the load control mechanism and the stage. At this time, the shape data is obtained by adding the displacement of the stage and the displacement of the elastic body.

【0043】本発明によれば変位検出手段を弾性体及び
移動体の各々に離隔配置した構成をとることで移動部の
軽量化が図られ高速応答が可能となる。また、変位検出
手段を本発明のように離隔配置したことで弾性体及び移
動体の形状の自由度が高くなり、用途に応じた触針部の
設計を行うことができる。
According to the present invention, by disposing the displacement detecting means separately on each of the elastic body and the moving body, the weight of the moving portion can be reduced and a high speed response can be realized. Further, by disposing the displacement detecting means in a separated manner as in the present invention, the flexibility of the shapes of the elastic body and the moving body is increased, and the stylus portion can be designed according to the application.

【0044】[0044]

【発明の効果】以上説明したように本発明では、以下に
記載する効果を奏する。
As described above, the present invention has the following effects.

【0045】荷重制御機構において変位検出手段を弾性
体および移動体から離隔配置して荷重制御機構を軽量化
するとともに、応答性の高い移動体を具備することで、
高速荷重制御が可能になり形状変化への追随性が向上す
る。
By disposing the displacement detecting means in the load control mechanism away from the elastic body and the moving body to reduce the weight of the load control mechanism and to provide the moving body with high responsiveness,
High-speed load control is possible and the ability to follow shape changes is improved.

【0046】また荷重制御機構と保持台の協調動作で高
速走査による高い空間周波数成分への追随と、粗微動連
動と同様な制御で計測範囲の拡大が可能になる。
In addition, the load control mechanism and the holding table cooperate with each other to follow a high spatial frequency component by high-speed scanning and to expand the measurement range by the control similar to the coarse / fine movement interlocking.

【0047】さらには変位検出手段を弾性体および移動
体から離隔配置したことにより、荷重制御機構の弾性
体、移動体および触針の設計の自由度が広がり測定対象
に応じた形態を選択できる。
Further, by arranging the displacement detecting means away from the elastic body and the moving body, the flexibility of designing the elastic body, the moving body and the stylus of the load control mechanism is widened, and a form suitable for the object to be measured can be selected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面形状計測装置の第1実施例の主構
成の特徴を示す斜視図である。
FIG. 1 is a perspective view showing the features of the main configuration of a first embodiment of a surface profile measuring apparatus of the present invention.

【図2】本発明の表面形状計測装置の第1実施例の側面
図である。
FIG. 2 is a side view of the first embodiment of the surface profile measuring apparatus of the present invention.

【図3】本発明の表面形状計測装置の制御装置による第
1実施例の動作を示すフロチャートである。
FIG. 3 is a flowchart showing the operation of the first embodiment by the controller of the surface profile measuring apparatus of the present invention.

【図4】本発明の表面形状測定装置における測定走査時
の荷重制御状態を表わした摸式図である。
FIG. 4 is a schematic diagram showing a load control state during measurement scanning in the surface profile measuring apparatus of the present invention.

【図5】本発明の表面形状計測装置の主要構成の第2実
施例を示す斜視図である。
FIG. 5 is a perspective view showing a second embodiment of the main configuration of the surface profile measuring apparatus of the present invention.

【図6】本発明の表面形状計測装置の第2実施例の正面
図である。
FIG. 6 is a front view of a second embodiment of the surface profile measuring apparatus of the present invention.

【図7】本発明の表面形状計測装置の主要構成の第3実
施例を示す斜視図である。
FIG. 7 is a perspective view showing a third embodiment of the main configuration of the surface profile measuring apparatus of the present invention.

【図8】本発明の表面形状計測装置の第4実施例の計測
ヘッドの構成を示す部分断面斜視図である。
FIG. 8 is a partial cross-sectional perspective view showing the configuration of the measuring head of the fourth embodiment of the surface profile measuring apparatus of the present invention.

【図9】本発明の表面形状計測装置の第4実施例を示す
斜視図である。
FIG. 9 is a perspective view showing a fourth embodiment of the surface profile measuring apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1,11,21,31 触針 2,32 平行ばね 3,13,23,33 移動体 4,34 フレーム 5,15,35 アクチュエータ 6,16,27,36 弾性体変位検出手段 7,17,28a,28b,37 移動体変位検出手
段 8,18,41 ステージ 9,19,40 被測定物 12,22a,22b 薄板ばね 14 移動体取り付け案内部 20,43 装置本体 24a,24b 移動体案内部 25 コイル部 26 ヨ−ク部 38 ベ−ス 39 計測ヘッド 42 ステージ用スライダ
1, 11, 21, 31 Stylus 2, 32 Parallel spring 3, 13, 23, 33 Moving body 4, 34 Frame 5, 15, 35 Actuator 6, 16, 27, 36 Elastic body displacement detecting means 7, 17, 28a , 28b, 37 Moving body displacement detecting means 8, 18, 41 Stage 9, 19, 40 Object to be measured 12, 22a, 22b Thin leaf spring 14 Moving body mounting guide section 20,43 Device body 24a, 24b Moving body guide section 25 Coil Part 26 Yoke Part 38 Base 39 Measuring Head 42 Stage Slider

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の被測定面に対して触針を用い
て接触走査し、前記被測定面の変位量をもとに表面形状
を計測する表面形状計測装置において、 前記被測定面と対向する位置に、前記被測定面と対向す
る方向に高い応答性を有するとともに微小移動可能に設
けられた移動体と、該移動体に固設されて、前記被測定
面に先端部を向けた前記触針が前記被測定面に対して変
位可能に、かつ装着可能あるいは一体的に設けられた弾
性体とで構成される荷重制御機構と、 前記弾性体および前記移動体の各々に離隔配置され、前
記弾性体および前記移動体の各変位量をそれぞれ検出す
る変位検出手段と、 前記変位検出手段による検出結果に応じて、前記荷重制
御機構を制御する制御装置を有し、 前記制御装置は前記移動体の移動により前記被測定面に
前記触針を接触させつつ設定荷重まで荷重をかけ、前記
移動体の変位量と前記弾性体の変位量との差が前記設定
荷重に相当する変位量と常に等しくなるように前記移動
体の位置を制御することを特徴とする表面形状計測装
置。
1. A surface shape measuring apparatus for contact-scanning a surface to be measured of a measured object with a stylus to measure a surface shape based on a displacement amount of the surface to be measured. A moving body having a high responsivity in a direction facing the surface to be measured and being capable of minute movement, and being fixed to the moving body, with its tip facing the surface to be measured. And a load control mechanism configured by an elastic body that is displaceable with respect to the surface to be measured and that is attachable or integrally provided, and the elastic body and the movable body are separately arranged. Displacement detecting means for detecting each displacement amount of the elastic body and the moving body, and a control device for controlling the load control mechanism according to a detection result by the displacement detecting means, wherein the control device is Due to the movement of the moving body, A load is applied up to a set load while the stylus is in contact with the surface so that the difference between the displacement amount of the movable body and the displacement amount of the elastic body is always equal to the displacement amount corresponding to the set load. A surface shape measuring device characterized by controlling the position of the.
【請求項2】 測定物あるいは荷重制御機構のいずれか
一方を搭載し、前記測定物あるいは前記荷重制御機構に
対して対向移動可能な保持台を有し、 制御装置は、移動体が移動範囲を超えた場合には前記保
持台を移動させ、前記移動体の変位量と弾性体の変位量
との差が常に設定荷重に相当する変位量と等しくなるよ
うに前記移動体の位置制御とともに前記保持台の位置を
制御することを特徴とする請求項1に記載の表面形状計
測装置。
2. A holding base on which one of a measurement object and a load control mechanism is mounted and which is capable of moving opposite to the measurement object or the load control mechanism. If it exceeds, the holding table is moved and the holding is performed together with the position control of the moving body so that the difference between the displacement of the moving body and the displacement of the elastic body is always equal to the displacement corresponding to the set load. The surface shape measuring apparatus according to claim 1, wherein the position of the table is controlled.
JP29612392A 1992-11-05 1992-11-05 Surface profile measuring device Expired - Fee Related JP2966214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29612392A JP2966214B2 (en) 1992-11-05 1992-11-05 Surface profile measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29612392A JP2966214B2 (en) 1992-11-05 1992-11-05 Surface profile measuring device

Publications (2)

Publication Number Publication Date
JPH06147886A true JPH06147886A (en) 1994-05-27
JP2966214B2 JP2966214B2 (en) 1999-10-25

Family

ID=17829441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29612392A Expired - Fee Related JP2966214B2 (en) 1992-11-05 1992-11-05 Surface profile measuring device

Country Status (1)

Country Link
JP (1) JP2966214B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829209B1 (en) 1999-06-23 2004-12-07 Matsushita Electric Industrial Co., Ltd. Objective for optical disk, optical head device and optical information recording/reproducing apparatus both comprising the same, mold for forming lens, method for machining mold for forming lens, and shape measuring instrument
US7367132B2 (en) 2005-03-24 2008-05-06 Citizen Holdings Co., Ltd. Contact-type displacement measuring apparatus
KR100975277B1 (en) * 2010-02-19 2010-08-17 대한민국 Portable profiler for measuring pollution of settlement layer
JP2014006262A (en) * 2006-05-08 2014-01-16 Renishaw Plc Method for scanning workpiece surface, and contact sensing probe
CN117006998A (en) * 2023-10-07 2023-11-07 深圳市中图仪器股份有限公司 Scanning mechanism with protection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102471430B1 (en) 2022-06-17 2022-11-28 동도이아이 주식회사 Digital displacement gauge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829209B1 (en) 1999-06-23 2004-12-07 Matsushita Electric Industrial Co., Ltd. Objective for optical disk, optical head device and optical information recording/reproducing apparatus both comprising the same, mold for forming lens, method for machining mold for forming lens, and shape measuring instrument
US7099260B2 (en) 1999-06-23 2006-08-29 Matsushita Electric Industrial Co., Ltd. Objective lens for optical disk
US7367132B2 (en) 2005-03-24 2008-05-06 Citizen Holdings Co., Ltd. Contact-type displacement measuring apparatus
JP2014006262A (en) * 2006-05-08 2014-01-16 Renishaw Plc Method for scanning workpiece surface, and contact sensing probe
KR100975277B1 (en) * 2010-02-19 2010-08-17 대한민국 Portable profiler for measuring pollution of settlement layer
CN117006998A (en) * 2023-10-07 2023-11-07 深圳市中图仪器股份有限公司 Scanning mechanism with protection system
CN117006998B (en) * 2023-10-07 2024-01-16 深圳市中图仪器股份有限公司 Scanning mechanism with protection system

Also Published As

Publication number Publication date
JP2966214B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
US6295866B1 (en) Surface-tracking measuring machine
Yong et al. Design of an inertially counterbalanced Z-nanopositioner for high-speed atomic force microscopy
US6323483B1 (en) High bandwidth recoiless microactuator
JP2580244B2 (en) Mechanism for detecting atomic force, method for detecting deflection
US7734445B2 (en) Shape measuring device and method
JP2002062124A (en) Length measuring device
US5455677A (en) Optical probe
WO2009019513A1 (en) Vibration compensation in probe microscopy
US5450746A (en) Constant force stylus profiling apparatus and method
JPH11211732A (en) Scanning-type probe microscope
JPH06147886A (en) Surface profile measuring equipment
JP3459710B2 (en) Stylus probe
Chetwynd et al. A controlled-force stylus displacement probe
EP3572764B1 (en) Shape measuring probe
Hidaka et al. Study of a micro-roughness probe with ultrasonic sensor
CN209910594U (en) Piezoelectric ceramic d15 parameter measuring device
Yong et al. A z-scanner design for high-speed scanning probe microscopy
JP4167031B2 (en) Driving mechanism control device and surface texture measuring device
Garratt et al. A stylus instrument for roughness and profile measurement of ultra-fine surfaces
US6307284B1 (en) Positioning apparatus, information recording/reproducing apparatus, and inspection apparatus
JP2001249018A (en) Surface mechanical characteristic measuring apparatus and method thereof
EP4325199A1 (en) Indentation head for an indentation instrument
Monteiro et al. A super-precision linear slideway with angular correction in three axes
Vorndran Why Nanopositioning is More than Just Nanometers—or How to Find a State-of-the-Art System
JP3667143B2 (en) Surface measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120813

LAPS Cancellation because of no payment of annual fees