JPH06147775A - Method for partial cooling of high-temperature and large-sized steel structure - Google Patents

Method for partial cooling of high-temperature and large-sized steel structure

Info

Publication number
JPH06147775A
JPH06147775A JP35116091A JP35116091A JPH06147775A JP H06147775 A JPH06147775 A JP H06147775A JP 35116091 A JP35116091 A JP 35116091A JP 35116091 A JP35116091 A JP 35116091A JP H06147775 A JPH06147775 A JP H06147775A
Authority
JP
Japan
Prior art keywords
water
cooled
cooling
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35116091A
Other languages
Japanese (ja)
Inventor
Katsukuni Hashimoto
勝邦 橋本
Okuharu Tanaka
億春 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35116091A priority Critical patent/JPH06147775A/en
Publication of JPH06147775A publication Critical patent/JPH06147775A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To execute efficiently partial cooling of a vessel-shaped high- temperature and large-sized structure such as iron-making apparatuses including a converter. CONSTITUTION:A reticulate or porous refractory substance 2 having a water- retaining property and a thickness in the range of 0.5 to 150mm is fitted directly or indirectly on the outer surface of a part to be cooled, an appropriate quantity of water is supplied thereto continuously or intermittently and cooling is effected by a sensible heat and a latent heat of the water. Even when the part to be cooled is inclined, according to this constitution, the cooling water is prevented from running in the shape of a belt and also from falling down in the form of drops even when the temperature thereof reaches a boiling point, and thus the part to be cooled is cooled down uniformly and with high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は冷却効果に優れ、転炉
をはじめとする製鉄機器類および化学工業プラントの高
温反応容器類等の部分冷却に好適な高温大型鋼構造物の
部分冷却方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for partially cooling a high-temperature large-scale steel structure, which is excellent in cooling effect and is suitable for partially cooling high-temperature reaction vessels of iron-making equipment such as converters and chemical industry plants. It is a thing.

【0002】[0002]

【従来の技術】一般に転炉をはじめとする製鉄機器類お
よび化学工業プラントの高温反応容器類は、図2に転炉
の断面図を示すごとく高温の内容物を鋼板で覆う形式の
構造が多い。すなわち鋼板製の鉄皮3の炉内部5の側に
耐火煉瓦4が張られた構造になっている。これらに用い
る鋼材は高温となるため耐熱性(高温強度特性)の優れ
たものが用いられているが、内容物による温度上昇およ
び作用応力によって変形あるいは破損を生じる場合があ
る。この対策の一つとして、機器外面(鋼板外面)の冷
却が行われている。そして、その冷却方法には、被冷却
部分に、(1)高圧空気を吹き付ける衝風冷却や、
(2)被冷却部分に水を掛ける注水冷却または散水冷却
および、(2)、(3)を発展させたミスト冷却等が行
われていた。
2. Description of the Related Art In general, iron-making equipment such as a converter and high-temperature reaction vessels of a chemical industry plant often have a structure in which high-temperature contents are covered with a steel plate as shown in a sectional view of the converter in FIG. . That is, the structure is such that the refractory bricks 4 are stretched over the furnace interior 5 side of the steel plate steel shell 3. The steel materials used for these have high heat resistance (high-temperature strength characteristics) because of high temperature, but they may be deformed or damaged due to temperature rise and action stress due to the contents. As one of the countermeasures, the outer surface of the device (the outer surface of the steel plate) is cooled. And, as the cooling method, (1) blast cooling in which high-pressure air is blown to the cooled portion,
(2) Water injection cooling or sprinkling cooling in which water is applied to the cooled portion, and mist cooling in which (2) and (3) are developed have been performed.

【0003】[0003]

【発明が解決しようとする課題】しかし、高温大型鋼構
造物の部分冷却方法としての、前記衝風冷却、注水また
は散水冷却およびミスト冷却には下記の問題点がある。
However, the above-mentioned blast cooling, water injection or sprinkling cooling, and mist cooling as the partial cooling method for high temperature large steel structures have the following problems.

【0004】(1)衝風冷却:空気の顕熱は小さく、多
量の送風にもかかわらず冷却効果が小さい。(2)注水
または散水冷却:被冷却部表面上の冷却水が沸点に達す
ると水玉状となり、冷却効率が低下すると共に、被冷却
面が水平より大きく傾いていると冷却水が帯状に流れた
り、沸騰して出来た水玉がころがり落ち、冷却効率の低
下および不均一冷却の原因となる。(3)ミスト冷却:
ミストを発生させる構造および被冷却部へのミスト送給
構造が複雑かつメンテナンスに問題がある。
(1) Impulsive cooling: The sensible heat of air is small, and the cooling effect is small despite the large amount of air blown. (2) Water injection or sprinkling cooling: When the cooling water on the surface of the cooled part reaches the boiling point, it becomes a polka-dot, cooling efficiency decreases, and if the surface to be cooled is tilted more than horizontal, the cooling water may flow in a strip shape. , The polka dots formed by boiling will fall off, which will cause a decrease in cooling efficiency and uneven cooling. (3) Mist cooling:
The structure for generating mist and the structure for feeding mist to the cooled portion are complicated and there is a problem in maintenance.

【0005】本発明は上記課題の解決、すなわち簡易な
方法で冷却水の沸騰による水玉発生を防止し、かつ水平
面のみならず傾斜面にも適用できる冷却方法の開発を目
的とする。
An object of the present invention is to solve the above-mentioned problems, that is, to develop a cooling method which can prevent generation of water drops due to boiling of cooling water by a simple method and can be applied not only to a horizontal surface but also to an inclined surface.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するものであって、被冷却部の外表面に保水性を有する
繊維状、網目状または有孔状の耐熱物質を0.5mm〜
150mm厚の範囲で取り付け、これに適量の水を連続
または断続的に給水し、水の顕熱および潜熱により被冷
却部分を冷却することを特徴とする高温大型鋼構造物の
部分冷却方法である。
Means for Solving the Problems The present invention is to solve the above-mentioned problems by providing a fibrous, mesh-shaped or perforated heat-resistant substance having a water-retaining property on the outer surface of a cooled portion in an amount of 0.5 mm to 0.5 mm.
A method for partially cooling a high-temperature large-scale steel structure, which is characterized in that it is attached in a range of 150 mm thickness, an appropriate amount of water is continuously or intermittently supplied to the cooled water, and the cooled portion is cooled by sensible heat and latent heat of the water. .

【0007】[0007]

【作用】本発明者等は、水の顕熱および潜熱が大きいこ
とを利用しながら、簡易的な注水または散水方式でも、
被冷却面が水平より大きく傾いていても冷却水の帯状に
流れることを回避でき、しかも被冷却面上での冷却水の
沸騰に伴う水玉状現象を回避または出来た水玉が被冷却
部分からころげ落ちることを回避する方法について種々
検討を加えながら研究を重ねた。その結果、被冷却部の
外表面に保水性を有する物質を取り付ければ、これに供
給された水は被冷却面が水平から大きく傾いていても帯
状に流れることなく、また、冷却水が沸点に達しても水
玉状になり難く、被冷却面からころげ落ちることが回避
され、被冷却部は均一、かつ、高効率に冷却されるとの
知見を得るに至った。すなわち図1に断面図を示すよう
に被冷却部である鋼板1の外表面1aに保水性を有する
耐熱物質2を取りつけ、これにたとえば給水装置6によ
る散水7といった手段で給水を行う。
The present inventors have taken advantage of the fact that the sensible heat and latent heat of water are large, while using a simple water injection or water spraying method.
Even if the surface to be cooled is tilted more than horizontal, it is possible to avoid the flow of cooling water in a strip shape, and to avoid the water drop phenomenon caused by boiling of the cooling water on the surface to be cooled or the water drops that have formed can roll from the part to be cooled. The research was repeated while adding various studies on the method of avoiding falling. As a result, if a substance having water retention property is attached to the outer surface of the cooled portion, the water supplied thereto does not flow in a strip shape even if the cooled surface is largely inclined from the horizontal, and the cooling water has a boiling point. Even if it reaches, it is difficult to form a polka dot shape, and it is possible to avoid rolling down from the surface to be cooled, and it has been found that the portion to be cooled is cooled uniformly and with high efficiency. That is, as shown in the sectional view of FIG. 1, a heat-resistant substance 2 having water retention property is attached to an outer surface 1a of a steel plate 1 which is a portion to be cooled, and water is supplied to this by means such as sprinkling 7 by a water supply device 6.

【0008】以下、本発明の詳細について説明する。本
発明において、被冷却部の外表面に取り付ける保水性を
有する耐熱物質とは、金属、セラミックス、炭素繊維等
の100〜700℃程度の高温に長時間曝されても、変
質劣化しない物質を指し、これらに保水性をもたせる意
味から繊維状、網目状または有孔状に加工したものを指
す。例えば、スティールウール、金網、多孔性金属、炭
素繊維織物、有孔性セラミックス等がこれらに属する。
The details of the present invention will be described below. In the present invention, the water-resistant heat-resistant substance attached to the outer surface of the cooled portion refers to a substance such as metal, ceramics or carbon fiber which does not deteriorate and deteriorate even when exposed to a high temperature of about 100 to 700 ° C. for a long time. The term "fibrous", "meshed" or "perforated" is used for the purpose of imparting water-retaining property to these materials. For example, steel wool, wire mesh, porous metal, carbon fiber woven fabric, porous ceramics and the like belong to these.

【0009】また、被冷却部への取り付け方法は直接的
でも間接的でもよい。すなわち直接的とは巻き付け、縛
り付け、接合、圧着等で被冷却部表面に直接取り付ける
方法を指し、間接的とは良熱伝導性の物質を介して取り
付ける方法で、例えば銅板を介して取り付ける方法等を
指す。
The method of attachment to the cooled portion may be direct or indirect. That is, direct means a method of directly attaching to the surface to be cooled by winding, binding, joining, crimping, etc., and indirectly means a method of attaching via a material with good thermal conductivity, such as a method of attaching via a copper plate, etc. Refers to.

【0010】また、耐熱物質の厚みに関しては、耐熱物
質が薄い場合には保水性に劣り、厚い場合には冷却水が
冷却面から離れた部分に集まり、冷却効率を著しく低下
させる。耐熱物質厚みは、好ましくは5mm〜50mm
の範囲であるが、保水性が極端に悪くなる0.5mmを
下限値とし、冷却効率が極端に低下する150mmを上
限値とした。
Regarding the thickness of the heat-resistant substance, when the heat-resistant substance is thin, the water retention is poor, and when it is thick, the cooling water gathers in the part away from the cooling surface, and the cooling efficiency is significantly reduced. The thickness of the heat resistant material is preferably 5 mm to 50 mm
However, the lower limit was set to 0.5 mm where the water retention was extremely poor, and the upper limit was set to 150 mm where the cooling efficiency was extremely lowered.

【0011】さらに、給水方法については、注水、散水
または毛管現象を利用した方法によってもよく、給水量
にあっては被冷却部の温度、面積等によって異なり、蒸
発量に見合って連続または断続的に給水すればよい。
Further, the water supply method may be a method utilizing water injection, water sprinkling or capillary action. The water supply amount varies depending on the temperature, area, etc. of the portion to be cooled and is continuous or intermittent depending on the evaporation amount. You can supply water to.

【0012】[0012]

【実施例】図3に実験装置の概略図を示すように、側面
炉蓋を開口した状態の横型電気抵抗式加熱炉8(60K
W)の開口部9の前面に、開口部より175mm隔てて
垂直に設置した厚さ80mm、高さ750mm、幅75
0mmの鋼板1に、炉側から穿孔した穴に熱電対を取付
け、その温度を測定することにより、鋼板の冷却効果を
測定した。
EXAMPLE As shown in the schematic view of the experimental apparatus in FIG. 3, a horizontal electric resistance type heating furnace 8 (60K) with a side furnace lid opened
W) is installed vertically on the front surface of the opening 9 at a distance of 175 mm from the opening and has a thickness of 80 mm, a height of 750 mm, and a width of 75.
The cooling effect of the steel plate was measured by attaching a thermocouple to a 0 mm steel plate 1 in a hole drilled from the furnace side and measuring the temperature thereof.

【0013】図4は測定方法を示す鋼板1の断面図であ
る。熱電対10は、鋼板中心線1cに取り付けた。熱電
対10aは鋼板温度制御用のもので、鋼板より30mm
の位置にある。熱電対10bは炉と反対側の鋼板表面よ
り2mm内部の位置にある。熱電対10cは同30m
m、熱電対10dは同60mmの位置にある。
FIG. 4 is a sectional view of the steel plate 1 showing the measuring method. The thermocouple 10 was attached to the steel plate center line 1c. The thermocouple 10a is for controlling the temperature of the steel plate and is 30 mm from the steel plate.
In the position. The thermocouple 10b is located within 2 mm from the surface of the steel plate on the side opposite to the furnace. Thermocouple 10c is the same 30m
m and the thermocouple 10d are at the same 60 mm position.

【0014】[0014]

【表1】 [Table 1]

【0015】表1は、上記実験装置を用いて熱電対10
aの温度を800℃にコントロールしたのち、炉の出力
パワーを一定に保ちながら、種々の冷却方法とそれを使
用した場合の30分後の鋼板温度を、熱電対10b、1
0c、10dにより測定した結果である。表中aの温
度、bの温度等はそれぞれ熱電対10a、10b等の温
度を示す。保水性を有する耐熱物質2、および冷却装置
11として種々のものを組み合わせて実験したが、表1
から明らかなように本発明の冷却方法A、B、Cによる
鋼板の温度は、従来の冷却方法D、E、F及び本発明の
範囲外の冷却方法G、Hによる鋼板の温度より低いこと
がわかる。
Table 1 shows the thermocouple 10 using the above experimental apparatus.
After controlling the temperature of a to 800 ° C., while keeping the output power of the furnace constant, various cooling methods and the steel sheet temperature after 30 minutes when using the cooling method were measured by thermocouples 10b, 1
It is the result measured by 0c and 10d. In the table, the temperature of a, the temperature of b, etc. show the temperature of the thermocouples 10a, 10b, etc., respectively. Experiments were carried out by combining various heat-resistant substances 2 having water-holding properties and the cooling device 11, and Table 1
As is clear from the above, the temperature of the steel sheet according to the cooling methods A, B and C of the present invention may be lower than the temperature of the steel sheet according to the conventional cooling methods D, E and F and the cooling methods G and H outside the scope of the present invention. Recognize.

【0016】[0016]

【発明の効果】以上の実施例からも明らかなごとく、本
発明によれば被冷却物が傾斜している場合においても、
冷却水が帯状に流れることや、冷却水が沸騰点に達して
も水玉状になって被冷却面からころげ落ちることなく、
被冷却部分が均一、かつ、高効率に冷却され、産業上の
効果は極めて顕著なものがある。
As is apparent from the above embodiments, according to the present invention, even when the object to be cooled is inclined,
Cooling water flows in a strip shape, and even when the cooling water reaches the boiling point, it becomes a polka dot and does not fall from the surface to be cooled,
The part to be cooled is cooled uniformly and with high efficiency, and the industrial effect is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施方法の例を示す断面図FIG. 1 is a sectional view showing an example of a method for carrying out the present invention.

【図2】転炉の断面図FIG. 2 Cross-sectional view of converter

【図3】実験装置の概略図FIG. 3 is a schematic diagram of an experimental device.

【図4】測定方法を示す断面図FIG. 4 is a sectional view showing a measuring method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被冷却部の外表面に保水性を有する繊維
状、網目状または有孔状の耐熱物質を0.5mm〜15
0mm厚の範囲で取り付け、これに適量の水を連続また
は断続的に給水し、水の顕熱および潜熱により被冷却部
分を冷却することを特徴とする高温大型鋼構造物の部分
冷却方法。
1. A 0.5 mm to 15 mm fibrous, mesh-like or perforated heat-resistant substance having water retention property on the outer surface of a cooled portion.
A method for partially cooling a high-temperature large-scale steel structure, which is characterized in that it is attached in a range of 0 mm thickness, an appropriate amount of water is continuously or intermittently supplied thereto, and a portion to be cooled is cooled by sensible heat and latent heat of water.
JP35116091A 1991-12-13 1991-12-13 Method for partial cooling of high-temperature and large-sized steel structure Withdrawn JPH06147775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35116091A JPH06147775A (en) 1991-12-13 1991-12-13 Method for partial cooling of high-temperature and large-sized steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35116091A JPH06147775A (en) 1991-12-13 1991-12-13 Method for partial cooling of high-temperature and large-sized steel structure

Publications (1)

Publication Number Publication Date
JPH06147775A true JPH06147775A (en) 1994-05-27

Family

ID=18415460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35116091A Withdrawn JPH06147775A (en) 1991-12-13 1991-12-13 Method for partial cooling of high-temperature and large-sized steel structure

Country Status (1)

Country Link
JP (1) JPH06147775A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031975A1 (en) * 1997-01-17 1998-07-23 Francis Zilka Device, system and method for on-line explosive deslagging
US6321690B1 (en) 1997-01-17 2001-11-27 North American Industrial Services, Inc. Device, system and method for on-line explosive deslagging
KR20020051184A (en) * 2000-12-22 2002-06-28 이구택 Method for cooling hot steel
US6431073B1 (en) 1998-01-14 2002-08-13 North American Industrial Services, Inc. Device, system and method for on-line explosive deslagging
US6755156B1 (en) 1999-09-13 2004-06-29 Northamerican Industrial Services, Inc. Device, system and method for on-line explosive deslagging

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031975A1 (en) * 1997-01-17 1998-07-23 Francis Zilka Device, system and method for on-line explosive deslagging
EP1067349A3 (en) * 1997-01-17 2001-02-21 Francis Zilka Device, system and method for on-line explosive deslagging
US6321690B1 (en) 1997-01-17 2001-11-27 North American Industrial Services, Inc. Device, system and method for on-line explosive deslagging
US6604468B2 (en) 1997-01-17 2003-08-12 North American Industrial Services, Inc. Device, system and method for on-line explosive deslagging
US6644201B2 (en) 1997-01-17 2003-11-11 Northamerican Industrial Services, Inc. Device, system and method for on-line explosive deslagging
US7395760B2 (en) 1997-01-17 2008-07-08 Northamerican Industrial Services, Inc. Device, system and method for on-line explosive deslagging
US6431073B1 (en) 1998-01-14 2002-08-13 North American Industrial Services, Inc. Device, system and method for on-line explosive deslagging
US6755156B1 (en) 1999-09-13 2004-06-29 Northamerican Industrial Services, Inc. Device, system and method for on-line explosive deslagging
KR20020051184A (en) * 2000-12-22 2002-06-28 이구택 Method for cooling hot steel

Similar Documents

Publication Publication Date Title
FR2458037A1 (en) HEAT TREATMENT PROCESS, PARTICULARLY FOR DRYING AND CALCINATION
NO169621B (en) PROCEDURE FOR COOLING A ROOT OVEN
JPH06147775A (en) Method for partial cooling of high-temperature and large-sized steel structure
JPS5687617A (en) Steel making method using arc furnace
US3738861A (en) Method of wiping galvanised wire or strip
US5631919A (en) Apparatus for lengthwise graphitization (LWG) of carbon electrode bodies
BRPI0414704B1 (en) Procedure for collecting and treating reaction gases from a facility to produce molten metals as well as a corresponding facility to remove dust
US775654A (en) Electric furnace.
CN105597850A (en) Electric heating objective table for laboratories
CN206069967U (en) A kind of aluminum-extracted pulverized fuel ash device
KR880004114A (en) Method and apparatus for cooling gas or vapor from nonferrous metal treatment plant
JPS6133060B2 (en)
CN208250397U (en) A kind of hot galvanizing water bath heating system
HU196574B (en) Equipment for producing phosphorus pentoxide by using reaction heat
CA1117462A (en) Device for concentration of mineral acids, particularly sulphuric acid
CN214406946U (en) Preheating type ore-smelting furnace for producing large-crystal fused magnesia
SU1583471A1 (en) Aluminium electrolyzer
US1817122A (en) Apparatus for galvanizing wire and the like
CN208751277U (en) A kind of heating furnace reducing humidity in furnace
CN202281491U (en) Device for converting matte tin electroplating into tin hot melting
JPS56146918A (en) Melting furnace for waste material
US760312A (en) Process of making calcium carbid.
CN112683059A (en) Preheating type submerged arc furnace for producing large-crystal fused magnesia
US516664A (en) Fume-arrester
RU2142606C1 (en) Plant for blooms heating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311