JPH06147403A - Pressure-temperature controller - Google Patents
Pressure-temperature controllerInfo
- Publication number
- JPH06147403A JPH06147403A JP30387092A JP30387092A JPH06147403A JP H06147403 A JPH06147403 A JP H06147403A JP 30387092 A JP30387092 A JP 30387092A JP 30387092 A JP30387092 A JP 30387092A JP H06147403 A JPH06147403 A JP H06147403A
- Authority
- JP
- Japan
- Prior art keywords
- mode
- boiler
- flow rate
- main steam
- demand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、発電プラントで使用さ
れるボイラの主蒸気圧力及び主蒸気温度を制御する圧力
温度制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure temperature controller for controlling main steam pressure and main steam temperature of a boiler used in a power plant.
【0002】[0002]
【従来の技術】発電プラントで使用されるボイラの主蒸
気圧力及び主蒸気温度を給水流量及び燃料流量により制
御する圧力温度制御装置の従来の構成を図6に示す。同
図で、発電プラントにおける協調制御のモードでは、要
求する負荷指令をデマンドとして与え、発電機出力8の
負荷指令と発電量7との偏差信号によって各部分の制御
が行なわれる。ボイラ内の主蒸気温度は燃料流量22で
制御し、主蒸気圧力は給水流量21により制御される。2. Description of the Related Art FIG. 6 shows a conventional structure of a pressure temperature controller for controlling the main steam pressure and main steam temperature of a boiler used in a power plant by controlling the feed water flow rate and the fuel flow rate. In the figure, in the mode of cooperative control in the power generation plant, the required load command is given as a demand, and each part is controlled by the deviation signal between the load command of the generator output 8 and the power generation amount 7. The main steam temperature in the boiler is controlled by the fuel flow rate 22, and the main steam pressure is controlled by the feed water flow rate 21.
【0003】これら給水流量21及び燃料流量22は、
共にボイラデマンド18によって決定されるもので、ボ
イラデマンド18は予め設定された運転状態か、もしく
は中央給電指令所からの指令によって決定される。The feed water flow rate 21 and the fuel flow rate 22 are
Both of them are determined by the boiler demand 18, and the boiler demand 18 is determined by a preset operation state or a command from the central power feeding command center.
【0004】そのデマンドと該デマンド指令時の主蒸気
圧力と実蒸気圧力10の偏差とによる補正が加えられ、
ボイラデマンド18となる。このデマンド18を基に、
給水流量21では予め負荷における各流量を設定した関
数器16により決定する。Correction is made by the demand and the deviation between the main steam pressure and the actual steam pressure 10 at the time of the demand command,
It becomes boiler demand 18. Based on this demand 18,
The water supply flow rate 21 is determined by the function unit 16 in which each flow rate in the load is set in advance.
【0005】また燃料流量22は、給水流量21と同じ
くボイラデマンド18により各負荷で使用する燃料量を
設定した関数器17により決定し、主蒸気温度の偏差信
号による補正20を加算器19で加えて最終的な流量値
を決定している。The fuel flow rate 22 is determined by the function unit 17 in which the amount of fuel used in each load is set by the boiler demand 18 similarly to the feed water flow rate 21, and the adder 19 adds the correction 20 by the deviation signal of the main steam temperature. Determines the final flow rate value.
【0006】ある制御状態を制御モードと称するが、こ
こでの制御モードは、給水流量21による圧力と温度を
燃料流量22で制御し、タービン側の発電量をも監視し
ながら制御を行なうので、このような制御状態を協調モ
ードと呼称する。A certain control state is referred to as a control mode. In this control mode, the pressure and temperature by the feed water flow rate 21 are controlled by the fuel flow rate 22, and the control is performed while also monitoring the power generation amount on the turbine side. Such a control state is called a cooperative mode.
【0007】[0007]
【発明が解決しようとする課題】上記のような協調モー
ドにあって、電力送電線に断線等の事故が発生した場
合、それまでの電力系統の負荷が瞬時に低下するために
送電する電力量がこれに連れて過大となり、ボイラの発
電量は不要となる。このとき、火力プラントにおいては
発電機出力を減ずるためにタービンの回転数を下げる。
該タービンはガバナ弁により制御され、ボイラ内にて生
成される最終出口蒸気を制御する。このときのガバナ弁
開度の挙動は、図7に示す如く数秒間である位置に回復
する。ガバナ弁の開度は定常位置で「0.9」である
が、このガバナ弁の動作は早いためにボイラデマンド1
8の変更指令も追従が難しく、該デマンド18はある一
定指令値の状態が続くこととなる。また、ガバナ弁を絞
り込むのでタービン側は負荷を下げるための動作を行な
うが、デマンドによる指令値は高い状態であるため、そ
の間でバランスを失い、発電量が下がるにも拘らず、給
水流量21や燃料流量22は低下せず、特に給水流量2
1の落ち込みがないために発電量に対する負荷が上昇
し、圧力高の状態となり、運用上好ましくない状態とな
る。また、燃料流量22についても同様の減少が生じ、
実際の急減した発電量にも拘らずボイラデマンド18が
低下せず、燃料流量22も下がらないために蒸気温度も
低下しなくなる。In the cooperative mode as described above, when an accident such as disconnection occurs in the electric power transmission line, the amount of electric power to be transmitted because the load of the electric power system up to that point is instantly reduced. However, the amount of electricity generated by the boiler becomes unnecessary as a result. At this time, in the thermal power plant, the rotational speed of the turbine is reduced in order to reduce the generator output.
The turbine is controlled by a governor valve and controls the final outlet steam produced in the boiler. The behavior of the governor valve opening at this time is restored to a position of several seconds as shown in FIG. The opening of the governor valve is "0.9" at the steady position, but since the operation of this governor valve is fast, boiler demand 1
The change command of No. 8 is also difficult to follow, and the demand 18 continues to be in a state of a certain constant command value. Further, since the governor valve is narrowed down, the turbine side operates to reduce the load, but since the command value due to the demand is in a high state, the balance is lost during that period and the power generation amount decreases, but the water supply flow rate 21 or The fuel flow rate 22 does not decrease, especially the water supply flow rate 2
Since there is no drop of 1, the load for the amount of power generation increases, resulting in a high pressure state, which is an unfavorable state in operation. Also, a similar decrease occurs in the fuel flow rate 22,
The boiler demand 18 does not decrease and the fuel flow rate 22 does not decrease in spite of the actual suddenly reduced power generation amount, so that the steam temperature also does not decrease.
【0008】本発明は上記のような実情に鑑みてなされ
たもので、その目的とするところは、電力送電線に事故
が発生した場合等にその変動による影響を抑制してプラ
ントを安定化させることが可能な圧力温度制御装置を提
供することにある。The present invention has been made in view of the above circumstances, and an object of the present invention is to stabilize the plant by suppressing the influence of the fluctuation when an accident occurs in an electric power transmission line. It is to provide a pressure temperature control device capable of performing the above.
【0009】[0009]
【課題を解決するための手段】すなわち本発明は、発電
プラントで使用されるボイラの主蒸気圧力及び主蒸気温
度を給水流量及び燃料流量により制御する圧力温度制御
装置であって、電力送電線の事故情報に応じて装置の制
御モードを協調モードからガバナ側の上記各流量をボイ
ラデマンドとするボイラ追従モードへと切換えるモード
切換器と、このモード切換器によるボイラ性能追従モー
ドへの切換えに連動してボイラデマンドの補正を行なう
主蒸気圧力のPID調節器のゲインを切換えるゲイン切
換器と、上記PID調節器における負荷の変化率に応じ
た協調モード及びボイラ追従モードそれぞれのゲインを
設定する関数発生器とを備えるようにしたものである。That is, the present invention is a pressure temperature control device for controlling the main steam pressure and main steam temperature of a boiler used in a power plant by means of the feed water flow rate and the fuel flow rate, and Depending on the accident information, the control mode of the device is switched from the cooperative mode to the boiler follow-up mode in which the above-mentioned flow rates on the governor side are boiler demands, and the mode changer is linked to the switch to the boiler performance follow-up mode. Gain switch for switching the gain of the main steam pressure PID controller that corrects boiler demand by means of function, and a function generator for setting the gain of each of the cooperative mode and boiler following mode according to the rate of change of load in the PID controller. It is equipped with and.
【0010】[0010]
【作用】上記のような構成とすることで、電力送電線の
事故発生の瞬間をとらえて制御モードを協調モードから
ボイラ追従モードへと切換える。このモード切換えによ
り、ボイラデマンドはガバナ側に流れる給水流量及び燃
料流量の各流量となるため、事故でタービンガバナ弁が
絞り込むことでガバナ側の各流量もその絞り状態に応じ
て減少し、結果としてデマンドは低下する。また、これ
と共に上記制御モードの切換えに応じてボイラデマンド
の補正を行なう主蒸気圧力のPID調節器における負荷
の変化率に応じた適正なゲインを設定する関数発生器を
有したゲイン切換器により制御系の安定を図ることかで
きる。したがって、デマンドが事故の変動に応じて変化
するのでその変化状態にτして給水流量や燃料流量を変
化させることが可能となる。With the above-mentioned structure, the control mode is switched from the cooperative mode to the boiler follow-up mode at the moment when an accident occurs in the power transmission line. With this mode switching, the boiler demand becomes each flow rate of the feed water flow and the fuel flow rate flowing to the governor side.Thus, when the turbine governor valve narrows down due to an accident, each flow rate on the governor side also decreases according to the throttled state. Demand drops. Along with this, control is performed by a gain switching device having a function generator that sets an appropriate gain in accordance with the rate of change of the load in the PID controller of the main steam pressure that corrects the boiler demand in accordance with the switching of the control mode. The system can be stabilized. Therefore, since the demand changes in accordance with the change of the accident, it is possible to change the supply water flow rate and the fuel flow rate by τ in the changed state.
【0011】[0011]
【実施例】以下図面を参照して本発明の一実施例を説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0012】図1はその概略構成を示すもので、上記図
6に示した構成に付加配設されるものであるので、図6
との同一部分には同一符号を付してその図示及び説明は
省略する。FIG. 1 shows a schematic structure thereof, which is additionally provided in the structure shown in FIG.
The same parts as and are designated by the same reference numerals, and the illustration and description thereof will be omitted.
【0013】しかして、負荷各種センサ1からプロセス
情報を受取るモード切換器2は、該プロセス情報から事
故の発生を判断し、その判断に応じて制御モードを協調
モードからボイラ追従モードへと切換える。The mode switch 2 receiving the process information from the various load sensors 1 judges the occurrence of an accident from the process information and switches the control mode from the cooperative mode to the boiler follow-up mode in accordance with the judgment.
【0014】このモード切換器2の出力するデマンド指
令6による切換動作に応じて上記図6のPID調節器1
4が不安定動作を生じないために、制御モード状態に応
じた適正なパラメータを予め設定している関数発生器3
を有するゲイン切換器4にて、そのゲイン等のパラメー
タ5を設定する。In response to the switching operation by the demand command 6 output from the mode switch 2, the PID controller 1 shown in FIG.
4 does not cause unstable operation, the function generator 3 presets appropriate parameters according to the control mode state.
The parameter 5 such as the gain is set in the gain switcher 4 having the.
【0015】図2はボイラ追従モードでの制御結果を示
す。ここでは電力送電線に事故が生じ、系統に異常が生
じて、上記図7に示したようにガバナ弁の絞り込みの挙
動23が生じたものとする。このような電力送電線の事
故が発生した場合、送電線側の負荷が急激に減少するた
め、発電プラント側では発電量を急減させる必要があ
り、この発電量はボイラ側からの蒸気量でもって制御さ
れる。タービン及び発電機の回転数は一定であるが、発
電量は蒸気のもつエネルギーに比例し、そのエネルギー
は蒸気量である。タービンはボイラの加熱器出口の蒸気
で回転しているため、この蒸気量をガバナ弁で制御し、
発電量を可変する。このようにガバナ弁が急変すること
により発電量を減らし、他を制御しようとしている。FIG. 2 shows the control result in the boiler following mode. Here, it is assumed that an accident occurs in the electric power transmission line, an abnormality occurs in the system, and the governor valve narrowing-down behavior 23 occurs as shown in FIG. 7. When such an electric power transmission line accident occurs, the load on the transmission line side decreases sharply, so it is necessary to sharply reduce the amount of power generation on the power plant side.This amount of power generation depends on the amount of steam from the boiler side. Controlled. The rotation speed of the turbine and the generator is constant, but the amount of power generation is proportional to the energy of the steam, and that energy is the amount of steam. Since the turbine is rotated by the steam at the outlet of the heater of the boiler, the amount of this steam is controlled by the governor valve,
Change the amount of power generation. In this way, the governor valve suddenly changes to reduce the amount of power generation and try to control others.
【0016】このとき、上述した如くモード切換器2に
より制御モードを協調モードからボイラ追従モードに切
換えると、デマンド指令6はガバナ側流量となる。先に
述べた如くこの時のガバナ側流量はガバナ弁の動きに応
じてするので、デマンドの形状も同様となる。そのた
め、給水流量21と燃料流量22は図3に示す給水流量
曲線36と燃料流量曲線37のようになり、ガバナ側流
量に応じた変化となる。これにより、事故後の主蒸気圧
力は上記図2の主蒸気圧力曲線27に示すようになり、
圧力の上昇が抑えられる。At this time, when the control mode is switched from the cooperative mode to the boiler following mode by the mode switch 2 as described above, the demand command 6 becomes the governor side flow rate. Since the flow rate on the governor side at this time depends on the movement of the governor valve as described above, the demand shape is also the same. Therefore, the feed water flow rate 21 and the fuel flow rate 22 become like the feed water flow rate curve 36 and the fuel flow rate curve 37 shown in FIG. 3, and change according to the governor side flow rate. As a result, the main steam pressure after the accident becomes as shown in the main steam pressure curve 27 of FIG.
The rise in pressure is suppressed.
【0017】また、燃料流量22は図3の燃料流量曲線
37の如く事故変動に応じた挙動で約30秒ほどの間に
適正に変動する。この動作により主蒸気圧力はその圧力
限界値である265ataまで上昇せず、プラントの安
定性が保たれる。さらに、燃料流量22も順調に下がる
ので、主蒸気温度は図2の主蒸気圧力曲線27に示され
るように許容温度551°Cを越えることはない。この
ことから、事故による影響を抑えてボイラを安定制御す
ることが可能となる。次いで図4及び図5により協調モ
ードにおける事故後の変動結果を示す。事故によるガバ
ナ弁の変動は上記図7に示したガバナ弁開度曲線とし
た。Further, the fuel flow rate 22 appropriately fluctuates in about 30 seconds in a behavior according to the accident fluctuation as shown by the fuel flow rate curve 37 in FIG. By this operation, the main steam pressure does not rise to its pressure limit value of 265ata, and the stability of the plant is maintained. Further, since the fuel flow rate 22 also decreases smoothly, the main steam temperature does not exceed the allowable temperature 551 ° C as shown by the main steam pressure curve 27 in FIG. From this, it becomes possible to control the boiler stably while suppressing the influence of the accident. Next, FIGS. 4 and 5 show the fluctuation results after the accident in the cooperative mode. The change in the governor valve due to the accident is represented by the governor valve opening curve shown in FIG.
【0018】ボイラ追従モードと比べ、ボイラデマンド
18が事故の急変に対応できずに低下せず、それがため
に給水流量21や燃料流量22の絞り込みがなされず、
図5の給水流量曲線51と燃料流量曲線52に示される
ような応答となる。特に主蒸気圧力は図2の主蒸気圧力
曲線27のようにあまり低下せず、圧力限界値の265
ataを越えて安全弁が作動する事態となる。また、ボ
イラデマンド18が低下し始めると、今度は逆に主蒸気
圧力も低下し始め、応答の遅いボイラでは運用上好まし
くない状態となる。ボイラ追従モードによる制御では、
ガバナ弁の位置が特定の位置で安定すると、ガバナ流量
も安定するため、給水流量21及び燃料流量22も安定
する。Compared with the boiler follow-up mode, the boiler demand 18 cannot cope with a sudden change in an accident and does not deteriorate, which prevents the feed water flow rate 21 and the fuel flow rate 22 from being narrowed down.
The response is as shown by the feed water flow rate curve 51 and the fuel flow rate curve 52 in FIG. In particular, the main steam pressure does not drop so much as the main steam pressure curve 27 of FIG.
The safety valve is activated beyond ata. Further, when the boiler demand 18 starts to decrease, the main steam pressure also starts to decrease, which is not preferable for operation in a boiler having a slow response. In the control by the boiler tracking mode,
When the position of the governor valve is stable at a specific position, the governor flow rate is also stable, so that the feed water flow rate 21 and the fuel flow rate 22 are also stable.
【0019】また、事故が回復し、再び負荷が上昇して
協調モードによる制御が必要となったときには、モード
切換器2により再度ボイラ追従モードから協調モードへ
と制御モードを切換える。When the accident recovers and the load increases again and control in the cooperative mode becomes necessary, the mode switching unit 2 switches the control mode from the boiler following mode to the cooperative mode again.
【0020】[0020]
【発明の効果】以上に述べた如く本発明によれば、発電
プラントで使用されるボイラの主蒸気圧力及び主蒸気温
度を給水流量及び燃料流量により制御する圧力温度制御
装置であって、電力送電線の事故情報に応じて装置の制
御モードを協調モードからガバナ側の上記各流量をボイ
ラデマンドとするボイラ追従モードへと切換えるモード
切換器と、このモード切換器によるボイラ性能追従モー
ドへの切換えに連動してボイラデマンドの補正を行なう
主蒸気圧力のPID調節器のゲインを切換えるゲイン切
換器と、上記PID調節器における負荷の変化率に応じ
た協調モード及びボイラ追従モードそれぞれのゲインを
設定する関数発生器とを備えるようにしたので、事故発
生後の変動に応じたデマンドが得られるためにボイラの
主蒸気圧力及び主蒸気温度の上昇を抑え、事故変動によ
る影響を抑えて該プラントを安定化させることが可能な
圧力温度制御装置を提供することができる。As described above, according to the present invention, there is provided a pressure temperature control device for controlling the main steam pressure and the main steam temperature of a boiler used in a power plant by controlling the feed water flow rate and the fuel flow rate. For switching the control mode of the device from the cooperative mode to the boiler follow-up mode in which the above-mentioned flow rates on the governor side are boiler demands according to the accident information of the electric wire, and to switch to the boiler performance follow-up mode by this mode switcher. A gain switcher that switches the gain of the main steam pressure PID controller that performs boiler demand correction in conjunction with each other, and a function that sets the gains of the cooperative mode and the boiler following mode according to the rate of change of the load in the PID controller. Since it is equipped with a generator, the main steam pressure and main Suppressing the increase of air temperature, the plant by suppressing the influence of an accident variation can provide a pressure temperature control device capable of stabilizing.
【図1】本発明の一実施例に係る概略構成を示す図。FIG. 1 is a diagram showing a schematic configuration according to an embodiment of the present invention.
【図2】同実施例を説明するための図。FIG. 2 is a view for explaining the same embodiment.
【図3】同実施例を説明するための図。FIG. 3 is a view for explaining the same embodiment.
【図4】同実施例を説明するための図。FIG. 4 is a view for explaining the same embodiment.
【図5】同実施例を説明するための図。FIG. 5 is a view for explaining the same embodiment.
【図6】従来の圧力温度制御装置の構成を示す図。FIG. 6 is a diagram showing a configuration of a conventional pressure / temperature control device.
【図7】図6におけるガバナ弁の絞り込みによる挙動を
示す図。FIG. 7 is a diagram showing a behavior of the governor valve in FIG. 6 due to narrowing down.
1…各種センサ、2…モード切換器、3,9…関数発生
器、4…ゲイン切換器、5…パラメータ、6…デマンド
指令、7…発電量、8…発電機出力、10…実蒸気圧
力、11,14…PID調節器、12…ガバナ開度、1
3…減算器、15,19…加算器、16…給水流量関数
発生器、17…燃料流量関数発生器、18…ボイラデマ
ンド、20…主蒸気温度補正信号、21…給水流量、2
2…燃料流量、23…ガバナ開度挙動、25,45…再
熱蒸気圧力曲線、26,44…発電量曲線、27,43
…主蒸気圧力曲線、28,42…再熱蒸気温度曲線、2
9,41…主蒸気温度曲線、30,46…発電量、3
1,47…主蒸気圧力、32,48…再熱蒸気圧力、3
3…主蒸気温度、34…再熱蒸気温度、35,50…空
気量曲線、36,51…給水流量曲線、37,52…燃
料流量曲線、38,53…給水流量、39,54…燃料
流量、40,55…空気量、49…蒸気温度。1 ... Various sensors, 2 ... Mode switcher, 3, 9 ... Function generator, 4 ... Gain switcher, 5 ... Parameter, 6 ... Demand command, 7 ... Power generation amount, 8 ... Generator output, 10 ... Actual steam pressure , 11, 14 ... PID controller, 12 ... Governor opening, 1
3 ... Subtractor, 15, 19 ... Adder, 16 ... Feed water flow rate function generator, 17 ... Fuel flow rate function generator, 18 ... Boiler demand, 20 ... Main steam temperature correction signal, 21 ... Feed water flow rate, 2
2 ... Fuel flow rate, 23 ... Governor opening behavior, 25, 45 ... Reheat steam pressure curve, 26, 44 ... Power generation amount curve, 27, 43
… Main steam pressure curve, 28, 42… Reheat steam temperature curve, 2
9,41 ... Main steam temperature curve, 30,46 ... Power generation amount, 3
1,47 ... Main steam pressure, 32,48 ... Reheat steam pressure, 3
3 ... Main steam temperature, 34 ... Reheat steam temperature, 35, 50 ... Air amount curve, 36, 51 ... Water supply flow rate curve, 37, 52 ... Fuel flow rate curve, 38, 53 ... Water supply flow rate, 39, 54 ... Fuel flow rate , 40, 55 ... Air amount, 49 ... Steam temperature.
Claims (1)
気圧力及び主蒸気温度を給水流量及び燃料流量により制
御する圧力温度制御装置であって、 電力送電線の事故情報に応じて装置の制御モードを協調
モードからガバナ側の上記各流量をボイラデマンドとす
るボイラ追従モードへと切換えるモード切換手段と、 このモード切換手段によるボイラ性能追従モードへの切
換えに連動してボイラデマンドの補正を行なう主蒸気圧
力のPID調節器のゲインを切換えるゲイン切換手段
と、 上記PID調節器における負荷の変化率に応じた協調モ
ード及びボイラ追従モードそれぞれのゲインを設定する
関数発生手段とを具備したことを特徴とする圧力温度制
御装置。1. A pressure temperature control device for controlling a main steam pressure and a main steam temperature of a boiler used in a power plant according to a feed water flow rate and a fuel flow rate, the control mode of the apparatus according to accident information of a power transmission line. Is switched from the cooperative mode to the boiler follow-up mode in which each of the above-mentioned flow rates on the governor side is used as the boiler demand, and the main steam that corrects the boiler demand in conjunction with the switch to the boiler performance follow-up mode by the mode change-over means. It is characterized by further comprising: a gain switching means for switching the gain of the pressure PID controller, and a function generating means for setting the gain of each of the cooperative mode and the boiler following mode according to the load change rate in the PID controller. Pressure temperature control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30387092A JPH06147403A (en) | 1992-11-13 | 1992-11-13 | Pressure-temperature controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30387092A JPH06147403A (en) | 1992-11-13 | 1992-11-13 | Pressure-temperature controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06147403A true JPH06147403A (en) | 1994-05-27 |
Family
ID=17926269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30387092A Withdrawn JPH06147403A (en) | 1992-11-13 | 1992-11-13 | Pressure-temperature controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06147403A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103807843A (en) * | 2014-01-28 | 2014-05-21 | 苏州邦威电器有限公司 | Control method for achieving fuzzy temperature control and function of power failure during water shortage of steam cleaner |
CN105522647A (en) * | 2015-12-21 | 2016-04-27 | 苏州市东华试验仪器有限公司 | Steam box with PID (proportion integration differentiation) control |
-
1992
- 1992-11-13 JP JP30387092A patent/JPH06147403A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103807843A (en) * | 2014-01-28 | 2014-05-21 | 苏州邦威电器有限公司 | Control method for achieving fuzzy temperature control and function of power failure during water shortage of steam cleaner |
CN103807843B (en) * | 2014-01-28 | 2015-04-29 | 苏州邦威电器有限公司 | Control method for achieving fuzzy temperature control and function of power failure during water shortage of steam cleaner |
CN105522647A (en) * | 2015-12-21 | 2016-04-27 | 苏州市东华试验仪器有限公司 | Steam box with PID (proportion integration differentiation) control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06147403A (en) | Pressure-temperature controller | |
JP3932375B2 (en) | Frequency control apparatus and method for thermal power plant | |
JP2006329624A (en) | Automatic boiler controller | |
JP3792853B2 (en) | Combined cycle control device and gas turbine control device | |
JP2642999B2 (en) | Load control device for combined cycle plant | |
JPS6239655B2 (en) | ||
JPH05272361A (en) | Load controller of combined-cycle power generating plant | |
JP2515797B2 (en) | Turbin controller | |
JPH08200608A (en) | Feed water flow rate controlling method for thermal power plant | |
JPH0122521B2 (en) | ||
JPH04262004A (en) | Run-back method in electric system failure | |
JPH0539901A (en) | Method and device for automatically controlling boiler | |
JPH0339165B2 (en) | ||
JPS60209694A (en) | Air flow amount control device | |
JPH0642706A (en) | Circuit for setting and controlling steam temperature in boiler | |
JPS5818506A (en) | Method of controlling operation of boiler turbine under variable pressure | |
JPS62157219A (en) | Waste heat turbine pre-pressure controller | |
JPS6133354B2 (en) | ||
JPS6032083B2 (en) | Boiler feed pump control device | |
JP2001082703A (en) | Steam generation preventing device for boiler economizer | |
JPH041175B2 (en) | ||
JPH044601B2 (en) | ||
JPS5886322A (en) | Controlling device for mechanical stokers of boiler | |
JPH062807A (en) | Water supplying control device | |
JPH0666405A (en) | Main steam pressure set control circuit for boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000201 |