JPH06147769A - Forming method of sleeve-shaped refractory of vessel for handling molten metal - Google Patents

Forming method of sleeve-shaped refractory of vessel for handling molten metal

Info

Publication number
JPH06147769A
JPH06147769A JP29530792A JP29530792A JPH06147769A JP H06147769 A JPH06147769 A JP H06147769A JP 29530792 A JP29530792 A JP 29530792A JP 29530792 A JP29530792 A JP 29530792A JP H06147769 A JPH06147769 A JP H06147769A
Authority
JP
Japan
Prior art keywords
pressure
sleeve
corrosion resistance
forming method
cip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29530792A
Other languages
Japanese (ja)
Other versions
JP3202811B2 (en
Inventor
Keita Koyago
啓太 古家後
Katsutoshi Sakakiya
勝利 榊谷
Toshihiro Suruga
俊博 駿河
Shiyouji Kikukawa
昭二 規工川
Yutaka Onishi
裕 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nisshin Steel Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP29530792A priority Critical patent/JP3202811B2/en
Publication of JPH06147769A publication Critical patent/JPH06147769A/en
Application granted granted Critical
Publication of JP3202811B2 publication Critical patent/JP3202811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To make composition compact, thereby to improve a hot strength and corrosion resistance and to make it possible to improve durability, by conducting forming under a pressure in a specified range by using a CIP forming method. CONSTITUTION:Forming is conducted under a pressure of 1.8 to 2.5t/cm<2> by using a CIP forming method. In regard to a sleeve-shaped refractory for a steel tap hole of converter, for instance, fused magnesia,. graphite and an A-Mg alloy are kneaded with a liquid phenol binder added further to them and formed by heating under pressures of 2.0 and 2.5t/cm<2> by the CIP forming method. A material thus formed is dried for 24 hours at a temperature of 90 deg.C and then subjected to a curing treatment for 10 hours at a temperature of 250 deg.C. According to this constitution, composition is made to compact, a hot strength and corrosion resistance are thereby improved and durability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造の取鍋やタン
ディッシュ等の下部ノズル、該ノズルに接続されるロン
グノズル、浸漬ノズル、或いは転炉や取鍋等溶融金属を
取扱う容器の出鋼口スリーブ、羽口等に用いられるスリ
ーブ状耐火物の成型法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting ladle, a lower nozzle such as a tundish, a long nozzle connected to the nozzle, an immersion nozzle, or a container for handling molten metal such as a converter or a ladle. The present invention relates to a method for forming a sleeve-shaped refractory material used for a steel mouth sleeve, a tuyere, or the like.

【0002】[0002]

【従来技術】この種スリーブ耐火物の成型法としては、
リング状に成型した複数の耐火物をモルタルで接続して
一体化する方法が用いられることもあるが、この方法に
よって得られたスリーブ状耐火物は、モルタルが耐蝕性
に劣ることからモルタルの目地部分が局部溶損し易く、
耐用期間が短くなる難点がある。そこで通常は、長手方
向に一体物で成型して目地のない構造のスリーブ状耐火
物を得る方法が採用されている。
2. Description of the Related Art As a method for molding a sleeve refractory of this type,
A method may be used in which multiple ring-shaped refractories are connected and integrated with mortar, but the sleeve-shaped refractory obtained by this method has a poor mortar corrosion resistance, so the mortar joint The part easily melts locally,
It has the drawback of shortening the service life. Therefore, in general, a method of forming a sleeve-shaped refractory having a jointless structure by molding it integrally in the longitudinal direction is adopted.

【0003】長手方向に一体物で成型したスリーブ状耐
火物の成型法については、芯棒金型に筒状の金型を同心
円状に被せ、両金型内にバインダーを配合して混練した
素材を充填したのち、上方より重りを落下させてその衝
撃力で突き固める方法、両金型内に充填した素材にプレ
スにより圧力を加えて成型する方法、芯棒金型にゴムラ
バーよりなる筒状の枠を被せて枠内に素材を充填し、金
蓋を被せたのち油中或いは水中に浸し、油或いは水の圧
力を高めて成型する、いわゆるCIP(ColdIsostatic
Press )成型法などが知られる。
Regarding the method for molding a sleeve-shaped refractory material integrally molded in the longitudinal direction, a core rod mold is concentrically covered with a cylindrical mold, and a binder is mixed into both molds and kneaded. After filling, the weight is dropped from the top and the impact force is used to squeeze it, the material filled in both molds is pressed by pressing to mold it, and the core rod mold is made of rubber rubber. CIP (Cold Isostatic), which covers the frame, fills the frame with the material, covers the metal cover, and soaks it in oil or water to increase the pressure of the oil or water.
Press) The molding method is known.

【0004】[0004]

【発明が解決しようとする課題】一軸方向に衝撃力を加
えて突き固めたり、プレスにより圧力を加えて成型する
前二者の方法による場合、長手方向での材料の緻密さに
バラ付きが出易いのに対し、水中或いは油中で等方向よ
り圧力を加えて成型する後者のCIP成型法では、均一
な組織が得られ易いという利点があるが、一軸方向の成
型法に比べ、材料の緻密性が悪くて気孔率が高く、熱間
強度が低下して耐蝕性に劣るという難点があった。
In the former two methods, in which impact force is applied in one axis direction to consolidate or pressure is applied by a press, the fineness of the material in the longitudinal direction varies. On the other hand, the latter CIP molding method, in which pressure is applied in water or oil from equal directions, has the advantage that a uniform structure is easily obtained. However, compared to the uniaxial molding method, the material is more compact. However, there is a problem in that the corrosion resistance is poor due to poor corrosion resistance, high porosity, and low hot strength.

【0005】CIP成型法によるこうした問題は従来、
設備上の制約から成型時の水圧或いは油圧を上げられな
いことから生じていると考えられ、設備を大型化して成
型時の水圧或いは油圧を高めれば解決が可能であり、圧
力は高くすればする程、材料の緻密性が向上して、気孔
率が低下するものと考えられていた。しかしながら、本
発明者らの実験によると、耐用性の向上にはピーク圧が
存在し、ピーク圧を越えると、耐用性が逆に低下するよ
うになり、耐用性の向上には最適圧力が存在することを
見出した。
These problems caused by the CIP molding method have hitherto been
It is thought that this is caused by the fact that the water pressure or hydraulic pressure during molding cannot be increased due to equipment restrictions, and it can be solved by increasing the size of the equipment and increasing the water pressure or hydraulic pressure during molding. It has been thought that the denseness of the material is improved and the porosity is decreased. However, according to the experiments conducted by the present inventors, there is a peak pressure for improving the durability, and when the peak pressure is exceeded, the durability is decreased, and the optimum pressure exists for improving the durability. I found that

【0006】[0006]

【課題の解決手段】本発明は、上記の知見に基づいてな
されたもので、CIP成型法を用いて1.8〜2.5t
/cm2の圧力で成型したことを特徴とするものである。
The present invention has been made on the basis of the above findings, and is 1.8 to 2.5 t using the CIP molding method.
It is characterized by being molded at a pressure of / cm 2 .

【0007】[0007]

【作用】本発明は上述するように、CIP成型法の圧力
を1.8〜2.5t/cm2としたもので、圧力が1.8t
/cm2より低くなると、材料の充填性が悪くなって緻密な
組織が得られなくなり、また2.5t/cm2を越えると、
内部亀裂が発生し、組織が劣化するようになる。
In the present invention, as described above, the pressure of the CIP molding method is 1.8 to 2.5 t / cm 2, and the pressure is 1.8 t.
When it is lower than / cm 2 , the filling property of the material becomes poor and a dense structure cannot be obtained, and when it exceeds 2.5 t / cm 2 ,
Internal cracks occur and the tissue becomes deteriorated.

【0008】[0008]

【実施例】【Example】

実施例1 転炉の出鋼口用スリーブ状耐火物において、電融マグネ
シア80重量%、天然黒鉛17重量%及びAl−Mg合
金3重量%に更に液状フェノール系バインダーを3重量
%添加してこれを混練し、CIP成型法により圧力2.
0t/cm2で加熱成型したのち、90℃で24時間乾燥
し、ついで250℃で10時間硬化処理して内径145
φ、外径335φ、長さ1600mmのスリーブ状耐火物
の評価サンプルを得た。そして圧力を1.6t/cm2する
以外は上記と同様にして得た比較例1の評価サンプルと
見掛比重、嵩比重、見掛気孔率、1400°での熱間曲
げ強度、耐蝕性及び実炉での耐用寿命について比較し
た。その結果、表1に示すように、実施例1は、比較例
1と比較して見掛比重が0.01、嵩比重が0.05向
上すると共に、見掛気孔率が1.5%低下し、1400
℃での熱間曲げ強度が0.7Mpa 向上した。
Example 1 In a sleeve-shaped refractory for a tap hole of a converter, 80 wt% of fused magnesia, 17 wt% of natural graphite and 3 wt% of Al-Mg alloy were further added with 3 wt% of liquid phenolic binder. And kneading, and pressure by CIP molding method 2.
After heat molding at 0 t / cm 2 , dry at 90 ° C for 24 hours, then cure at 250 ° C for 10 hours to give an inner diameter of 145
An evaluation sample of a sleeve-shaped refractory having φ, an outer diameter of 335φ, and a length of 1600 mm was obtained. And the evaluation sample of Comparative Example 1 obtained in the same manner as above except that the pressure was set to 1.6 t / cm 2 , apparent specific gravity, bulk specific gravity, apparent porosity, hot bending strength at 1400 °, corrosion resistance and The service life in actual furnaces was compared. As a result, as shown in Table 1, in Example 1, the apparent specific gravity was improved by 0.01 and the bulk specific gravity was increased by 0.05, and the apparent porosity was decreased by 1.5% as compared with Comparative Example 1. 1400
The hot bending strength at ℃ improved by 0.7Mpa.

【0009】また比較例1を100とした溶損指数は8
6、実炉耐用指数は110となり、組織が緻密となっ
て、高熱間強度及び高耐蝕性を示し、実炉での耐用寿命
が向上した。ここで、溶損テストは、高周波誘導炉内張
法を用い、電解鉄とスラグ(CaO/SiO2 =3.3
Total Fe 18%)を1700℃で4時間加熱した
ときのサンプルの溶損の程度を指数表示することによっ
て行われ、指数の小さいもの程、耐蝕性は良好と評価さ
れる。
Further, the melt loss index with Comparative Example 1 as 100 is 8
6. The actual furnace durability index was 110, the structure became dense, high hot strength and high corrosion resistance were exhibited, and the useful life in the actual furnace was improved. Here, the melting test was performed by using the high frequency induction furnace lining method, and electrolytic iron and slag (CaO / SiO 2 = 3.3) were used.
(Total Fe 18%) is heated at 1700 ° C. for 4 hours, and the degree of erosion of the sample is indicated by an index. The smaller the index, the better the corrosion resistance.

【0010】実施例2 成型圧力を、2.5t/cm2とする以外は、実施例1と同
様にして得た評価サンプルについて、成型圧力を2.7
t/cm2とする以外は実施例1と同様にして得た比較例2
の評価サンプルと、見掛比重、嵩比重、見掛気孔率、1
400℃での熱間曲げ強度、耐蝕性及び実炉での耐用寿
命についてそれぞれ比較した。その結果、表1に示すよ
うに、実施例2は比較例2と比較して、見掛比重は同
等、嵩比重は0.02向上すると共に、見掛気孔率は
0.9%低下し、また1400℃での熱間曲げ強度は
0.6Mpa 向上した。また比較例1を100としたとき
の溶損指数が、比較例2では103であったのに対し、
実施例2では89となり、実炉耐用指数も比較例2が9
5であるのに対し、実施例2の実炉耐用指数は108と
なり、組織の緻密性が向上して高熱間強度及び高耐蝕性
を示し、実炉での耐用寿命が向上した。
Example 2 An evaluation sample obtained in the same manner as in Example 1 except that the molding pressure was 2.5 t / cm 2 , the molding pressure was 2.7.
Comparative Example 2 obtained in the same manner as in Example 1 except that t / cm 2 was used.
Samples for evaluation, apparent specific gravity, bulk specific gravity, apparent porosity, 1
The hot bending strength at 400 ° C., the corrosion resistance and the service life in an actual furnace were compared. As a result, as shown in Table 1, in Example 2, compared with Comparative Example 2, the apparent specific gravity was the same, the bulk specific gravity was improved by 0.02, and the apparent porosity was decreased by 0.9%. The hot bending strength at 1400 ° C was improved by 0.6 Mpa. The melt loss index when Comparative Example 1 was set to 100 was 103 in Comparative Example 2, whereas
In Example 2, it was 89, and the actual furnace durability index was 9 in Comparative Example 2.
5, the actual furnace service life index of Example 2 was 108, the denseness of the structure was improved to show high hot strength and high corrosion resistance, and the service life in the actual furnace was improved.

【0011】また成型圧力を2.7t/cm2にまで高くし
た比較例2は、組織が劣化し、熱間強度及び耐蝕性が低
下し、実炉耐用が低下することが判明した。
In Comparative Example 2 in which the molding pressure was increased to 2.7 t / cm 2 , it was found that the structure deteriorates, the hot strength and corrosion resistance deteriorate, and the durability of the actual furnace decreases.

【0012】[0012]

【表1】 [Table 1]

【0013】図1は、上述する実施例1及び比較例1、
2についての成型圧力と耐蝕指数の関係を示すものであ
る。図1からも見られるように、CIP成型法での成型
圧力が所要圧力範囲以外の場合、比較例は実施例に比
べ、実炉耐用が劣る結果となった。
FIG. 1 shows Example 1 and Comparative Example 1 described above.
2 shows the relationship between the molding pressure and the corrosion resistance index for No. 2. As can be seen from FIG. 1, when the molding pressure in the CIP molding method is outside the required pressure range, the comparative example resulted in inferior actual furnace durability as compared with the example.

【0014】[0014]

【発明の効果】本発明のCIP成型法によるスリーブ状
耐火物の成型法によれば、成型圧力を1.8〜2.5t
/cm2とすることにより、組成が緻密化して熱間強度及び
耐蝕性が向上し、耐用性を向上させることができる。
According to the method for molding a sleeve-shaped refractory material by the CIP molding method of the present invention, the molding pressure is 1.8 to 2.5 t.
By setting the ratio to / cm 2 , the composition becomes denser, the hot strength and the corrosion resistance are improved, and the durability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 成型圧力と耐用指数の関係を示す図。FIG. 1 is a diagram showing the relationship between molding pressure and service life index.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月5日[Submission date] November 5, 1992

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 溶融金属取扱用容器のスリーブ状耐火
物の成
[Title of Invention] forming shape methods sleeve-shaped refractory vessel for molten metal handling

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造の取鍋やタン
ディッシュ等の下部ノズル、該ノズルに接続されるロン
グノズル、浸漬ノズル、或いは転炉や取鍋等溶融金属を
取扱う容器の出鋼口スリーブ、羽口等に用いられるスリ
ーブ状耐火物の成法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting ladle, a lower nozzle such as a tundish, a long nozzle connected to the nozzle, an immersion nozzle, or a container for handling molten metal such as a converter or a ladle. steel outlet sleeve, to forming shape methods sleeve-shaped refractories used for the tuyere and the like.

【0002】[0002]

【従来技術】この種スリーブ耐火物の成法としては、
リング状に成した複数の耐火物をモルタルで接続して
一体化する方法が用いられることもあるが、この方法に
よって得られたスリーブ状耐火物は、モルタルが耐蝕性
に劣ることからモルタルの目地部分が局部溶損し易く、
耐用期間が短くなる難点がある。そこで通常は、長手方
向に一体物で成して目地のない構造のスリーブ状耐火
物を得る方法が採用されている。
BACKGROUND] as the null form method of this kind sleeve refractory,
Sometimes method of integrating a plurality of refractories and formed shape in a ring shape are connected by mortar is used, the sleeve-like refractory obtained by this method, mortar mortar from the poor corrosion resistance Local joints are easily melted,
It has the drawback of shortening the service life. So usually, a method of obtaining a sleeve-shaped refractory structure without joints and formed shape in one piece in the longitudinal direction is adopted.

【0003】長手方向に一体物で成したスリーブ状耐
火物の成法については、芯棒金型に筒状の金型を同心
円状に被せ、両金型内にバインダーを配合して混練した
素材を充填したのち、上方より重りを落下させてその衝
撃力で突き固める方法、両金型内に充填した素材にプレ
スにより圧力を加えて成する方法、芯棒金型にゴムラ
バーよりなる筒状の枠を被せて枠内に素材を充填し、金
蓋を被せたのち油中或いは水中に浸し、油或いは水の圧
力を高めて成する、いわゆるCIP(ColdIsostatic
Press )成法などが知られる。
[0003] For forming the shape methods longitudinally sleeve-shaped refractories and formed shape in one piece, covering the cylindrical mold core rod mold concentrically, by blending the binder into molds kneading After filling the the material, made of rubber piece method tamped by the impact force by dropping a weight from above, a method of forming shape by applying a pressure by a press to the material filled in the molds, the core rod mold filling the material in the frame is covered with a cylindrical frame, immersed in oil or water after covered gold lid and formed shapes to increase the pressure of oil or water, so-called CIP (ColdIsostatic
Press) formed form method and the like are known.

【0004】[0004]

【発明が解決しようとする課題】一軸方向に衝撃力を加
えて突き固めたり、プレスにより圧力を加えて成する
前二者の方法による場合、長手方向での材料の緻密さに
バラ付きが出易いのに対し、水中或いは油中で等方向よ
り圧力を加えて成する後者のCIP成法では、均一
な組織が得られ易いという利点があるが、一軸方向の成
法に比べ、材料の緻密性が悪くて気孔率が高く、熱間
強度が低下して耐蝕性に劣るという難点があった。
[SUMMARY OF THE INVENTION] or tamped with an impact force to the axial direction, in the case of two-party method prior to forming shape by applying a pressure by a press, the fluctuation in the denseness of the material in the longitudinal direction while easy to appear, in the latter CIP forming shapes method of forming shape by applying pressure from the isotropic in water or in oil, has the advantage of easy uniform structure is obtained, in the axial direction formed
As compared with the shaping method, there were problems that the material was poor in denseness, had high porosity, had low hot strength, and had poor corrosion resistance.

【0005】CIP成法によるこうした問題は従来、
設備上の制約から成時の水圧或いは油圧を上げられな
いことから生じていると考えられ、設備を大型化して成
時の水圧或いは油圧を高めれば解決が可能であり、圧
力は高くすればする程、材料の緻密性が向上して、気孔
率が低下するものと考えられていた。しかしながら、本
発明者らの実験によると、耐用性の向上にはピーク圧が
存在し、ピーク圧を越えると、耐用性が逆に低下するよ
うになり、耐用性の向上には最適圧力が存在することを
見出した。
[0005] These problems are conventional by CIP forming form method,
It believed to have resulted from the fact that the restrictions on the equipment not be increased water pressure or hydraulic pressure at the time of forming shape, formed in the size of the equipment
It has been considered that the problem can be solved by increasing the water pressure or the hydraulic pressure at the time of shaping , and the higher the pressure, the more dense the material and the lower the porosity. However, according to the experiments conducted by the present inventors, there is a peak pressure for improving the durability, and when the peak pressure is exceeded, the durability is decreased, and the optimum pressure exists for improving the durability. I found that

【0006】[0006]

【課題の解決手段】本発明は、上記の知見に基づいてな
されたもので、CIP成法を用いて1.8〜2.5t
/cm2の圧力で成したことを特徴とするものである。
A solution means of the present invention has been made based on the above findings, by using the CIP forming shape method 1.8~2.5t
It is characterized in that it has formed shape at a pressure of / cm 2.

【0007】[0007]

【作用】本発明は上述するように、CIP成法の圧力
を1.8〜2.5t/cm2としたもので、圧力が1.8t
/cm2より低くなると、材料の充填性が悪くなって緻密な
組織が得られなくなり、また2.5t/cm2を越えると、
内部亀裂が発生し、組織が劣化するようになる。
DETAILED DESCRIPTION OF THE INVENTION The present invention as described above, that where the pressure of the CIP forming shape Method and 1.8~2.5t / cm 2, the pressure 1.8t
When it is lower than / cm 2 , the filling property of the material becomes poor and a dense structure cannot be obtained, and when it exceeds 2.5 t / cm 2 ,
Internal cracks occur and the tissue becomes deteriorated.

【0008】[0008]

【実施例】 実施例1 転炉の出鋼口用スリーブ状耐火物において、電融マグネ
シア80重量%、天然黒鉛17重量%及びAl−Mg合
金3重量%に更に液状フェノール系バインダーを3重量
%添加してこれを混練し、CIP成法により圧力2.
0t/cm2で加熱成したのち、90℃で24時間乾燥
し、ついで250℃で10時間硬化処理して内径145
φ、外径335φ、長さ1600mmのスリーブ状耐火物
の評価サンプルを得た。そして圧力を1.6t/cm2する
以外は上記と同様にして得た比較例1の評価サンプルと
見掛比重、嵩比重、見掛気孔率、1400での熱間曲
げ強度、耐蝕性及び実炉での耐用寿命について比較し
た。その結果、表1に示すように、実施例1は、比較例
1と比較して見掛比重が0.01、嵩比重が0.05向
上すると共に、見掛気孔率が1.5%低下し、1400
℃での熱間曲げ強度が0.7Mpa 向上した。
Example 1 In a sleeve-shaped refractory for a taphole of a converter, 80 wt% of electro-melted magnesia, 17 wt% of natural graphite and 3 wt% of Al-Mg alloy, and further 3 wt% of liquid phenolic binder were added. kneading this by adding, pressure 2 by CIP forming shape method.
After heating formed form at 0t / cm 2, dried for 24 hours at 90 ° C., the inner diameter then 10 hours cured at 250 ° C. 145
An evaluation sample of a sleeve-shaped refractory having φ, an outer diameter of 335φ, and a length of 1600 mm was obtained. The evaluation sample of Comparative Example 1 obtained in the same manner as above except that the pressure was set to 1.6 t / cm 2 and the apparent specific gravity, bulk specific gravity, apparent porosity, hot bending strength at 1400 ° C. , corrosion resistance and The service life in actual furnaces was compared. As a result, as shown in Table 1, in Example 1, the apparent specific gravity was improved by 0.01 and the bulk specific gravity was increased by 0.05, and the apparent porosity was decreased by 1.5% as compared with Comparative Example 1. 1400
The hot bending strength at ℃ improved by 0.7Mpa.

【0009】また比較例1を100とした溶損指数は8
6、実炉耐用指数は110となり、組織が緻密となっ
て、高熱間強度及び高耐蝕性を示し、実炉での耐用寿命
が向上した。ここで、溶損テストは、高周波誘導炉内張
法を用い、電解鉄とスラグ(CaO/SiO2 =3.3
Total Fe 18%)を1700℃で4時間加熱した
ときのサンプルの溶損の程度を指数表示することによっ
て行われ、指数の小さいもの程、耐蝕性は良好と評価さ
れる。
Further, the melt loss index with Comparative Example 1 as 100 is 8
6. The actual furnace durability index was 110, the structure became dense, high hot strength and high corrosion resistance were exhibited, and the useful life in the actual furnace was improved. Here, the melting test was performed by using the high frequency induction furnace lining method, and electrolytic iron and slag (CaO / SiO 2 = 3.3) were used.
(Total Fe 18%) is heated at 1700 ° C. for 4 hours, and the degree of erosion of the sample is indicated by an index. The smaller the index, the better the corrosion resistance.

【0010】実施例2 成圧力を、2.5t/cm2とする以外は、実施例1と同
様にして得た評価サンプルについて、成圧力を2.7
t/cm2とする以外は実施例1と同様にして得た比較例2
の評価サンプルと、見掛比重、嵩比重、見掛気孔率、1
400℃での熱間曲げ強度、耐蝕性及び実炉での耐用寿
命についてそれぞれ比較した。その結果、表1に示すよ
うに、実施例2は比較例2と比較して、見掛比重は同
等、嵩比重は0.02向上すると共に、見掛気孔率は
0.9%低下し、また1400℃での熱間曲げ強度は
0.6Mpa 向上した。また比較例1を100としたとき
の溶損指数が、比較例2では103であったのに対し、
実施例2では89となり、実炉耐用指数も比較例2が9
5であるのに対し、実施例2の実炉耐用指数は108と
なり、組織の緻密性が向上して高熱間強度及び高耐蝕性
を示し、実炉での耐用寿命が向上した。
[0010] EXAMPLE 2 formed form pressure, except that the 2.5 t / cm 2, the evaluation samples obtained in the same manner as in Example 1, the formed shape pressure 2.7
Comparative Example 2 obtained in the same manner as in Example 1 except that t / cm 2 was used.
Samples for evaluation, apparent specific gravity, bulk specific gravity, apparent porosity, 1
The hot bending strength at 400 ° C., the corrosion resistance and the service life in an actual furnace were compared. As a result, as shown in Table 1, in Example 2, compared with Comparative Example 2, the apparent specific gravity was the same, the bulk specific gravity was improved by 0.02, and the apparent porosity was decreased by 0.9%. The hot bending strength at 1400 ° C was improved by 0.6 Mpa. The melt loss index when Comparative Example 1 was set to 100 was 103 in Comparative Example 2, whereas
In Example 2, it was 89, and the actual furnace durability index was 9 in Comparative Example 2.
5, the actual furnace service life index of Example 2 was 108, the denseness of the structure was improved to show high hot strength and high corrosion resistance, and the service life in the actual furnace was improved.

【0011】また成圧力を2.7t/cm2にまで高くし
た比較例2は、組織が劣化し、熱間強度及び耐蝕性が低
下し、実炉耐用が低下することが判明した。
[0011] Comparative Example 2 was higher formed shape pressure to the 2.7 t / cm 2, the tissue is degraded and hot strength and corrosion resistance is lowered, actual furnace life was found to be reduced.

【0012】[0012]

【表1】 [Table 1]

【0013】図1は、上述する実施例1及び比較例1、
2についての成圧力と耐蝕指数の関係を示すものであ
る。図1からも見られるように、CIP成法での成
圧力が所要圧力範囲以外の場合、比較例は実施例に比
べ、実炉耐用が劣る結果となった。
FIG. 1 shows Example 1 and Comparative Example 1 described above.
Shows the relationship between the formation shape pressure and corrosion index for 2. As also seen from FIG. 1, when forming the shape <br/> pressure at CIP forming form method other than the required pressure range, the comparative example than in Example, has resulted in an actual furnace life is poor.

【0014】[0014]

【発明の効果】本発明のCIP成法によるスリーブ状
耐火物の成法によれば、成圧力を1.8〜2.5t
/cm2とすることにより、組成が緻密化して熱間強度及び
耐蝕性が向上し、耐用性を向上させることができる。
According to forming shape methods sleeve-shaped refractories by CIP forming shape method of the present invention according to the present invention, a formed shape pressure 1.8~2.5t
By setting the ratio to / cm 2 , the composition becomes denser, the hot strength and the corrosion resistance are improved, and the durability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 成圧力と耐用指数の関係を示す図。FIG. 1 shows the relationship between the formation shape pressure and useful index.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 駿河 俊博 北九州市八幡西区舟町2−2 (72)発明者 規工川 昭二 呉市焼山中央5丁目4番11号 (72)発明者 大西 裕 北九州市小倉北区篠崎5丁目14−33 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiro Suruga 2-2 Funamachi, Hachimansai-ku, Kitakyushu City (72) Inventor Shoji Kikugawa 5-4-11 Yaeyama Chuo, Kure City (72) Inventor Hiroshi Onishi Kitakyushu City 5-14-33 Shinozaki, Ogurakita-ku

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 CIP成型法を用いて1.8〜2.5t
/cm2の圧力で成型したことを特徴とする溶融金属を取り
扱う容器に用いられスリーブ状耐火物の成型法。
1. 1.8 to 2.5 t using CIP molding method
A sleeve-shaped refractory molding method used in containers for handling molten metal, characterized by being molded at a pressure of / cm 2 .
JP29530792A 1992-11-04 1992-11-04 Molding method for sleeve-like refractories of containers for handling molten metal Expired - Fee Related JP3202811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29530792A JP3202811B2 (en) 1992-11-04 1992-11-04 Molding method for sleeve-like refractories of containers for handling molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29530792A JP3202811B2 (en) 1992-11-04 1992-11-04 Molding method for sleeve-like refractories of containers for handling molten metal

Publications (2)

Publication Number Publication Date
JPH06147769A true JPH06147769A (en) 1994-05-27
JP3202811B2 JP3202811B2 (en) 2001-08-27

Family

ID=17818918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29530792A Expired - Fee Related JP3202811B2 (en) 1992-11-04 1992-11-04 Molding method for sleeve-like refractories of containers for handling molten metal

Country Status (1)

Country Link
JP (1) JP3202811B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103580A1 (en) * 2006-11-06 2009-09-23 Krosakiharima Corporation Durable sleeve bricks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103580A1 (en) * 2006-11-06 2009-09-23 Krosakiharima Corporation Durable sleeve bricks
EP2103580A4 (en) * 2006-11-06 2011-06-22 Krosakiharima Corp Durable sleeve bricks

Also Published As

Publication number Publication date
JP3202811B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
WO1993021128A1 (en) Improved magnesia-carbon refractory compositions for slide gate plates and method of manufacture
SU664556A3 (en) Charge and method for sinking bucket or stop
US4431745A (en) Carbon-bonded magnesia carbon bricks
US5849245A (en) Well brick of vessel for molten metal
JPH06147769A (en) Forming method of sleeve-shaped refractory of vessel for handling molten metal
JP7416117B2 (en) Castable refractories and ladle
JP7376724B2 (en) castable refractories
JPH0118030B2 (en)
JPS604153B2 (en) Refractories for molten metal
JPH04280878A (en) Mud material for melted iron outlet of blast furnace
US20050110202A1 (en) Injection lance
RU2148049C1 (en) Spinel-periclase-carbonic refractory material
JP3197680B2 (en) Method for producing unburned MgO-C brick
CN109796213A (en) A kind of magnesia carbon brick production method
JP2598971B2 (en) Unfired alumina carbon-based casting nozzle
JPH10338578A (en) Ramming material, insertion-type immersion nozzle fixed with that material, and fixing method of insertion-type immersion nozzle
JPH0978116A (en) Manufacture of sleeve refractory for converter tap hole
JPS5830265B2 (en) Refractories for continuous casting
JPH03170367A (en) Refractory for continuous casting and its production
RU2698401C1 (en) Method of ferromanganese inductive remelting
JPS6081068A (en) Antispalling non-bake refractories
JP3023022B2 (en) Irregular refractories for hot repair
JPH0628780B2 (en) Nozzles for continuous casting machines and refractories for those nozzles
JP2000109359A (en) Refractory composition and refractory
JPH06145755A (en) Sleeve refractories for tap hole of converter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010612

LAPS Cancellation because of no payment of annual fees