JPH06147519A - Hot water-water mixture controller - Google Patents

Hot water-water mixture controller

Info

Publication number
JPH06147519A
JPH06147519A JP32490192A JP32490192A JPH06147519A JP H06147519 A JPH06147519 A JP H06147519A JP 32490192 A JP32490192 A JP 32490192A JP 32490192 A JP32490192 A JP 32490192A JP H06147519 A JPH06147519 A JP H06147519A
Authority
JP
Japan
Prior art keywords
hot water
mixing
control
water
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32490192A
Other languages
Japanese (ja)
Other versions
JP3098126B2 (en
Inventor
Yuichiro Nagi
雄一郎 那木
Hiroki Kanazawa
広輝 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP04324901A priority Critical patent/JP3098126B2/en
Publication of JPH06147519A publication Critical patent/JPH06147519A/en
Application granted granted Critical
Publication of JP3098126B2 publication Critical patent/JP3098126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To improve output hot water temperature characteristics by correcting a drive control quantity of a mixture valve based on factors since a mixture ratio change rate is varied by not only a lifting position of the mixture valve but also a differential pressure between a feed water passage and an output hot water passage when a constant-flow rate valve is provided at a heat exchanger side channel. CONSTITUTION:A differential pressure P is calculated from a hot water side flow rate QH and a lifting position L of a mixture valve (S11), a proportional term control constant kd and a differential term control constant kp are obtained from the pressure P and the position L by referring to a control constant calculating map (S12), and a motor drive control quantity is decided (S13).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湯と水とを混合して出
湯するミキシングタイプの給湯器に用いられる湯水混合
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot and cold water mixing control device for use in a mixing type hot water supply device that mixes hot water and water to produce hot water.

【0002】[0002]

【従来の技術】従来から、給湯器の出湯特性を向上させ
るため、熱交換器で加熱された湯と熱交換器を迂回して
供給された水とを混合して出湯する給湯器が知られてい
る。こうした給湯器に用いられる湯水混合制御装置にお
いては、湯水混合後の出湯温度を検出し、この出湯温度
が予め設定された設定温度になるように混合弁を駆動制
御している。この出湯温度を混合弁の駆動により制御す
る手法としては、PID制御(比例積分微分制御)、P
D制御(比例微分制御)、PI制御(比例積分制御)、
P制御(比例制御)などが用いられている。
2. Description of the Related Art Conventionally, there has been known a water heater which mixes hot water heated by a heat exchanger with water supplied by bypassing the heat exchanger in order to improve hot water discharge characteristics of the water heater. ing. In the hot water mixing control device used for such a water heater, the hot water temperature after hot water mixing is detected, and the mixing valve is drive-controlled so that the hot water temperature reaches a preset temperature. PID control (proportional integral derivative control), P
D control (proportional differential control), PI control (proportional integral control),
P control (proportional control) or the like is used.

【0003】例えば、PD制御においては、次式のよう
に混合弁の駆動操作量が設定される。 yn =kp・en+kd(en −en-1 ) yn …駆動操作量 en …出湯温度と設定温度との偏差 en-1 …前回検出したen kp …比例項制御定数 kd …微分項制御定数 こうした従来の湯水混合制御においては、様々な状況下
での出湯性能を満たすように制御定数(kp ,kd )が
1組設定されるものであった。
For example, in PD control, the drive operation amount of the mixing valve is set according to the following equation. yn = kpen + kd (en-en-1) yn ... Driving operation amount en ... Deviation between hot water temperature and set temperature en-1 ... Enkp detected last time ... proportional term control constant kd ... differential term control constant In hot and cold water mixing control, one set of control constants (kp, kd) was set so as to satisfy the hot water discharge performance under various conditions.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、混合弁
の位置によって混合比の変化率が一定ではないために、
適正な湯温制御を行うことができない。例えば、図2に
示す混合弁のリフト量(水側全閉位置に対する弁体12
の位置)を変化させると、全流量に対する湯の混合比の
変化は図9(A)に示すように曲線状の特性を有する。
つまり、リフト量が小さいほど(湯の混合比が高い状態
ほど)わずかの操作量で混合比が変化し、逆に、リフト
量が大きいほど混合比の変化が少ない(逆に言えば、同
量の混合比変化をさせるにはリフト量が大きいほど大き
な操作量が必要となる)のである。尚、このような特性
を有するのは、図2に示した混合弁に限るものでなく、
湯側,水側にそれぞれ制御弁を設けたものや、湯側ある
いは水側にのみに制御弁を設けたものであっても同じで
ある。
However, since the rate of change of the mixing ratio is not constant depending on the position of the mixing valve,
The proper hot water temperature control cannot be performed. For example, the lift amount of the mixing valve shown in FIG.
9), the change of the mixing ratio of the hot water with respect to the total flow rate has a curved characteristic.
In other words, the smaller the lift amount (the higher the mixing ratio of hot water), the smaller the amount of operation will change the mixing ratio. Conversely, the larger the lift amount, the smaller the change of the mixing ratio (Conversely, the same amount). The larger the lift amount is, the larger the manipulated variable is required to change the mixing ratio. In addition, it is not limited to the mixing valve shown in FIG. 2 that has such characteristics,
The same applies to a control valve provided on each of the hot water side and the water side, and a control valve provided on only the hot water side or the water side.

【0005】従って、従来から採用されていた制御方式
では、図9(B)に示すような直線状の特性(リフト量
に対する混合比の変化率が一定)であれば、制御定数
(kp,kd )を一定としても良いわけであるが、実際
にはそのような特性を得るには弁構造が非常に複雑とな
ってしまう。このため、一般に制御定数の設定は、出湯
温度のハンチングを生じないような混合比変化率の高い
ポイントに基づくこととなり、制御速度をどうしても遅
くしなければならない。つまり、混合比変化率の低いポ
イントでは制御速度を上げられるにもかかわらず、変化
率の高いポイントに合わせざるを得ず、適正な湯温制御
ができないのである。
Therefore, in the conventional control method, if the linear characteristic as shown in FIG. 9B (the rate of change of the mixing ratio with respect to the lift amount is constant), the control constants (kp, kd ) May be constant, but in reality, the valve structure becomes very complicated to obtain such characteristics. Therefore, generally, the setting of the control constant is based on the point where the rate of change of the mixing ratio is high so that hunting of the tapping temperature does not occur, and the control speed must be slowed. In other words, although the control speed can be increased at the point where the mixture ratio change rate is low, the hot water temperature cannot be properly controlled because the control rate must be adjusted to the point where the change rate is high.

【0006】更に悪いことに、加熱側通水路(熱交換器
を通る流路)に定流量弁を設けている給湯器では、リフ
ト量に対する混合比の変化特性が、給水路と出湯路との
差圧に応じて図9(C)に示すように変化してしまう。
つまり、熱交換器出口側湯温を高温に維持するために
(能力オーバーを防止するために)、加熱側通水路に定
流量弁を設けた給湯器においては、出湯量を変化させた
場合に定流量弁が働いて給水路と出湯路との差圧が変化
し、これに伴って混合比の変化特性が変動してしまうの
である。
To make matters worse, in a water heater in which a constant flow valve is provided in the heating side water passage (passage passing through the heat exchanger), the change characteristic of the mixing ratio with respect to the lift amount is different between the water supply passage and the hot water passage. It changes as shown in FIG. 9C depending on the differential pressure.
In other words, in order to maintain the hot water temperature on the outlet side of the heat exchanger at a high temperature (to prevent excess capacity), in the water heater with a constant flow valve in the water passage on the heating side, The constant flow valve works to change the pressure difference between the water supply passage and the hot water passage, and the change characteristic of the mixing ratio changes accordingly.

【0007】従って、このような差圧による影響をも考
慮すれば、駆動操作量を左右する制御係数をさらに小さ
くしなければならない。つまり、図9(C)の領域Aの
ような混合弁のリフト量が小さく差圧が大きいといった
最悪の条件でもハンチングが起こらないようにするため
に、どうしても制御係数を小さくせざるを得ないのであ
る。この結果、本来制御係数を大きくしても問題となら
ない状況下であっても制御速度が遅くなってしまい良好
な出湯温特性が得られなかった。本発明の湯水混合制御
装置は上記課題を解決し、リフト量(弁体位置)および
差圧に応じて駆動操作量を補正することで出湯温特性を
一層向上させることを目的とする。
Therefore, if the effect of such a differential pressure is also taken into consideration, the control coefficient that influences the drive operation amount must be further reduced. In other words, in order to prevent hunting from occurring even under the worst condition that the lift amount of the mixing valve is small and the differential pressure is large, such as the region A in FIG. 9C, the control coefficient must be reduced inevitably. is there. As a result, even in a situation where there is no problem even if the control coefficient is originally increased, the control speed becomes slow and a good tapping temperature characteristic cannot be obtained. An object of the hot water mixing control device of the present invention is to solve the above-mentioned problems and further improve the hot water temperature characteristic by correcting the drive operation amount according to the lift amount (valve position) and the differential pressure.

【0008】[0008]

【課題を解決するための手段】本発明の湯水混合制御装
置は、所定流量以下に制限されて熱交換器により加熱さ
れた湯と、該熱交換器への給水路から分岐したバイパス
管に供給された水とを混合して出湯する給湯器に用いら
れ、上記湯と水との混合比を調整する混合弁装置と、上
記混合された湯の出湯温度を検出する出湯温検出手段
と、上記検出された出湯温度と設定温度との偏差に基づ
いて、上記混合弁装置を駆動制御する混合制御手段とを
備えた湯水混合制御装置において、上記混合弁装置の弁
体位置を判断する位置判断手段と、上記給水路と上記混
合された湯の出湯路との差圧を検出する差圧検出手段
と、上記弁体位置と差圧とに応じて、上記混合制御手段
の駆動制御量を補正する駆動量補正手段とを備えたこと
を要旨とする。
The hot and cold water mixing control device of the present invention supplies hot water heated by a heat exchanger with a flow rate limited to a predetermined flow rate or less, and a bypass pipe branched from a water supply passage to the heat exchanger. Used in a water heater for mixing hot water mixed with hot water, adjusting a mixing ratio of the hot water and water, hot water temperature detecting means for detecting the hot water temperature of the hot water mixed, the above detection On the basis of the deviation between the tapping temperature and the set temperature, a hot water mixing control device comprising a mixing control means for driving and controlling the mixing valve device, a position determining means for determining the valve body position of the mixing valve device, and A differential pressure detecting means for detecting a differential pressure between the water supply passage and the hot water outlet for the mixed hot water, and a drive amount for correcting the drive control amount of the mixing control means according to the valve body position and the differential pressure. The gist is to have a correction means.

【0009】また、第2発明の湯水混合制御装置は、第
1発明において、上記駆動量補正手段は、上記弁体位置
および差圧の少なくとも一方をファジー推論の因子とし
て駆動制御量を補正することを要旨とする。
Also, in the hot and cold water mixing control device of the second invention, in the first invention, the drive amount correcting means corrects the drive control amount by using at least one of the valve body position and the differential pressure as a factor of fuzzy reasoning. Is the gist.

【0010】[0010]

【作用】上記構成を有する本発明の湯水混合制御装置
は、混合された湯の出湯温度と設定温度との偏差に基づ
き混合制御手段が混合弁装置を駆動制御して混合比を調
整するのであるが、この駆動制御量は給水路と出湯路と
の差圧および弁体位置に応じて補正される。従って、弁
体位置に応じて混合比変化率が変動しても、また熱交換
器側通水路の流量制限(定流量弁等による)により給水
路と出湯路との間で差圧変動が生じて混合比や混合比変
化率が変化してしまう場合であっても、これら2つの要
素(弁体位置,差圧)に応じて駆動制御量を補正するた
め良好な出湯温特性が得られる。例えば、差圧と弁体位
置とで決ってくる混合比変化率が大きなポイントでは、
弁体の駆動制御量を小さめに補正すればよく、逆に混合
比変化率が小さなポイントでは弁体の駆動制御量を大き
めに補正すればよい。
In the hot and cold water mixing control device of the present invention having the above-mentioned structure, the mixing control means drives and controls the mixing valve device to adjust the mixing ratio based on the deviation between the outlet temperature of the mixed hot water and the set temperature. The drive control amount is corrected according to the pressure difference between the water supply passage and the hot water passage and the valve body position. Therefore, even if the rate of change of the mixing ratio fluctuates according to the valve body position, the pressure difference between the water supply channel and the hot water outlet channel also occurs due to the flow rate limitation of the heat exchanger side water channel (by the constant flow valve etc.). Even if the mixing ratio or the rate of change of the mixing ratio changes, the drive control amount is corrected in accordance with these two factors (valve position and differential pressure), so that a good hot water temperature characteristic can be obtained. For example, at the point where the rate of change of the mixing ratio, which is determined by the differential pressure and the valve position, is large,
It suffices to correct the valve body drive control amount to a smaller value, and conversely, to correct the valve body drive control amount to a larger value at a point where the mixing ratio change rate is small.

【0011】また、第2発明の湯水混合制御装置では、
駆動制御量の補正にファジー推論を用いている。一般
に、PID制御等の比例制御においては数学的処理によ
り精密な制御量が算出される反面、様々な状況に対処す
るため場合分け等により制御条件を増加させた場合に
は、演算処理が指数的に増大してしまう。一方、ファジ
ー制御は、精密な制御には不向きではあるものの、様々
な状況に対応した制御に有効である。そこで、第2発明
ではこの長所を生かして混合比および差圧の少なくとも
一方をファジー推論の因子として駆動制御量を補正する
ことで様々な状況に対処でき補正演算処理が容易とな
る。
Further, in the hot and cold water mixing controller of the second invention,
Fuzzy inference is used to correct the drive control amount. In general, in proportional control such as PID control, a precise control amount is calculated by mathematical processing, but when control conditions are increased by dividing cases to cope with various situations, arithmetic processing is exponential. Will increase. On the other hand, the fuzzy control is not suitable for precise control, but is effective for control in various situations. Therefore, in the second aspect of the invention, by taking advantage of this advantage, the drive control amount is corrected by using at least one of the mixing ratio and the differential pressure as a factor for fuzzy reasoning, so that various situations can be dealt with and the correction calculation process becomes easy.

【0012】[0012]

【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明の湯水混合制御装置の好適
な実施例について説明する。
EXAMPLES In order to further clarify the constitution and operation of the present invention described above, preferred examples of the hot and cold water mixing control apparatus of the present invention will be described below.

【0013】図1は、一実施例としての湯水混合制御装
置を備えた給湯器の概略構成図である。この給湯器は、
上水道に接続される給水管1と、給水管1から導かれた
冷水をバーナ2での燃焼熱で加熱する熱交換器3と、熱
交換器3で加熱された湯を送り出す給湯管4と、給水管
1から分岐して設けられるバイパス管5と、バイパス管
5からの冷水と給湯管4からの湯とを混合して設定温度
になるように混合比を制御する湯水混合制御部20と、
混合された湯を給湯栓6に導く出湯管7とを備える。ま
た、給水管1には、バイパス管5の分岐点より下流側で
熱交換器3側の通水量(湯側流量)を検出する流量セン
サ8と、所定流量以上の流入を制限する定流量弁11と
が設けられ、バイパス分岐点より上流側に入水温度を検
出する入水温度センサ9が設けられる。更に、給湯管4
には、熱交換器3下流側で混合前の湯温(湯側温度)を
検出する湯側温度センサ10が設けられる。尚、給湯器
における燃焼系、給排気系、点火系等については本発明
の要旨でないため省略する。
FIG. 1 is a schematic configuration diagram of a water heater provided with a hot and cold water mixing control device as one embodiment. This water heater
A water supply pipe 1 connected to the water supply, a heat exchanger 3 for heating the cold water guided from the water supply pipe 1 by the combustion heat in the burner 2, and a hot water supply pipe 4 for sending out the hot water heated by the heat exchanger 3. A bypass pipe 5 branched from the water supply pipe 1; a hot and cold water mixing control unit 20 that mixes cold water from the bypass pipe 5 with hot water from the hot water supply pipe 4 to control a mixing ratio so as to reach a set temperature;
A hot water outlet pipe 7 for guiding the mixed hot water to the hot water tap 6 is provided. Further, in the water supply pipe 1, a flow rate sensor 8 for detecting the water flow rate (hot water side flow rate) on the heat exchanger 3 side downstream from the branch point of the bypass pipe 5, and a constant flow rate valve for restricting inflow above a predetermined flow rate. 11 is provided, and an incoming water temperature sensor 9 that detects the incoming water temperature is provided upstream of the bypass branch point. Furthermore, hot water supply pipe 4
At the downstream side of the heat exchanger 3, there is provided a hot water temperature sensor 10 for detecting the hot water temperature (hot water temperature) before mixing. The combustion system, the air supply / exhaust system, the ignition system, etc. in the water heater are omitted because they are not the subject of the present invention.

【0014】湯水混合制御部20は、給湯管4とバイパ
ス管5との合流点に設けられる混合弁21と、混合弁2
1の弁体12(図2に概略を示す)を進退駆動するモー
タ13(本実施例ではステッピングモータ)と、出湯管
7に設けられ出湯温度を検出する出湯温度センサ14
と、混合弁21の駆動制御を行うコントローラ30とか
らなる。
The hot and cold water mixing control section 20 includes a mixing valve 21 provided at a confluence of the hot water supply pipe 4 and the bypass pipe 5, and a mixing valve 2.
A motor 13 (stepping motor in this embodiment) for driving the valve body 12 of No. 1 (schematically shown in FIG. 2) forward and backward, and a hot water temperature sensor 14 provided in the hot water pipe 7 for detecting hot water temperature.
And a controller 30 that controls the drive of the mixing valve 21.

【0015】混合弁21は、図2に示すように、バイパ
ス管5側に設けられる弁シート15と給湯管4側に設け
られる弁シート16との間で進退する弁体12により湯
と水との混合比を調整するもので、モータ13の回転が
ギヤ装置17を介して弁体駆動軸18に伝達され、弁体
駆動軸18に形成されたネジ19により進退動作が加わ
るように構成されている。従って、弁体12の位置(つ
まり混合比)は、モータ13の回転位置に応じたものと
なる。
As shown in FIG. 2, the mixing valve 21 uses hot water and hot water by a valve body 12 that advances and retracts between a valve seat 15 provided on the bypass pipe 5 side and a valve seat 16 provided on the hot water supply pipe 4 side. The rotation of the motor 13 is transmitted to the valve disc drive shaft 18 via the gear device 17, and the screw 19 formed on the valve disc drive shaft 18 causes the forward / backward movement. There is. Therefore, the position of the valve body 12 (that is, the mixing ratio) depends on the rotational position of the motor 13.

【0016】コントローラ30は、周知の算術論理演算
回路を構成するCPU31と、制御プログラムやファジ
ー推論等を記憶するROM32と、モータ13の位置デ
ータや各種データを一時的に記憶するRAM33と、各
温度センサ9,10,14および流量センサ8からの信
号を入力して演算可能なデジタル信号に変換する入力イ
ンタフェース34と、モータ13に駆動制御信号を出力
する出力インタフェース35と、これらを相互に接続す
るバス36等から構成される。
The controller 30 includes a CPU 31 which constitutes a well-known arithmetic and logic operation circuit, a ROM 32 which stores a control program and fuzzy inference, a RAM 33 which temporarily stores position data and various data of the motor 13, and each temperature. An input interface 34 that inputs signals from the sensors 9, 10, 14 and the flow rate sensor 8 and converts them into a digital signal that can be calculated, an output interface 35 that outputs a drive control signal to the motor 13, and these are mutually connected. It is composed of a bus 36 and the like.

【0017】次に、湯水混合制御処理についての第1実
施例について説明する。図3は、コントローラの実行す
る湯水混合制御ルーチンを表し、所定の周期(本実施例
では50mm秒毎)で繰り返し実行されるものである。
Next, a first embodiment of the hot and cold water mixing control process will be described. FIG. 3 shows a hot and cold water mixing control routine executed by the controller, which is repeatedly executed at a predetermined cycle (in this embodiment, every 50 mm seconds).

【0018】まず、出湯温度センサ14から出湯温度T
M を、流量センサ8から湯側流量QH を読み込むと共
に、混合弁の弁体位置(リフト量)Lつまりモータ13
の制御位置を読み込む(S10)。このリフト量Lは、
本実施例ではステッピングモータを用いていることか
ら、原点位置からのパルス数累計を記憶することで求め
られる。もちろん、エンコーダ等の位置センサをモータ
軸等に設けてリフト量を求めてもよい。
First, the tapping temperature T from the tapping temperature sensor 14
M is read from the flow rate sensor 8 as the hot water flow rate QH, and the valve body position (lift amount) L of the mixing valve, that is, the motor 13 is read.
The control position of is read (S10). This lift amount L is
Since the stepping motor is used in this embodiment, it can be obtained by storing the total number of pulses from the origin position. Of course, a lift sensor may be obtained by providing a position sensor such as an encoder on the motor shaft.

【0019】続いて、読み込まれたリフト量Lと湯側流
量QH とに基づいて、出湯路と給水路との差圧P(以
下、単に差圧Pと呼ぶ)を算出する(S11)。この算
出方法を以下に説明する。
Subsequently, the differential pressure P between the hot water outlet and the water supply passage (hereinafter simply referred to as differential pressure P) is calculated based on the read lift amount L and hot water flow rate QH (S11). This calculation method will be described below.

【0020】図4に示すように、リフト量Lと流量との
関係は差圧に応じて変化する。この図では、湯側流量Q
H だけでなく水側流量QB (バイパス管5を流れる流
量)とリフト量Lとの関係をも表している。いま、検出
された湯側流量QH が2リットル/分でリフト量Lが
0.5mmとすると、この特性図から差圧Pは0.2kgf
/cm2と判断できる。そこで、本実施例では、こうした
特性をROM32内に記憶した算出マップを参照するこ
とで差圧Pを算出する。尚、バイパス管5に流量センサ
を設けている場合には、図4に示すような水側流量QB
とリフト量Lとの関係から差圧Pを求めてもよい。ま
た、ダイアフラムや圧力センサ等により直接差圧を検出
してもよい。
As shown in FIG. 4, the relationship between the lift amount L and the flow rate changes depending on the pressure difference. In this figure, the hot water flow rate Q
Not only H, but also the relationship between the water-side flow rate QB (flow rate through the bypass pipe 5) and the lift amount L is shown. Now, assuming that the detected hot water flow rate QH is 2 liters / minute and the lift amount L is 0.5 mm, the differential pressure P is 0.2 kgf from this characteristic diagram.
/ Cm2 can be judged. Therefore, in the present embodiment, the differential pressure P is calculated by referring to the calculation map in which such characteristics are stored in the ROM 32. When the bypass pipe 5 is provided with a flow rate sensor, the water side flow rate QB as shown in FIG.
The differential pressure P may be obtained from the relationship between the lift amount L and the lift amount L. Alternatively, the differential pressure may be directly detected by a diaphragm or a pressure sensor.

【0021】次に、算出された差圧Pとリフト量Lとに
基づいて、制御定数算出マップを参照してPD制御に用
いる制御定数(kp ,kd )を決定する(S12)。図
5(A),(B),(C)は、一例としてそれぞれ差圧
0.1kgf/cm2,1.0kgf/cm2,3.0kgf/cm2にお
けるリフト量Lに対する混合比と、それに対応する適正
な制御定数を表したもので、本実施例ではROM32内
に種々の差圧P条件毎にリフト量Lと制御定数との関係
が制御定数算出マップとして記憶されている。このマッ
プでは、混合比の変化率が大きいほど制御定数を小さな
値に、逆に混合比の変化率が小さいほど制御定数を大き
な値に設定される。従って、混合比変化率から適正な制
御定数が設定されるのである。
Next, based on the calculated differential pressure P and lift amount L, the control constants (kp, kd) used for PD control are determined by referring to the control constant calculation map (S12). 5 (A), (B), and (C) show, by way of example, the mixing ratio with respect to the lift amount L at differential pressures of 0.1 kgf / cm2, 1.0 kgf / cm2, and 3.0 kgf / cm2, respectively, and the corresponding appropriate ratio. In the present embodiment, the relationship between the lift amount L and the control constant for each of various differential pressure P conditions is stored as a control constant calculation map in the present embodiment. In this map, the control constant is set to a smaller value as the rate of change of the mixing ratio is larger, and conversely, the control constant is set to a larger value as the rate of change of the mixing ratio is smaller. Therefore, an appropriate control constant is set from the rate of change of the mixing ratio.

【0022】こうして決定された制御定数(kp ,kd
)と、出湯温度TM と設定温度TSとの偏差に基づいて
次式のPD制御式により駆動操作量yn を算出する(S
13)。尚、en-1 は前回算出した偏差であり、RAM
23に一時的に記憶されたデータである。 yn =kp・en+kd (en −en-1 ) そして、この操作駆動量yn にてモータ13を駆動し
(S14)、本制御ルーチンを一旦抜ける。
The control constants (kp, kd thus determined)
) And the deviation between the hot water temperature TM and the set temperature TS, the drive operation amount yn is calculated by the following PD control formula (S).
13). Note that en-1 is the deviation calculated last time, and RAM
This is the data temporarily stored in 23. yn = kpen + kd (en-en-1) Then, the motor 13 is driven by this operation drive amount yn (S14), and this control routine is once exited.

【0023】この結果、リフト量に応じて混合比変化率
が変動しても、また定流量弁11により給水路と出湯路
との間で差圧変動が生じて混合比や混合比変化率が変化
してしまう場合であっても、リフト量と差圧とに応じて
操作駆動量を補正するため、従来のように操作駆動量を
最悪条件に合わせて小さくする必要がなくなり、制御速
度が速くなり良好な出湯温特性が得られる。更に、混合
弁21の駆動源としてステッピングモータを用いている
ため制御性が良好であり、位置検出用の特別なセンサは
不要となる。また、差圧検出としてダイアフラム等の機
械的構成をとっていないため部品点数が低減されると共
に省スペース化を図ることができる。
As a result, even if the rate of change of the mixing ratio fluctuates according to the lift amount, the constant flow valve 11 causes a pressure difference fluctuation between the water supply channel and the hot water outlet channel so that the mixing ratio and the rate of change of the mixing ratio vary. Even if it changes, since the operation drive amount is corrected according to the lift amount and the differential pressure, it is not necessary to reduce the operation drive amount according to the worst condition as in the conventional case, and the control speed is high. Therefore, excellent hot water temperature characteristics can be obtained. Further, since the stepping motor is used as the drive source of the mixing valve 21, the controllability is good, and a special sensor for position detection is unnecessary. Further, since a mechanical structure such as a diaphragm is not used for detecting the differential pressure, the number of parts can be reduced and the space can be saved.

【0024】次に、湯水混合制御処理の第2実施例につ
いて図6のフローチャートに沿って説明する。この実施
例では差圧とリフト量だけでなく出湯量と温度偏差とも
加味して駆動操作量を補正し、しかもこれらをファジー
推論の因子としたファジー制御を採用する。
Next, a second embodiment of the hot and cold water mixing control processing will be described with reference to the flowchart of FIG. In this embodiment, not only the differential pressure and the lift amount but also the hot water discharge amount and the temperature deviation are taken into consideration to correct the drive operation amount, and the fuzzy control in which these are used as factors for fuzzy reasoning is adopted.

【0025】まず、各温度センサ9,10,14から入
水温度TC ,湯側温度TH ,出湯温度TM を、流量セン
サ8から湯側流量QH を読み込むと共に、RAM33内
に記憶されている現在の混合弁21のリフト量Lを読み
込む(S20)。続いて、第1実施例と同様に、リフト
量Lと湯側流量QH とに基づいて、出湯路と給水路との
差圧Pを算出する(S21)。
First, the inlet temperature TC, the hot water temperature TH, and the hot water temperature TM are read from the temperature sensors 9, 10 and 14, and the hot water flow rate QH is read from the flow rate sensor 8, and the current mixture stored in the RAM 33 is read. The lift amount L of the valve 21 is read (S20). Then, similarly to the first embodiment, the differential pressure P between the hot water outlet and the water supply passage is calculated based on the lift amount L and the hot water flow rate QH (S21).

【0026】続いて、ステップ20で読み込まれた入水
温度TC ,湯側温度TH ,出湯温度TM ,湯側流量QH
から総流量である出湯量QT を次式のように算出する
(S22)。 QT =QH(TH −TC )/(TM −TC ) これは、QT・TM =TH・QH +TC(QT −QH)の関
係から求めたものである。尚、出湯管7や給水管1上流
側に流量センサを設けて出湯量QT を直接検出するよう
にしてもよいが、圧力損失の影響を考慮すれば本実施例
のように算出にて求めたほうが好ましい。
Subsequently, the incoming water temperature TC, the hot water temperature TH, the hot water temperature TM, and the hot water flow rate QH read in step 20.
From this, the hot water discharge amount QT, which is the total flow rate, is calculated by the following equation (S22). QT = QH (TH-TC) / (TM-TC) This is obtained from the relationship of QT * TM = TH * QH + TC (QT-QH). A flow rate sensor may be provided on the upstream side of the hot water discharge pipe 7 or the water supply pipe 1 to directly detect the hot water discharge amount QT, but if the influence of the pressure loss is taken into consideration, it is calculated as in this embodiment. Is preferable.

【0027】次に、予め設定された設定温度TS と出湯
温度TM との偏差en に基づいてモータ13の駆動操作
量yn を次式のように算出する(S23)。 yn =kp・en+kd (en −en-1 ) 尚、この式における制御定数kp ,kd は予め設定され
た一定値である。また、この駆動操作量yn は後述の処
理により補正されることから、その補正処理時に一緒に
算出してもよい。
Next, the drive operation amount yn of the motor 13 is calculated according to the following equation based on the deviation en between the preset set temperature TS and the hot water discharge temperature TM (S23). yn = kpen + kd (en-en-1) The control constants kp and kd in this equation are constant values set in advance. Further, since this drive operation amount yn is corrected by the processing described later, it may be calculated together with the correction processing.

【0028】次に、先に求められたリフト量Lおよび差
圧Pに基づいて駆動操作量yn を補正するための補正係
数Aの算出を行う。本実施例では、リフト量L,差圧P
だけでなく、出湯量QT と偏差en をも制御因子とした
ファジー推論により駆動操作量yn の補正係数Aを求め
る(S24)。
Next, the correction coefficient A for correcting the drive operation amount yn is calculated based on the lift amount L and the differential pressure P previously obtained. In this embodiment, the lift amount L and the differential pressure P are
Not only that, the correction coefficient A of the drive operation amount yn is obtained by fuzzy inference using the hot water discharge amount QT and the deviation en as control factors (S24).

【0029】ここで、ファジー制御を行うために必要な
条件部メンバシップ関数、ルール、結論部メンバシップ
関数について説明する。図7(A)は出湯量QT に関す
る条件部メンバシップ関数、同図(B)は偏差の絶対値
|en |に関する条件部メンバシップ関数,同図(C)
はリフト量Lに関する条件部メンバシップ関数、同図
(D)は差圧Pに関する条件部メンバシップ関数であ
る。また、図8(A)は出湯量QT および偏差|en |
に関する結論部メンバシップ関数、同図(B)はリフト
量Lおよび差圧Pに関する結論部メンバシップ関数であ
る。尚、各符号PS,PM,PLおよびαは、それぞれ
次のことを意味する。
Now, the condition part membership function, rule, and conclusion part membership function necessary for performing fuzzy control will be described. FIG. 7 (A) is a condition part membership function relating to the hot water discharge amount QT, FIG. 7 (B) is a condition part membership function relating to the absolute value of deviation | en |, and FIG. 7 (C).
Is a condition part membership function related to the lift amount L, and FIG. 7D is a condition part membership function related to the differential pressure P. Further, FIG. 8 (A) shows the hot water discharge amount QT and the deviation | en |
The conclusion part membership function relating to the above, and the same figure (B) is the conclusion part membership function relating to the lift amount L and the differential pressure P. The symbols PS, PM, PL and α mean the following respectively.

【0030】PS…正の方向に小さいこと PM…正の方向に中位なこと PL…正の方向に大きいこと α……重みPS: Small in the positive direction PM: Medium in the positive direction PL: Large in the positive direction α: Weight

【0031】また、予め設定されたルールは以下の通り
とする。本実施例では、出湯量QTおよび偏差|en |
に関する結論部(1)のルールと、リフト量Lおよび差
圧Pに関する結論部(2)のルールとに分ける。結論部
(1)に対するルール <ルール1> |en |=PS かつ QT =PS ならば α=PS <ルール2> |en |=PS かつ QT =PL ならば α=PM <ルール3> |en |=PL かつ QT =PS ならば α=PM <ルール4> |en |=PL かつ QT =PL ならば α=PL
The preset rules are as follows. In this embodiment, the hot water discharge amount QT and the deviation | en |
The rule of the conclusion section (1) regarding the above is divided into the rule of the conclusion section (2) regarding the lift amount L and the differential pressure P. Rule for Conclusion Part (1) <Rule 1> | en | = PS and QT = PS α = PS <Rule 2> | en | = PS and QT = PL α = PM <Rule 3> | en | = PL and QT = PS, α = PM <Rule 4> | en | = PL and QT = PL, α = PL

【0032】結論部(2)に対するルール <ルール5> L=PL かつ P=PS ならば α=PL <ルール6> L=PL かつ P=PL ならば α=PM <ルール7> L=PS かつ P=PS ならば α=PM <ルール8> L=PS かつ P=PL ならば α=PSRule for Conclusion Part (2) <Rule 5> If L = PL and P = PS α = PL <Rule 6> L = PL and P = PL α = PM <Rule 7> L = PS and If P = PS α = PM <Rule 8> L = PS and P = PL α = PS

【0033】ここで具体的に例をあげて説明する。今、
出湯量QT =2.5(リットル/分)、偏差en =3.
0(deg )、リフト量L=0.5mm、差圧P=2kgf/c
m2とした場合を考える。図7(A)から出湯量QT にお
けるPSの適合度=0.75、PLの適合度=0.25
となり、同図(B)から偏差en におけるPSの適合度
=0、PLの適合度=1.0となり、同図(C)からリ
フト量LにおけるPSの適合度=0.83、PLの適合
度=0.17となり、同図(D)から差圧PにおけるP
Sの適合度=0.7、PLの適合度=0.3となる。こ
れに対して、先のルール1〜8をあてはまると、 ルール1よりPS=0 ルール2よりPM=0 ルール3よりPM=0.75 ルール4よりPL=0.25 ルール5よりPL=0.17 ルール6よりPM=0.17 ルール7よりPM=0.7 ルール8よりPS=0.3 となる。
A specific example will be described here. now,
Hot water output QT = 2.5 (liter / min), deviation en = 3.
0 (deg), lift amount L = 0.5mm, differential pressure P = 2kgf / c
Consider the case of m2. From FIG. 7 (A), the goodness of fit of PS = 0.75 and the goodness of fit of PL = 0.25 in the amount of hot water discharge QT.
From the figure (B), the degree of conformity of PS at the deviation en = 0, the degree of conformity of PL = 1.0, and from the figure (C), the degree of conformity of PS at the lift amount L = 0.83, the conformity of PL. Degree = 0.17, and from the figure (D), P at the differential pressure P
The goodness of fit of S = 0.7 and the goodness of fit of PL = 0.3. On the other hand, if the above rules 1 to 8 are applied, from rule 1 PS = 0 from rule 2 PM = 0 from rule 3 PM = 0.75 from rule 4 PL = 0.25 from rule 5 PL = 0. 17 PM = 0.17 from rule 6 PM = 0.7 from rule 7 PS = 0.3 from rule 8

【0034】この適合度を用いて結論部メンバシップ関
数を修正すると、図8(C),(D)のようになる。各
適合度の重みαを乗じてこれらを合成した重心Gを求め
ると、 G=(0.75X1.0+0.25X1.5+0.3X0.2+0.17X1.0+0.7X1.0+
0.17X1.8)/(0.75+0.25+0.3+0.7+0.17+0.17)=1.
009 となる。この重心Gが求める補正係数Aである。
When the conclusion part membership function is corrected by using this conformity, it becomes as shown in FIGS. 8 (C) and 8 (D). Multiplying the weight α of each goodness of fit to find the center of gravity G that combines them, G = (0.75X1.0 + 0.25X1.5 + 0.3X0.2 + 0.17X1.0 + 0.7X1.0 +
0.17X1.8) / (0.75 + 0.25 + 0.3 + 0.7 + 0.17 + 0.17) = 1.
009. The center of gravity G is the correction coefficient A to be obtained.

【0035】こうして補正係数Aが求められると、図6
のステップ25にて駆動操作量ynがA・yn に補正さ
れ、それに基づいてモータ13が駆動され混合比が調整
され(S26)、本制御ルーチンを一旦抜ける。そし
て、これらの処理が50mm秒毎に繰り返される。
When the correction coefficient A is obtained in this way, FIG.
In step 25, the driving operation amount yn is corrected to A · yn, the motor 13 is driven based on the corrected driving amount yn (S26), and the control routine is once exited. Then, these processes are repeated every 50 mm seconds.

【0036】以上説明したように第2実施例の湯水混合
制御処理では、リフト量および差圧だけでなく、出湯量
および偏差を制御因子としてファジー推論により駆動操
作量を補正することで一層出湯温特性が良好となる。こ
れは、以下に示す理由からである。
As described above, in the hot and cold water mixing control process of the second embodiment, not only the lift amount and the differential pressure, but also the hot water discharge amount and the deviation are used as control factors to correct the drive operation amount by fuzzy inference to further improve the hot water discharge temperature. The characteristics are good. This is for the following reason.

【0037】つまり、湯水混合制御においては、湯と水
とが混合されてから出湯温度が検出されるまでの時間遅
れを極力少なくしたいのであるが、小流量時においては
混合湯が出湯温度センサ14に到達するまでの時間遅れ
が大きくなってしまう。このため、従来においてはこう
した時間遅れによる出湯温度のハンチングを防止するた
めに駆動操作量を小さく設定せざるを得なく、駆動操作
量を大きくしても問題とならないような大流量時におい
ても制御速度が小流量時に合わされて遅くなっていた。
That is, in the hot and cold water mixing control, it is desired to minimize the time delay from the time when the hot water is mixed with the water until the hot water temperature is detected. The time delay until it reaches is large. For this reason, in the past, in order to prevent hunting of the hot water discharge temperature due to such a time delay, the drive operation amount must be set small, and even when the drive operation amount is increased, there is no problem in controlling the flow rate. The speed was slowed down due to the small flow rate.

【0038】そこで、この第2実施例では、出湯量を制
御因子として駆動制御量を補正することにより、湯水混
合から温度検出までの時間遅れに対処でき小流量から大
流量に亘る広範囲での混合制御が良好となり出湯特性が
向上するのである。
Therefore, in the second embodiment, by correcting the drive control amount using the amount of hot water discharged as a control factor, it is possible to cope with the time delay from the mixing of the hot water to the temperature detection, and the mixing in a wide range from a small flow rate to a large flow rate. The control is good and the tapping property is improved.

【0039】また、出湯量だけで補正した場合には、小
流量時に駆動操作量が抑えられるが、このときの偏差が
大きな状況においてはそれほど抑える必要がないことか
ら、偏差をも制御因子に加えて補正することで、偏差が
大きければ駆動操作量の抑え度合を少なくする側に働か
すことができ一層出湯特性を向上することができるので
ある。
Further, when the correction is made only by the hot water discharge amount, the drive operation amount can be suppressed at a small flow rate, but in a situation where the deviation at this time is large, it is not necessary to suppress it so much, so the deviation is also added to the control factor. If the deviation is large, the degree of suppression of the drive operation amount can be reduced and the tapping characteristics can be further improved by the correction.

【0040】しかも、これらの補正処理はファジー推論
を用いて行っているため、その長所が生かされて種々の
条件に応じた制御が容易となり、PD制御の演算負担を
低減することができる。
Moreover, since these correction processes are performed by using fuzzy inference, the advantages thereof are utilized to facilitate the control according to various conditions, and the calculation load of the PD control can be reduced.

【0041】以上本発明の実施例について説明したが、
本発明はこうした実施例に何等限定されるものでなく、
本発明の要旨を逸脱しない範囲において、種々なる態様
で実施し得ることは勿論である。
The embodiment of the present invention has been described above.
The present invention is in no way limited to these examples,
Needless to say, the present invention can be implemented in various modes without departing from the scope of the present invention.

【0042】[0042]

【発明の効果】以上詳述したように、本発明の湯水混合
制御装置によれば、給水路と出湯路との差圧および弁体
位置に応じて駆動制御量を補正しているため、弁体位置
に応じて混合比変化率が変動しても、また定流量弁等に
より給水路と出湯路との間で差圧変動が生じて混合比や
混合比変化率が変化してしまう場合であっても、これら
2つの要素(弁体位置,差圧)に応じて駆動制御量を補
正するため良好な出湯温特性が得られるという優れた効
果を奏する。また、ファジー推論を用いて駆動制御量を
補正する第2発明においては、上記の効果に加えて、様
々な状況に応じた制御が容易となり演算負担を低減する
ことができる。
As described above in detail, according to the hot and cold water mixing control device of the present invention, the drive control amount is corrected according to the pressure difference between the water supply passage and the hot water discharge passage and the valve body position. Even if the mixing ratio change rate changes depending on the body position, or if the constant flow valve or the like causes a differential pressure change between the water supply passage and the hot water discharge passage, the mixing ratio or the mixing ratio change rate changes. Even if there is, since the drive control amount is corrected according to these two elements (valve position, differential pressure), there is an excellent effect that good hot water temperature characteristics can be obtained. In addition, in the second invention in which the drive control amount is corrected using fuzzy inference, in addition to the above effects, control according to various situations is facilitated and the calculation load can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例としての湯水混合制御装置を備えた給湯
器の概略構成図である。
FIG. 1 is a schematic configuration diagram of a water heater having a hot and cold water mixing control device according to an embodiment.

【図2】混合弁の概略構成図である。FIG. 2 is a schematic configuration diagram of a mixing valve.

【図3】第1実施例としての湯水混合制御ルーチンを表
すフローチャートである。
FIG. 3 is a flowchart showing a hot and cold water mixing control routine as a first embodiment.

【図4】各差圧毎に示したリフト量に対する流量特性を
表すグラフである。
FIG. 4 is a graph showing a flow rate characteristic with respect to a lift amount shown for each differential pressure.

【図5】各差圧毎に示したリフト量に対する混合比特性
と制御定数の関係を表すグラフである。
FIG. 5 is a graph showing a relationship between a mixing ratio characteristic and a control constant with respect to a lift amount shown for each differential pressure.

【図6】第2実施例としての湯水混合制御ルーチンを表
すフローチャートである。
FIG. 6 is a flowchart showing a hot and cold water mixing control routine as a second embodiment.

【図7】条件部メンバシップ関数を表すグラフである。FIG. 7 is a graph showing a membership function of a condition part.

【図8】結論部メンバシップ関数を表すグラフである。FIG. 8 is a graph showing a conclusion part membership function.

【図9】リフト量に対する混合比特性を表すグラフであ
る。
FIG. 9 is a graph showing a mixture ratio characteristic with respect to a lift amount.

【符号の説明】[Explanation of symbols]

8…流量センサ、 11…定流量弁、 12…弁体、
13…モータ、14…出湯温度センサ、 20…湯水混
合制御部、 21…混合弁、30…コントローラ。
8 ... Flow rate sensor, 11 ... Constant flow rate valve, 12 ... Valve body,
13 ... Motor, 14 ... Hot water temperature sensor, 20 ... Hot water mixing control part, 21 ... Mixing valve, 30 ... Controller.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定流量以下に制限されて熱交換器によ
り加熱された湯と、該熱交換器への給水路から分岐した
バイパス管に供給された水とを混合して出湯する給湯器
に用いられ、 上記湯と水との混合比を調整する混合弁装置と、 上記混合された湯の出湯温度を検出する出湯温検出手段
と、 上記検出された出湯温度と設定温度との偏差に基づい
て、上記混合弁装置を駆動制御する混合制御手段とを備
えた湯水混合制御装置において、 上記混合弁装置の弁体位置を判断する弁体位置判断手段
と、 上記給水路と上記混合された湯の出湯路との差圧を検出
する差圧検出手段と、 上記弁体位置と差圧とに応じて、上記混合制御手段の駆
動制御量を補正する駆動量補正手段とを備えたことを特
徴とする湯水混合制御装置。
1. A water heater that mixes hot water heated by a heat exchanger with a flow rate limited to a predetermined flow rate or less and water supplied to a bypass pipe branched from a water supply path to the heat exchanger to discharge hot water. Based on the deviation between the detected hot water temperature and the set temperature, a mixing valve device used for adjusting the mixing ratio of the hot water and water, a hot water temperature detecting means for detecting the hot water temperature of the mixed hot water. A hot water mixing control device including a mixing control device that drives and controls the mixing valve device; a valve body position determining device that determines a valve body position of the mixing valve device; and a hot water discharge of the water supply passage and the mixed hot water. And a drive amount correction unit for correcting the drive control amount of the mixing control unit according to the valve body position and the pressure difference. Hot and cold water mixing control device.
【請求項2】 上記駆動量補正手段は、上記弁体位置お
よび差圧の少なくとも一方をファジー推論の因子として
駆動制御量を補正することを特徴とする請求項1記載の
湯水混合制御装置。
2. The hot and cold water mixing control device according to claim 1, wherein the drive amount correction means corrects the drive control amount by using at least one of the valve body position and the differential pressure as a factor for fuzzy reasoning.
JP04324901A 1992-11-09 1992-11-09 Hot water mixing control device Expired - Fee Related JP3098126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04324901A JP3098126B2 (en) 1992-11-09 1992-11-09 Hot water mixing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04324901A JP3098126B2 (en) 1992-11-09 1992-11-09 Hot water mixing control device

Publications (2)

Publication Number Publication Date
JPH06147519A true JPH06147519A (en) 1994-05-27
JP3098126B2 JP3098126B2 (en) 2000-10-16

Family

ID=18170897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04324901A Expired - Fee Related JP3098126B2 (en) 1992-11-09 1992-11-09 Hot water mixing control device

Country Status (1)

Country Link
JP (1) JP3098126B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510316A (en) * 2015-03-20 2018-04-12 インターガス・ヒーティング・アセッツ・ベスローテン・フェンノートシャップ Flow control device and hot water apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510316A (en) * 2015-03-20 2018-04-12 インターガス・ヒーティング・アセッツ・ベスローテン・フェンノートシャップ Flow control device and hot water apparatus using the same
JP2022003275A (en) * 2015-03-20 2022-01-11 インターガス・ヒーティング・アセッツ・ベスローテン・フェンノートシャップ Flow controller and hot water appliance provided therewith

Also Published As

Publication number Publication date
JP3098126B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
JP3427476B2 (en) Shift transient control method for automatic transmission for vehicle
JP3098126B2 (en) Hot water mixing control device
JPH05272805A (en) Hot water feeding controller
JPS62288309A (en) Speed control for main cooled seawater pump for diesel engine for vessel
JP3088207B2 (en) Hot water mixing control device
JP3091798B2 (en) Hot water mixing control device
JPH0583921B2 (en)
JP4123826B2 (en) Water temperature control device
JPH059704B2 (en)
JP2513092B2 (en) Bypass mixing control method
JPS6326825B2 (en)
JP3073090B2 (en) Mixing ratio control method just before re-watering in instantaneous water heater
JPS6131847A (en) Tap-controlled gas hot-water supplier
JPS6020043A (en) Device to control combustion
JP3642118B2 (en) Water heater
JP3033415B2 (en) Hot water supply control device
JP2811662B2 (en) Alkali metal engine control device
JPS6136577A (en) Hot and cold water mixing control device
JPS60249782A (en) Hot water and cold water mixing control device
JPS60232425A (en) Combustion control unit
JPH05594B2 (en)
JP3016279B2 (en) Travel control device for gas turbine vehicles
JPH0997119A (en) Hot water temperature controller for hot water supplier
JPH05593B2 (en)
JPH0540532A (en) Mixing device for hot water and cold water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080811

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees