JPH06147689A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH06147689A
JPH06147689A JP32735792A JP32735792A JPH06147689A JP H06147689 A JPH06147689 A JP H06147689A JP 32735792 A JP32735792 A JP 32735792A JP 32735792 A JP32735792 A JP 32735792A JP H06147689 A JPH06147689 A JP H06147689A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
exchanger
dehumidifying
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32735792A
Other languages
Japanese (ja)
Inventor
Nobuhiko Suzuki
伸彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP32735792A priority Critical patent/JPH06147689A/en
Publication of JPH06147689A publication Critical patent/JPH06147689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Air Conditioning (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To enhance dehumidifying capacity in an intermediate term by disposing first, second heat exchangers in an air conditioning duct and a third heat exchanger out of the duct, and controlling a heat exchanging efficiency of the third exchanger in a state that a cycle for dehumidifying and heating is formed. CONSTITUTION:At the time of dehumidifying and heating, a four-way valve 5 is switched to a position of solid lines. When a temperature of a first heat exchanger 2 is 0 deg.C or lower based on an output of a temperature detector 11, a solenoid valve 9 is closed to prevent freezing. Then, an the valve travel of an electric control type expansion valve 7 is regulated to control a heat absorption quantity of a third heat exchanger 4. That is, the valve travel of the valve 7 is made small in an intermediate term, a heat exchanging efficiency of the exchanger 4 is deteriorated to reduce heat absorption from the outside air and hence an evaporating pressure of the exchanger 4 is reduced. Thus, discharge refrigerant from a compressor 6 is condensed to be liquefied by a second heat exchanger 3, reduced under pressure by the valve 7, then sent to the exchanger 4 to reduce the evaporation pressure of the exchanger 2, thereby enhancing dehumidifying capacity of the exchanger 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、除湿暖房の機能を有
する空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a dehumidifying and heating function.

【0002】[0002]

【従来の技術】例えば、特開平4─151324号公報
に示されるこの種の空気調和装置は、図3に示されるよ
うに、空調ダクト内に配置された第1の熱交換器Aの一
端と第2の熱交換器Bの一端とを、電磁弁Cとキャプラ
リーチューブDとの並設回路を介して接続し、除湿暖房
運転時においては、第2の熱交換器Bの他端が四方弁E
を介してコンプレッサFの高圧側に、第1の熱交換器A
の他端がコンプレッサFの低圧側にそれぞれ連通される
ようになっている。
2. Description of the Related Art For example, as shown in FIG. 3, an air conditioner of this type disclosed in Japanese Patent Application Laid-Open No. 4-151324 has one end of a first heat exchanger A arranged in an air conditioning duct. One end of the second heat exchanger B is connected through a parallel circuit of the solenoid valve C and the capillary tube D, and the other end of the second heat exchanger B is four-sided during dehumidification heating operation. Valve E
To the high pressure side of the compressor F via the first heat exchanger A
The other ends of the two are communicated with the low pressure side of the compressor F, respectively.

【0003】また、この公報には、第1の熱交換器Aの
他端をコンプレッサFの低圧側に接続する代わりに、除
湿暖房運転時においては、空調ダクト外に配置された第
3の熱交換器Gを介してコンプレッサFの低圧側に接続
することも開示されている。
Further, in this publication, instead of connecting the other end of the first heat exchanger A to the low pressure side of the compressor F, a third heat placed outside the air conditioning duct is used during dehumidifying and heating operation. It is also disclosed to connect to the low pressure side of compressor F via exchanger G.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
技術においては、除湿暖房時に暖房量と除湿量とを独立
に変えることができないものであった。例えば、第1の
熱交換器による除湿量を多くするためにコンプレッサの
回転数を増加させると、それに伴って第2の熱交換器に
よる放熱量も大きくなり吹出温度が高くなってしまう。
このため、外気温が低くく、第2の熱交換器が凍結眼界
温度を下回って凍結の虞れがある場合、上述の構成にお
いては、コンプレッサの回転数を低下させるしか方法が
なく、暖房能力の低下を強いられる不都合があった。ま
た、前者の構成においては、除湿の潜熱分とコンプレッ
サの仕事が暖房量を決定するので、消費電力も比較的大
きくなる欠点がある。
However, in the above-mentioned technique, the heating amount and the dehumidifying amount cannot be independently changed during the dehumidifying and heating. For example, if the number of rotations of the compressor is increased to increase the dehumidification amount of the first heat exchanger, the heat radiation amount of the second heat exchanger also increases and the blowout temperature increases accordingly.
Therefore, when the outside air temperature is low and the second heat exchanger is below freezing eye temperature and there is a risk of freezing, the above-described configuration has no other choice but to reduce the rotation speed of the compressor. There was an inconvenience that it was forced to decrease. Further, in the former configuration, since the latent heat of dehumidification and the work of the compressor determine the heating amount, there is a drawback that the power consumption becomes relatively large.

【0005】さらに、 第3の熱交換器を用いる後者の
構成においても、ダクト外の熱交換器の吸熱量は暖房モ
ード時での暖房能力を向上させるために一般に大きく設
定されるので、熱交換器内の蒸発温度は外気温度に近く
なる。このため、中間期においては、第1の熱交換器の
除湿能力があまり期待できなくなる欠点があった。もち
ろん、この場合においても、コンプレッサの回転数を上
げれば、蒸発温度は下がり、除湿能力は向上するが、前
述の如く、第2の熱交換器による放熱量が多くなり、暖
房能力が過大となる。
Further, also in the latter configuration using the third heat exchanger, the heat absorption amount of the heat exchanger outside the duct is generally set to be large in order to improve the heating capacity in the heating mode. The evaporation temperature in the vessel is close to the outside temperature. Therefore, in the intermediate period, the dehumidifying capacity of the first heat exchanger cannot be expected so much. Of course, also in this case, if the number of rotations of the compressor is increased, the evaporation temperature is lowered and the dehumidifying capacity is improved, but as described above, the amount of heat radiated by the second heat exchanger is large and the heating capacity becomes excessive. .

【0006】そこで、この発明においては、上述の欠点
を解消し、除湿量と暖房能力とを独立に制御することが
でき、暖房能力を低下させずに熱交換器の凍結防止を図
り、中間期での効果的は除湿を可能とした空気調和装置
を提供することを課題としている。
Therefore, in the present invention, the above-mentioned drawbacks can be solved, the dehumidifying amount and the heating capacity can be controlled independently, the freezing of the heat exchanger can be prevented without lowering the heating capacity, and the intermediate period It is an object of the present invention to provide an air conditioner capable of dehumidifying effectively.

【0007】[0007]

【課題を解決するための手段】しかして、この発明の要
旨とするところは、空調ダクト内に配置された第1およ
び第2の熱交換器、前記空調ダクト外に配置された第3
の熱交換器を有し、前記第2の熱交換器と第1の熱交換
器、および前記第2の熱交換器と第3の熱交換器を少な
くとも膨張弁を介して接続し、除湿暖房運転時に前記コ
ンプレッサの低圧側と第1および第3の熱交換器を接続
すると共に前記コンプレッサの高圧側と第2の熱交換器
を接続して除湿暖房用のサイクルを構成し、前記サイク
ルに前記第3の熱交換器の熱交換効率を制御する熱交換
効率制御手段が具備されていることにある。
The gist of the present invention is, therefore, that the first and second heat exchangers are arranged inside the air conditioning duct, and the third heat exchanger is arranged outside the air conditioning duct.
Dehumidifying and heating the second heat exchanger and the first heat exchanger, and connecting the second heat exchanger and the third heat exchanger through at least an expansion valve. During operation, the low pressure side of the compressor is connected to the first and third heat exchangers, and the high pressure side of the compressor is connected to the second heat exchanger to form a dehumidifying and heating cycle. The heat exchange efficiency control means for controlling the heat exchange efficiency of the third heat exchanger is provided.

【0008】[0008]

【作用】したがって、除湿暖房運転時において、圧縮器
から吐出した冷媒は、第2の熱交換器に入って放熱(凝
縮液化)し、膨張弁を介して第1および第3の熱交換器
に入り、それぞれにおいて吸熱(蒸発気化)してコンプ
レッサに戻る。この過程において、熱交換効率制御手段
により第3の熱交換器の熱交換効率が低減されると、第
3の熱交換器の吸熱量が低下するので蒸発圧力は低くな
り、それに伴って同じコンプレッサの低圧側に接続され
た第1の熱交換器の蒸発圧力も低くなり、第1の熱交換
器での除湿能力を暖房能力とは別個に増大させることが
できる。そのため、上記課題を達成することができるも
のである。
Therefore, during the dehumidifying and heating operation, the refrigerant discharged from the compressor enters the second heat exchanger and radiates heat (condensation and liquefaction), and is transferred to the first and third heat exchangers via the expansion valve. They enter and return to the compressor after absorbing heat (evaporating). In this process, if the heat exchange efficiency of the third heat exchanger is reduced by the heat exchange efficiency control means, the amount of heat absorbed by the third heat exchanger is reduced, so the evaporation pressure is reduced, and accordingly, the same compressor is used. The evaporating pressure of the first heat exchanger connected to the low-pressure side of the first heat exchanger also becomes low, and the dehumidifying capacity of the first heat exchanger can be increased separately from the heating capacity. Therefore, the above-mentioned subject can be achieved.

【0009】[0009]

【実施例】以下、この発明の実施例を図面により説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1において、この発明に係る空気調和装
置が示され、空気調和装置は、例えば自動車に搭載され
るもので、空調ダクト1に配置された第1及び第2の熱
交換器2,3と、空調ダクト1外に配置された第3の熱
交換器4とを備えている。
FIG. 1 shows an air conditioner according to the present invention. The air conditioner is mounted on, for example, an automobile, and has first and second heat exchangers 2 arranged in an air conditioning duct 1. 3 and a third heat exchanger 4 arranged outside the air conditioning duct 1.

【0011】空調ダクト1の最上流側には内外気切換装
置が設けられ、内気入口と外気入口とがインテークドア
によって選択的に開口されるようになっている。この空
調ダクト1に選択的に導入可能な内気または外気は、送
風機の回転により吸引され、第1及び第2の熱交換器
2,3に送られ、ここで熱交換されて所望の吹き出し口
から車室内に供給されるようになっている。また、この
実施例においては、第1の熱交換器2が第2の熱交換器
3よりも上流側に配置されている。
An inside / outside air switching device is provided on the most upstream side of the air conditioning duct 1, and an inside air inlet and an outside air inlet are selectively opened by an intake door. The inside air or the outside air that can be selectively introduced into the air conditioning duct 1 is sucked by the rotation of the blower, sent to the first and second heat exchangers 2 and 3, where heat is exchanged there from a desired outlet. It is designed to be supplied to the passenger compartment. Further, in this embodiment, the first heat exchanger 2 is arranged on the upstream side of the second heat exchanger 3.

【0012】第2の熱交換器3の一端3aと第3の熱交
換器の一端4aは、四方弁5の第1および第2ポート
(I,II)にそれぞれ配管接続され、また四方弁5の第
3および第4ポート(III ,IV)は、コンプレッサ6の
吐出側Aと吸入側Bにそれぞれ配管接続されており、こ
の四方弁4によって、コンプレッサ6の吐出側Aが第2
の熱交換器3の一端3aに接続され、且つ、コンプレッ
サ6の吸入側Bが第3の熱交換器4の一端4aに接続さ
れる場合(第1接続状態、実線で示す)と、コンプレッ
サ6の吐出側Aが第3の熱交換器4の一端4aに接続さ
れ、且つ、コンプレッサ6の吸入側Bが第2の熱交換器
3の一端3aに接続される場合(第2接続状態、破線で
示す)とを切換えれるようになっている。
One end 3a of the second heat exchanger 3 and one end 4a of the third heat exchanger are respectively connected to the first and second ports (I, II) of the four-way valve 5 by pipes, and the four-way valve 5 is also connected. The third and fourth ports (III, IV) of the compressor 6 are connected to the discharge side A and the suction side B of the compressor 6, respectively, by the four-way valve 4, so that the discharge side A of the compressor 6 becomes the second side.
Of the compressor 6 and the suction side B of the compressor 6 are connected to the one end 4a of the third heat exchanger 4 (first connection state, indicated by a solid line). When the discharge side A is connected to the one end 4a of the third heat exchanger 4 and the suction side B of the compressor 6 is connected to the one end 3a of the second heat exchanger 3 (second connection state, broken line). (Shown by) and can be switched.

【0013】第2の熱交換器3の他端3bは、電気制御
式膨張弁7の一端7aに配管接続され、また第3の熱交
換器4の他端4bは、電気制御式膨張弁7の他端7bに
配管接続されている。
The other end 3b of the second heat exchanger 3 is pipe-connected to one end 7a of the electrically controlled expansion valve 7, and the other end 4b of the third heat exchanger 4 is electrically controlled expansion valve 7. Is connected to the other end 7b of the pipe.

【0014】また、第1の熱交換器2は、その一端2a
が常時コンプレッサ6の吸入側Bに配管接続されてお
り、他端2bが膨張弁8および電磁弁9を介して、第2
の熱交換機3と電気制御式膨張弁7との間に配管接続さ
れている。
The first heat exchanger 2 has its one end 2a.
Is always connected to the suction side B of the compressor 6 by a pipe, and the other end 2b is connected to the second side via the expansion valve 8 and the electromagnetic valve 9.
The heat exchanger 3 and the electrically controlled expansion valve 7 are connected by piping.

【0015】そして、上記電磁弁9のオン・オフ、四方
弁5の切り換え、及び電気制御式膨張弁7の開度は、コ
ントロールユニット10からの制御信号で制御されるよ
うになっている。このコントロールユニット10は、A
/D変換器やマルチプレクサ等を含む入力回路、RO
M、RAM、CPU等を含む演算処理回路、駆動回路等
を含む出力回路を有する公知のもので、前記第1の熱交
換器2の温度を検出する温度検出器11からの出力信
号、その他の空調制御に必用な検出信号や設定信号が入
力され、これらの信号を予め定められた所定のプログラ
ムに沿って処理するようになっている。
The on / off of the solenoid valve 9, the switching of the four-way valve 5, and the opening degree of the electrically controlled expansion valve 7 are controlled by control signals from the control unit 10. This control unit 10 is
Input circuit including D / D converter and multiplexer, RO
The output signal from the temperature detector 11 for detecting the temperature of the first heat exchanger 2 is a known one having an arithmetic processing circuit including M, RAM, CPU, etc., and an output circuit including a driving circuit, etc. Detection signals and setting signals necessary for air conditioning control are input, and these signals are processed according to a predetermined program.

【0016】次に、コントロールユニット10による制
御動作のうち、特に除湿暖房運転時の四方弁5、電磁弁
9、および電気式膨張弁7の具体的制御動作例を、図2
に示すフローチャートに基づいて説明する。
Next, among the control operations by the control unit 10, a specific control operation example of the four-way valve 5, the solenoid valve 9, and the electric expansion valve 7 during the dehumidifying and heating operation is shown in FIG.
It will be described based on the flowchart shown in FIG.

【0017】先ず、コントロールユニット10は、ステ
ップ50において、除湿暖房として上記システムを使用
する要請があるか否かを判定し、除湿暖房として使用す
る要請がないと判定された場合には、四方弁5、電磁弁
9、および電気式膨張弁7をいままでの設定状態とした
ままこのフローチャートの制御を終え、次の制御に移行
する。
First, in step 50, the control unit 10 determines whether or not there is a request to use the above system as dehumidifying and heating, and if it is determined that there is no request to use as dehumidifying and heating, the four-way valve. 5, the control of this flow chart is finished with the setting state of the solenoid valve 9 and the electric expansion valve 7 being maintained up to now, and the process proceeds to the next control.

【0018】これに対して、ステップ50で、除湿暖房
として使用する要請があると判定された場合には、ステ
ップ52へ進み、四方弁5を第1接続状態(図1の実
線)となるように切り換え、次のステップ54におい
て、温度検出器11からの出力に基づき、第1の熱交換
器(H.E.)2の温度が0°C以上であるか否かを判
定する。これは、第1の熱交換器が凍結限界温度を下回
っているにもかかわらず冷媒を供給すると熱交換器のフ
ィン間が凍結して、除湿作用が期待できなくなるので、
これを防ぐためである。
On the other hand, if it is determined in step 50 that there is a request for use as dehumidifying and heating, the process proceeds to step 52 and the four-way valve 5 is brought into the first connection state (solid line in FIG. 1). Then, in the next step 54, it is determined based on the output from the temperature detector 11 whether or not the temperature of the first heat exchanger (HE) 2 is 0 ° C. or higher. This is because when the first heat exchanger is below the freezing limit temperature, when the refrigerant is supplied, the fins of the heat exchanger freeze and the dehumidifying action cannot be expected.
This is to prevent this.

【0019】したがって、基本的には、除湿暖房運転時
には電磁弁9を開とするが(ステップ56)、第1の熱
交換器の温度が0°C以下となった場合には、電磁弁9
を閉とし、凍結を防ぐ(ステップ58)。
Therefore, basically, the solenoid valve 9 is opened during the dehumidifying and heating operation (step 56), but when the temperature of the first heat exchanger becomes 0 ° C. or less, the solenoid valve 9 is opened.
Is closed to prevent freezing (step 58).

【0020】そして、次のステップ60において、電気
制御式膨張弁7の開度を、外気温度、湿度等の諸因子に
基づいて調節し、第3の熱交換器4の吸熱量を制御す
る。例えば、中間期においては、電気制御式膨張弁7の
開度を大きくしておくと、第3の熱交換器による外気か
らの吸熱が多くなり、第3の熱交換器4内の蒸発温度が
外気温度に近くなる。除湿暖房時には、第1の熱交換器
2と第3の熱交換器4とはコンプレッサ6の吸入側Bに
共に接続されて連通状態にあり、第1の熱交換器2の蒸
発圧力は第3の熱交換器4の蒸発圧力と等しくなるの
で、第1の熱交換器2の除湿能力は小さくなる。このた
め、中間期には電気制御式膨張弁7の開度を絞り、第3
の熱交換器4の熱交換効率を悪くして外気からの吸熱を
少なくし、もって第3の熱交換器の蒸発圧力を低くす
る。
Then, in the next step 60, the opening degree of the electrically controlled expansion valve 7 is adjusted based on various factors such as outside air temperature and humidity to control the heat absorption amount of the third heat exchanger 4. For example, in the intermediate period, if the opening degree of the electrically controlled expansion valve 7 is increased, the heat absorption from the outside air by the third heat exchanger increases, and the evaporation temperature in the third heat exchanger 4 increases. Close to the outside temperature. During dehumidifying and heating, the first heat exchanger 2 and the third heat exchanger 4 are both connected to the suction side B of the compressor 6 and are in communication with each other, and the evaporation pressure of the first heat exchanger 2 is the third. Since it becomes equal to the evaporation pressure of the heat exchanger 4, the dehumidifying capacity of the first heat exchanger 2 becomes small. Therefore, during the intermediate period, the opening degree of the electrically controlled expansion valve 7 is reduced to the third
The heat exchange efficiency of the heat exchanger 4 is reduced to reduce heat absorption from the outside air, thereby lowering the evaporation pressure of the third heat exchanger.

【0021】しかして、中間期においてコンプレッサ6
の吐出側Aから流出した冷媒は、第2の熱交換器3に入
ってここで放熱(凝縮液化)され、膨張弁7で減圧され
て第3の熱交換器4に送られる。また、第2の熱交換器
で放熱された冷媒は、電磁弁9が開いている時に膨張弁
8で減圧されて第1の熱交換器2に供給される。第3の
熱交換器4では外気からの吸熱が少ないので、低圧側の
圧力は低く保たれ、これに伴って第1の熱交換器2の蒸
発圧力は低くなる。このため、第1の熱交換器2では、
コンプレッサ6の回転数を増加させなくても、除湿能力
を高めることができ、空調ダクト1の上流から送られて
くる空気は、第1の熱交換器2によって十分水分が除去
され、乾燥された状態で第2の熱交換器3で加熱されて
車室内に供給される。
However, in the intermediate period, the compressor 6
The refrigerant flowing out of the discharge side A enters the second heat exchanger 3 where heat is released (condensed and liquefied), is decompressed by the expansion valve 7, and is sent to the third heat exchanger 4. The refrigerant radiated by the second heat exchanger is decompressed by the expansion valve 8 when the solenoid valve 9 is open and supplied to the first heat exchanger 2. Since the third heat exchanger 4 absorbs less heat from the outside air, the pressure on the low pressure side is kept low, and the evaporation pressure of the first heat exchanger 2 becomes low accordingly. Therefore, in the first heat exchanger 2,
The dehumidifying ability can be enhanced without increasing the rotation speed of the compressor 6, and the air sent from the upstream of the air conditioning duct 1 is sufficiently moisture-removed by the first heat exchanger 2 and dried. In this state, it is heated by the second heat exchanger 3 and supplied into the vehicle interior.

【0022】尚、上記実施例においては、第3の熱交換
器4の熱交換効率を悪くする手段として、電気制御式膨
張弁7の開度を強制的に絞るようにしたが、これに代え
て、あるいはこれと共に、第3の熱交換器4と対峙する
ファン12の回転を低速または停止させるようにしても
よい。この場合においても、外気からの吸熱作用が小さ
くなるので、低圧側の圧力が低下し、第1の熱交換器2
の蒸発圧力が低くなって除湿能力を高めることができる
ものである。
In the above-mentioned embodiment, the opening degree of the electrically controlled expansion valve 7 is forcibly reduced as a means for deteriorating the heat exchange efficiency of the third heat exchanger 4. However, instead of this, Alternatively, or together with this, the rotation of the fan 12 facing the third heat exchanger 4 may be slowed or stopped. Also in this case, since the heat absorbing effect from the outside air is reduced, the pressure on the low pressure side is reduced, and the first heat exchanger 2
The evaporation pressure of is reduced and the dehumidifying ability can be enhanced.

【0023】[0023]

【発明の効果】以上述べたように、この発明によれば、
除湿暖房運転時に前記コンプレッサの低圧側と第1およ
び第3の熱交換器を接続すると共に、前記コンプレッサ
の高圧側と第2の熱交換器を接続して除湿暖房用のサイ
クルを構成し、熱交換効率制御手段で第3の熱交換器の
熱交換効率を制御することで、第1の熱交換器での除湿
能力を第2の暖房能力とは別個に可変させるようにした
ので、暖房能力を低下させずに中間期での除湿能力を高
めることができるものである。また、除湿能力の独立調
整が可能であるので、第1の熱交換器の凍結防止も可能
となる。
As described above, according to the present invention,
During the dehumidifying heating operation, the low pressure side of the compressor is connected to the first and third heat exchangers, and the high pressure side of the compressor is connected to the second heat exchanger to form a cycle for dehumidifying and heating. By controlling the heat exchange efficiency of the third heat exchanger by the exchange efficiency control means, the dehumidifying capacity of the first heat exchanger can be varied independently of the second heating capacity. It is possible to improve the dehumidifying ability in the intermediate period without reducing Further, since the dehumidifying ability can be adjusted independently, it is possible to prevent the first heat exchanger from freezing.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る空気調和装置の実施例を示す構
成図である。
FIG. 1 is a configuration diagram showing an embodiment of an air conditioner according to the present invention.

【図2】図1の空気調和装置におけるコントロールユニ
ットの除湿暖房制御動作例を示すフローチャートであ
る。
FIG. 2 is a flowchart showing an example of dehumidifying and heating control operation of a control unit in the air conditioner of FIG.

【図3】従来の空気調和装置を示す構成図である。FIG. 3 is a configuration diagram showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 空調ダクト 2 第1の熱交換器 3 第2の熱交換器 4 第3の熱交換器 5 四方弁 6 コンプレッサ 7,8 膨張弁 9 電磁弁 10 コントロールユニット 12 ファン 1 Air Conditioning Duct 2 First Heat Exchanger 3 Second Heat Exchanger 4 Third Heat Exchanger 5 Four-way Valve 6 Compressor 7,8 Expansion Valve 9 Electromagnetic Valve 10 Control Unit 12 Fan

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空調ダクト内に配置された第1および第
2の熱交換器、前記空調ダクト外に配置された第3の熱
交換器を有し、前記第2の熱交換器と第1の熱交換器、
および前記第2の熱交換器と第3の熱交換器を少なくと
も膨張弁を介して接続し、除湿暖房運転時に前記コンプ
レッサの低圧側と第1および第3の熱交換器を接続する
と共に前記コンプレッサの高圧側と第2の熱交換器を接
続して除湿暖房用のサイクルを構成し、前記サイクルに
前記第3の熱交換器の熱交換効率を制御する熱交換効率
制御手段が具備されていることを特徴とする空気調和装
置。
1. A first heat exchanger and a second heat exchanger arranged inside the air conditioning duct, and a third heat exchanger arranged outside the air conditioning duct, and the first heat exchanger and the second heat exchanger. Heat exchanger,
And the second heat exchanger and the third heat exchanger are connected via at least an expansion valve, the low pressure side of the compressor is connected to the first and third heat exchangers during dehumidification heating operation, and the compressor is And a second heat exchanger are connected to form a cycle for dehumidifying and heating, and heat exchange efficiency control means for controlling the heat exchange efficiency of the third heat exchanger is provided in the cycle. An air conditioner characterized by the above.
JP32735792A 1992-11-12 1992-11-12 Air conditioning apparatus Pending JPH06147689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32735792A JPH06147689A (en) 1992-11-12 1992-11-12 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32735792A JPH06147689A (en) 1992-11-12 1992-11-12 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH06147689A true JPH06147689A (en) 1994-05-27

Family

ID=18198246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32735792A Pending JPH06147689A (en) 1992-11-12 1992-11-12 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH06147689A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286276A (en) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp Air conditioner and control method therefor
EP1568952A1 (en) * 2004-02-27 2005-08-31 Delphi Technologies, Inc. Reversible heat pump system
JP2019085876A (en) * 2017-11-01 2019-06-06 本田技研工業株式会社 Heat cycle system
JP2020131846A (en) * 2019-02-15 2020-08-31 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286276A (en) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp Air conditioner and control method therefor
EP1568952A1 (en) * 2004-02-27 2005-08-31 Delphi Technologies, Inc. Reversible heat pump system
JP2019085876A (en) * 2017-11-01 2019-06-06 本田技研工業株式会社 Heat cycle system
US10662822B2 (en) 2017-11-01 2020-05-26 Honda Motor Co., Ltd. Heat cycle system
JP2020131846A (en) * 2019-02-15 2020-08-31 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Similar Documents

Publication Publication Date Title
JP3485379B2 (en) Vehicle air conditioner
JP3233771B2 (en) Vehicle air conditioner
JPH06143974A (en) Air conditioner
JP3145757B2 (en) Automotive air conditioners
JPH0596940A (en) Air-conditioning device for electrically driven automobile
JP3486851B2 (en) Air conditioner
JP3354378B2 (en) Air conditioner
JP2961196B2 (en) Vehicle air conditioner
JP3433297B2 (en) Air conditioner
JP2000289455A (en) Air conditioner for vehicle
JPH06147689A (en) Air conditioning apparatus
JP3645324B2 (en) Heat pump type air conditioner
JP2998115B2 (en) Automotive air conditioners
JPH06147690A (en) Air conditioning apparatus
JP2010012820A (en) Vehicular air-conditioner
JPH08258544A (en) Heat pump air-conditioning and heating dehumidifier device for electric vehicle
JP3399023B2 (en) Vehicle air conditioner
JP2955899B2 (en) Automotive air conditioners
JP2531165B2 (en) Vehicle air conditioner
JPH081129Y2 (en) Vehicle air conditioner
JPH07132729A (en) Air conditioner
WO2023002993A1 (en) Vehicular air conditioner
KR0169440B1 (en) Defrosting device of cooling/heating airconditioner
JP2515568Y2 (en) Heat pump type heating and water heater
JP3271423B2 (en) Heat pump air conditioner dehumidifier for electric vehicles