JPH06147320A - Pressure container - Google Patents

Pressure container

Info

Publication number
JPH06147320A
JPH06147320A JP4324856A JP32485692A JPH06147320A JP H06147320 A JPH06147320 A JP H06147320A JP 4324856 A JP4324856 A JP 4324856A JP 32485692 A JP32485692 A JP 32485692A JP H06147320 A JPH06147320 A JP H06147320A
Authority
JP
Japan
Prior art keywords
air
pressure
compressed air
temperature
pressure container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4324856A
Other languages
Japanese (ja)
Other versions
JP2887360B2 (en
Inventor
Toshiharu Kagawa
利春 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4324856A priority Critical patent/JP2887360B2/en
Publication of JPH06147320A publication Critical patent/JPH06147320A/en
Application granted granted Critical
Publication of JP2887360B2 publication Critical patent/JP2887360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PURPOSE:To reduce the temperature change of inside air and promptly stabilize air pressure by accelerating the heat conduction of compressed air in a pressure container for a drive system and a capacity system. CONSTITUTION:When compressed air flows from a compressed air supply source 4 into a pressure container 1 before the measured 2 is driven, pressure in the pressure container 1 rises and the temperature of air increases but heat energy of the air is transferred to the inner wall of the pressure container 1 and radiated to the outside. The temperature of the compressed air when filled increases but the heat is radiated from the pressure container 1, so that an increase of temperature is small. When the measured 2 is driven, a great amount of compressed air flows out of the pressure container 1 and so compressed air in the pressure container 1 expands and the temperature decreases. As a result, heat supplied from a fine metal wire 3 is absorbed by the pressure container 1 from the outside and supplied to the fine metal wire 3, so that the temperature is restricted from decreasing to rapidly stabilize air pressure in the pressure container 1. Prompt measurement is therefore allowed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気圧で駆動される空気
圧衝撃工具のアクチュエータ、空気圧により制御する機
器、空気圧を利用する測定機器等に用いられる圧力容器
のように圧縮空気が流出入する圧力容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure vessel in which compressed air flows in and out, such as a pressure vessel used in an actuator of a pneumatic impact tool driven by pneumatic pressure, a device controlled by pneumatic pressure, a measuring instrument utilizing pneumatic pressure, Regarding

【0002】[0002]

【従来技術】一般に、この種の空気圧機器を空気圧で制
御する場合、圧縮空気の流出入の際に駆動系或いは容量
系の圧力容器の内部には圧力変化が生じ、これに伴って
空気が急激に圧縮又は膨張されるから内部の圧縮空気の
温度が変化し、この温度変化によってさらに容器内に圧
力変動が生じる。
2. Description of the Related Art Generally, when controlling a pneumatic device of this type by air pressure, a pressure change occurs inside a pressure vessel of a drive system or a capacity system when compressed air flows in and out, and the air is rapidly changed accordingly. Since it is compressed or expanded, the temperature of the internal compressed air changes, and this temperature change further causes pressure fluctuations in the container.

【0003】例えば、空気圧を利用して釘等の止め具を
打ち込むような空気圧衝撃工具においては、駆動機構で
あるピストン・シリンダ機構の周囲には圧縮空気を貯留
したエアチャンバが形成され、このエアチャンバ内の圧
縮空気を駆動シリンダ内へ導入させることによってピス
トンを衝撃的に駆動させるように構成されている。した
がって、エアチャンバ内の圧縮空気が駆動シリンダ内に
導入される時にエアチャンバ内の空気が急激に膨張して
エアチャンバ内の空気温度が低下し、それによる圧力降
下も加わってピストンを駆動する出力が低下するという
問題が有る。このように、アクチュエータを高速で断熱
膨張に近い状態で駆動させた場合には、等温で膨張させ
た場合に比較して約30%程度駆動出力が低下すること
が判明している。
For example, in a pneumatic impact tool in which a fastener such as a nail is driven by using air pressure, an air chamber for storing compressed air is formed around a piston / cylinder mechanism which is a drive mechanism. The piston is shockedly driven by introducing compressed air in the chamber into the drive cylinder. Therefore, when the compressed air in the air chamber is introduced into the drive cylinder, the air in the air chamber expands rapidly, the temperature of the air in the air chamber decreases, and the resulting pressure drop also drives the piston. There is a problem that As described above, when the actuator is driven at a high speed in a state close to the adiabatic expansion, it is known that the driving output is reduced by about 30% as compared with the case where the actuator is expanded isothermally.

【0004】同様に、測定装置や精密な制御装置等にお
いて、空気圧容器内の圧力を一定値に設定する場合、容
器内に空気を流入充填すると、容器内が昇圧するので空
気温度が上昇し、このため圧力もさらに上昇してしま
う。したがって、圧縮空気の温度が安定し、圧力も一定
になるまでに長い時間を要するという問題があった。例
えば、血圧測定に使用する空気カフの場合、カフに空気
を充填する際に断熱圧縮に近いため空気温度が上昇し、
カフ内の空気温度が一定となるまでの間カフ内の圧力が
安定せず正確な血圧測定ができないという問題がある。
Similarly, in a measuring device, a precise control device, etc., when the pressure inside the pneumatic container is set to a constant value, when air is introduced into the container and filled, the temperature inside the container rises and the air temperature rises, Therefore, the pressure also rises. Therefore, there is a problem that it takes a long time until the temperature of the compressed air becomes stable and the pressure becomes constant. For example, in the case of an air cuff used to measure blood pressure, when filling the cuff with air, the air temperature rises because it is close to adiabatic compression,
There is a problem that the pressure in the cuff is not stable until the air temperature in the cuff becomes constant and accurate blood pressure measurement cannot be performed.

【0005】そこで、このような不都合に対応するた
め、例えば空気の流量、消費量等を計測する計測機器に
おいては、所定圧力の空気を充填した圧力容器内にファ
ンを配置して空気を撹拌することにより空気温度を均一
化させ、圧力の変動を速く安定させることが行なわれて
いる。しかしながら、上記方法では圧力容器内にファン
とこれを駆動する駆動源を装置しなければならず、例え
ば釘打機のような可搬性の工具や小型の血圧測定器具等
には採用できないものである。
In order to deal with such inconvenience, for example, in a measuring instrument for measuring the flow rate, consumption amount, etc. of air, a fan is arranged in a pressure vessel filled with air of a predetermined pressure to stir the air. As a result, the air temperature is made uniform and pressure fluctuations are stabilized quickly. However, in the above method, a fan and a drive source for driving the fan must be provided in the pressure vessel, and cannot be used for a portable tool such as a nail driver or a small blood pressure measuring instrument. .

【0006】[0006]

【発明の目的】本発明は上記問題点を解決し、駆動系、
容量系の圧力容器内で圧縮空気の熱伝導を促進させるこ
とにより、内部の空気温度の変化を小さくして空気圧を
速やかに安定させることが可能な圧力容器を提供するこ
とをその目的とする。
SUMMARY OF THE INVENTION The present invention solves the above problems and provides a drive system,
It is an object of the present invention to provide a pressure vessel capable of promptly stabilizing the air pressure by reducing the change of the internal air temperature by promoting the heat conduction of compressed air in the pressure vessel of the capacity system.

【0007】[0007]

【目的を達成するための手段】前記目的を達成するた
め、本発明に係る圧力容器は、熱伝導性が高く体積が小
さい熱伝導材料を、内部空気との接触面積が大きくなる
ように収容したことを特徴とする。
To achieve the above object, in the pressure vessel according to the present invention, a heat conductive material having a high heat conductivity and a small volume is housed so that the contact area with the internal air becomes large. It is characterized by

【0008】なお、前記熱伝導材料としては金属細線の
束或いは多孔質状金属を利用すればよい。
As the heat conducting material, a bundle of thin metal wires or a porous metal may be used.

【0009】また、前記容器は柔軟性を有する材料で形
成し、該容器の内部に柔軟性を有する熱伝導材料を充填
収容する構成としてもよい。
Further, the container may be formed of a flexible material, and a heat conducting material having flexibility may be filled and housed inside the container.

【0010】[0010]

【発明の作用、効果】前記構成によれば、圧力容器内に
圧縮空気が急激に流入する場合、圧力容器内の圧力が急
激に高くなるため、空気温度が上昇することになるが、
しかし、この空気の熱エネルギーは熱伝導材料に伝達さ
れる。熱伝導材料は熱伝導性がよく、熱伝達速度が速い
から、圧力容器内の空気温度の上昇は小さくてすみ、空
気圧は速やかに安定する。
According to the above-mentioned structure, when the compressed air suddenly flows into the pressure vessel, the pressure in the pressure vessel rapidly increases, so that the air temperature rises.
However, the thermal energy of this air is transferred to the heat conducting material. Since the heat conductive material has good heat conductivity and a high heat transfer rate, the temperature rise of the air inside the pressure vessel can be small, and the air pressure can be quickly stabilized.

【0011】逆に、圧力容器から瞬間的に大量の圧縮空
気が流出するときは、圧縮空気が急激に膨張することに
伴って温度が低下することになるが、熱伝導材料から熱
が供給されるから、空気温度の上昇が小さく抑えられ、
空気圧は速やかに安定する。
On the contrary, when a large amount of compressed air instantaneously flows out of the pressure vessel, the temperature is lowered due to the rapid expansion of the compressed air, but heat is supplied from the heat conducting material. Therefore, the rise in air temperature can be suppressed to a small level,
The air pressure stabilizes quickly.

【0012】なお、金属細線の束或いは多孔質状金属を
利用すれば、最も簡単で効率のよい熱伝導材料が得られ
る。
If a bundle of thin metal wires or a porous metal is used, the simplest and most efficient heat conducting material can be obtained.

【0013】また、前記容器は柔軟性を有する材料で形
成し、該容器の内部に柔軟性を有する熱伝導材料を充填
収容する構成によれば、血圧測定器の空気カフのような
ものにも本考案を適用することが可能となる。
Further, according to the structure in which the container is made of a flexible material and the flexible heat-conducting material is filled and contained in the container, it can be used as an air cuff of a blood pressure measuring instrument. The present invention can be applied.

【0014】したがって、本考案によれば、ファンやそ
の駆動源等のような格別な冷却装置を必要とすることな
しに駆動系、容量系の圧力容器内の空気温度の上昇を抑
制できるので、工具や計測器等における小型軽量という
利点を損なわずに圧力容器の性能を向上させることがで
きる。
Therefore, according to the present invention, the rise of the air temperature in the pressure vessel of the drive system and the capacity system can be suppressed without requiring a special cooling device such as a fan or a drive source thereof. The performance of the pressure vessel can be improved without impairing the advantage of small size and light weight in tools and measuring instruments.

【0015】[0015]

【実施例1】図1(a) は空気流量計測器で、該空気流量
計測器は、所定圧力の圧縮空気を充填した一定容積の金
属製圧力容器1に被計測体2を接続してなり、被計測体
2の駆動前と駆動後の圧力容器1内の圧縮空気圧力を計
測することによって被計測体2の圧縮空気の消費量を計
測するものである。
Embodiment 1 FIG. 1 (a) shows an air flow rate measuring device, which is composed of a metal pressure vessel 1 of a constant volume filled with compressed air of a predetermined pressure, and an object 2 to be measured. The amount of compressed air consumed by the measured object 2 is measured by measuring the compressed air pressure in the pressure vessel 1 before and after the measured object 2 is driven.

【0016】上記圧力容器1内には銅、アルミニウム、
ステンレス等の細い熱伝導性の高い金属材料が、体積が
小さくなるように金属細線3として形成され、さらに内
部空気との接触面積が大きくなるように丸めた形状で充
填収容されている。なお、スチールウールの場合、例え
ば500ccの圧力容器1内に充填する金属細線3は3
cc程度の容積で構成できるから、圧力容器1自体の容
量を大きく犠牲にすることはない。熱伝導材料は細線3
として形成する代りに、熱伝導性の高い多孔質金属とし
てもよい。
In the pressure vessel 1, copper, aluminum,
A thin metal material having high thermal conductivity such as stainless steel is formed as the thin metal wire 3 so as to have a small volume, and is filled and housed in a rolled shape so as to have a large contact area with the internal air. In the case of steel wool, for example, the metal thin wire 3 filled in the pressure vessel 1 of 500 cc is 3
Since it can be constructed with a volume of about cc, the capacity of the pressure vessel 1 itself is not largely sacrificed. Heat conductive material is thin wire 3
Instead of being formed as, a porous metal having high thermal conductivity may be used.

【0017】前記構成によれば、被計測体2の駆動前に
圧縮空気供給源4から圧力容器1内に圧縮空気を急激に
流入させる場合、圧力容器1内の圧力が急激に高くなる
ため、空気温度が上昇することになるが、しかし、この
空気の熱エネルギーは同図(b) のように上記金属線から
圧力容器1内壁の内壁に伝達され、さらに圧力容器1か
ら外部に放熱される。金属細線3は熱伝導性がよく、熱
伝達速度が速いから、圧力容器1内の圧縮空気の温度上
昇はきわめて低く抑制される。このように、圧縮空気を
充填する際に圧力の上昇とともに圧縮空気の温度が高く
なろうとするが、その熱は金属細線3を経て圧力容器1
から放熱されてしまうため、全体の温度の上昇は小さく
て済み、圧力容器1内の空気圧は速やかに安定する。し
たがって、直ちに正確な計測が可能となる。
According to the above construction, when the compressed air is suddenly introduced into the pressure vessel 1 from the compressed air supply source 4 before the measured object 2 is driven, the pressure in the pressure vessel 1 rapidly increases. The air temperature rises, but the thermal energy of this air is transmitted from the metal wire to the inner wall of the inner wall of the pressure vessel 1 as shown in FIG. 2 (b), and is further radiated from the pressure vessel 1 to the outside. . Since the metal thin wire 3 has good thermal conductivity and a high heat transfer rate, the temperature rise of the compressed air in the pressure vessel 1 is suppressed to an extremely low level. As described above, when the compressed air is filled, the temperature of the compressed air rises as the pressure increases, but the heat passes through the thin metal wire 3 and the pressure vessel 1
Since the heat is radiated from the device, the temperature rise in the entire device is small, and the air pressure in the pressure vessel 1 is quickly stabilized. Therefore, accurate measurement can be performed immediately.

【0018】次に、被計測体2を駆動すると圧力容器1
から瞬間的に大量の圧縮空気が流出するので、圧力容器
1内の圧縮空気が急激に膨張することに伴って温度が低
下することになる。この場合は、同図(c) のように金属
細線3から速やかに熱が供給され、さらに圧力容器1が
外部から熱吸収し、金属細線3に対して熱の供給が行な
われるから、全体の温度の低下が抑制されて圧力容器1
内の空気圧が急速に安定する。このため、速やかな計測
が実行できる。
Next, when the measured object 2 is driven, the pressure vessel 1
Since a large amount of compressed air flows out instantaneously from, the temperature of the compressed air in the pressure vessel 1 drops as the compressed air expands rapidly. In this case, heat is rapidly supplied from the thin metal wire 3 as shown in FIG. 3C, and the pressure vessel 1 absorbs heat from the outside to supply the heat to the thin metal wire 3. Pressure vessel 1 with suppressed temperature drop
The air pressure inside stabilizes rapidly. Therefore, quick measurement can be performed.

【0019】なお、圧力容器1も熱伝導性の高いものに
すればさらに効率がよくなる。
Further, if the pressure vessel 1 also has high thermal conductivity, the efficiency will be further improved.

【0020】[0020]

【実施例2】次に、圧力容器1を血圧測定器の空気カフ
として使用する例を図2によって説明すると、この場合
も、内部にはステンレス等の高い熱伝導特性を有するバ
ネ性のある金属細線3を充填する。ところで、このよう
な圧力容器1は柔軟性を有し、内部に流入した空気圧に
より膨張したり、外部押圧力等により変形したりする。
したがって、上記金属細線3は上記変形に対応できるよ
うにバネ性をもつように細線材を束状に編成したり、ル
ープや渦巻きを形成するように纏めたりすることにより
収容する。これにより、圧力容器1が縮んだ後に再度膨
張する際に金属細線3がバネ性により膨張して常に圧力
容器1内に均等に配置される。
[Embodiment 2] Next, an example in which the pressure vessel 1 is used as an air cuff of a blood pressure measuring device will be described with reference to FIG. Fill the thin wire 3. By the way, such a pressure vessel 1 has flexibility, and is expanded by the air pressure that has flowed into the inside, or is deformed by an external pressing force or the like.
Therefore, the thin metal wire 3 is accommodated by knitting the thin wire material into a bundle so as to have springiness so as to cope with the above deformation, or by gathering it so as to form a loop or a spiral. As a result, when the pressure container 1 contracts and then expands again, the thin metal wire 3 expands due to the spring property, so that the metal wires 3 are always evenly arranged in the pressure container 1.

【0021】上記構成によれば、血圧を測定する場合、
金属細線3の熱容量によって空気カフに空気を充填する
際に圧縮された空気が発する熱を吸収し、空気カフ内の
空気温度の上昇は小さくなるように抑制される。したが
って、カフ内の空気圧力が安定されるまでに要する時間
が短くなり、血圧を速く、高い精度で計測することが可
能となる。
According to the above arrangement, when measuring blood pressure,
The heat capacity of the thin metal wire 3 absorbs the heat generated by the compressed air when the air cuff is filled with air, and the rise in the air temperature in the air cuff is suppressed to a small level. Therefore, the time required for the air pressure in the cuff to stabilize becomes short, and the blood pressure can be measured quickly and with high accuracy.

【0022】この例の場合、熱伝導材料として細い金属
線材を使用しているので、カフの柔軟性を損なうことが
なく、使用上の不具合は生じない。
In the case of this example, since a thin metal wire is used as the heat conductive material, the flexibility of the cuff is not impaired and no trouble occurs in use.

【0023】なお、熱伝導材料3は必ずしも圧力容器1
の内壁に接触している必要はない。また、圧力容器1も
熱伝導材料3によって構成されている必要はない。この
ような場合は、測定後、熱を吸収した金属細線3からは
やがて熱が放熱されて周囲の空気温度と平衡して温度が
安定することにより次の測定が準備される。したがっ
て、次の測定まで比較的長い時間がかかる。しかし、血
圧計等の測定機器のように測定間隔が長いものは、測定
に支障が生じない。
The heat conducting material 3 is not always the pressure vessel 1.
Need not be in contact with the inner wall of the. Also, the pressure vessel 1 does not have to be made of the heat conductive material 3. In such a case, after the measurement, heat is radiated from the thin metal wire 3 that has absorbed the heat, and the temperature is stabilized in equilibrium with the ambient air temperature, so that the next measurement is prepared. Therefore, it takes a relatively long time until the next measurement. However, a measuring instrument such as a sphygmomanometer that has a long measurement interval does not hinder the measurement.

【0024】[0024]

【実施例3】次に、圧力容器1を釘打機等の空気圧衝撃
工具において駆動ピストン・シリンダ機構6の周囲とグ
リップ7内部に形成されるメインエアチャンバ8とピス
トン戻し用エアチャンバ9に使用する例を図3(a) (b)
によって説明する。
Third Embodiment Next, the pressure vessel 1 is used for a main air chamber 8 and a piston returning air chamber 9 formed around the driving piston / cylinder mechanism 6 and inside the grip 7 in a pneumatic impact tool such as a nail driver. Example of doing Fig. 3 (a) (b)
Explained by.

【0025】メインエアチャンバ8は圧縮空気供給源4
から供給された圧縮空気を貯留しておき、ヘッドバルブ
10の開き作動時にシリンダ6b内に圧縮空気を供給し
て駆動ピストン6aの上面に作用させ、これを打撃作動
させるものである。このとき駆動ピストン6aの下面側
のシリンダ6b内空気は圧縮される。ピストン戻し用エ
アチャンバ9は、圧縮されたシリンダ6b内空気を透孔
11から取り入れてヘッドバルブ10が閉じて駆動シリ
ンダ6bの供給側が排気口12に連通したときに上記透
孔11から駆動ピストン6aの下面に作用させて該駆動
ピストン6aを上死点位置に上昇復帰させるものであ
る。したがって、メインエアチャンバ8及びピストン戻
し用エアチャンバ9内の圧縮空気は連続して膨張・圧縮
が繰り返される。
The main air chamber 8 is a compressed air supply source 4.
The compressed air supplied from is stored in advance, and when the head valve 10 is opened, the compressed air is supplied into the cylinder 6b to act on the upper surface of the drive piston 6a and strike it. At this time, the air in the cylinder 6b on the lower surface side of the drive piston 6a is compressed. The piston return air chamber 9 takes in the compressed air in the cylinder 6b from the through hole 11 and closes the head valve 10 so that the supply side of the drive cylinder 6b communicates with the exhaust port 12 through the through hole 11 to drive the piston 6a. The lower surface of the drive piston 6a is raised to return to the top dead center position. Therefore, the compressed air in the main air chamber 8 and the piston return air chamber 9 is continuously expanded and compressed.

【0026】上記メインエアチャンバ8及びピストン戻
し用エアチャンバ9のハウジングaはアルミニウム等の
熱伝導性の高い金属から構成され、また上記各チャンバ
の内部には熱伝導性の高いステンレス、銅等の金属細線
3(例えば線径0、002mmの銅線)を束状に丸めたも
のが充填配置されている。
The housings a of the main air chamber 8 and the piston return air chamber 9 are made of a metal having a high thermal conductivity such as aluminum, and the inside of each chamber is made of stainless steel, copper or the like having a high thermal conductivity. A thin metal wire 3 (for example, a copper wire having a wire diameter of 0.002 mm) rolled into a bundle is filled and arranged.

【0027】前記構成において、空気圧衝撃工具の駆動
前は上記メインエアチャンバ8内には圧縮空気供給源4
から圧縮空気が供給され、所定圧力に維持されている。
同図(b) のようにヘッドバルブ10が開いて上記メイン
エアチャンバ8内の圧縮空気が駆動シリンダ6b内に導
入されると、上記チャンバ8内の圧縮空気は急激に膨張
し、温度低下を来すことになるが、圧縮空気は金属細線
3の束で構成されている熱伝導材料と接触して金属細線
3から熱の供給を受けるため温度低下はきわめて小さく
なる程度に抑制される。その結果、メインエアチャンバ
8内の空気圧の降下が抑制されるから、高い圧力が維持
された状態でピストン6aが駆動される。なお、金属細
線3はハウジングaの内壁に接触しており、メインエア
チャンバ8内の圧縮空気に放出した熱をハウジングaの
外壁から吸収し、圧縮空気供給源4から供給される圧縮
空気の温度を急速に室温に維持させて次の衝撃作動が準
備される。
In the above structure, the compressed air supply source 4 is provided in the main air chamber 8 before the pneumatic impact tool is driven.
Compressed air is supplied from and is maintained at a predetermined pressure.
When the head valve 10 is opened and the compressed air in the main air chamber 8 is introduced into the drive cylinder 6b as shown in FIG. 6B, the compressed air in the chamber 8 expands rapidly, causing a temperature drop. However, the compressed air comes into contact with the heat conducting material composed of the bundle of metal fine wires 3 and receives heat from the metal fine wires 3, so that the temperature decrease is suppressed to an extremely small level. As a result, the drop in the air pressure in the main air chamber 8 is suppressed, so that the piston 6a is driven while maintaining a high pressure. The thin metal wire 3 is in contact with the inner wall of the housing a, absorbs the heat released to the compressed air in the main air chamber 8 from the outer wall of the housing a, and changes the temperature of the compressed air supplied from the compressed air supply source 4. Is rapidly maintained at room temperature to prepare for the next shock actuation.

【0028】同様にして、ピストン6aの下降作動時に
圧縮された空気がピストン戻し用エアチャンバ9内に導
入されると、該エアチャンバ内の空気温度は上昇するこ
とになるが、上記圧縮空気は金属細線3と接触して冷却
されるから、空気温度の上昇が抑制され、背圧による衝
撃力の減衰を小さくさせることができ、駆動力の増大が
図られる。なお、金属細線3は上記エアチャンバ9内の
空気から吸収した熱をハウジングaの外壁から放熱し、
次のピストン6aの上昇復帰作動に備える。
Similarly, when the compressed air is introduced into the piston return air chamber 9 when the piston 6a descends, the temperature of the air in the air chamber rises. Since the metal wire 3 is brought into contact with the metal wire 3 to be cooled, the increase in the air temperature is suppressed, the damping of the impact force due to the back pressure can be reduced, and the driving force can be increased. The thin metal wire 3 radiates the heat absorbed from the air in the air chamber 9 from the outer wall of the housing a,
Prepare for the next ascending return operation of the piston 6a.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) (b) (c) はそれぞれ空気流量計測器の全体
概要図、圧力容器内に圧縮空気が流入した場合の説明図
及び圧縮空気が流出した場合の説明図である。
1 (a), (b), and (c) are an overall schematic diagram of an air flow rate measuring device, an explanatory diagram when compressed air flows into a pressure vessel, and an explanatory diagram when compressed air flows out, respectively.

【図2】空気カフの概略断面図である。FIG. 2 is a schematic sectional view of an air cuff.

【図3】(a) (b) はそれぞれ空気圧衝撃工具の作動前及
び作動後の概略断面図である。
3A and 3B are schematic cross-sectional views of a pneumatic impact tool before and after operation, respectively.

【符号の説明】[Explanation of symbols]

1 圧力容器 3 熱伝導材料(金属細線) 1 Pressure vessel 3 Heat conduction material (fine metal wire)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導性が高く体積が小さい熱伝導材料
を、内部空気との接触面積が大きくなるように収容した
ことを特徴とする圧力容器。
1. A pressure vessel comprising a heat conductive material having a high heat conductivity and a small volume so as to have a large contact area with internal air.
【請求項2】 前記熱伝導材料が金属細線の束或いは多
孔質状金属であることを特徴とする請求項1記載の圧力
容器。
2. The pressure vessel according to claim 1, wherein the heat conductive material is a bundle of thin metal wires or a porous metal.
【請求項3】 前記容器が柔軟性を有する材料で形成さ
れており、該容器の内部に柔軟性を有する熱伝導材料が
充填収容されることを特徴とする請求項1記載の圧力容
器。
3. The pressure vessel according to claim 1, wherein the vessel is formed of a flexible material, and a flexible heat conductive material is filled and housed inside the vessel.
JP4324856A 1992-11-10 1992-11-10 Pressure vessel Expired - Lifetime JP2887360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4324856A JP2887360B2 (en) 1992-11-10 1992-11-10 Pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4324856A JP2887360B2 (en) 1992-11-10 1992-11-10 Pressure vessel

Publications (2)

Publication Number Publication Date
JPH06147320A true JPH06147320A (en) 1994-05-27
JP2887360B2 JP2887360B2 (en) 1999-04-26

Family

ID=18170419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4324856A Expired - Lifetime JP2887360B2 (en) 1992-11-10 1992-11-10 Pressure vessel

Country Status (1)

Country Link
JP (1) JP2887360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287533A (en) * 2004-03-31 2005-10-20 Nippon Koden Corp Sphygmomanometer cuff

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125396A (en) * 1982-12-29 1984-07-19 Kogata Gas Reibou Gijutsu Kenkyu Kumiai Heat exchanger
JPS59150950A (en) * 1983-02-15 1984-08-29 Asahi Glass Co Ltd Heat exchanger tube used in hot gas machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125396A (en) * 1982-12-29 1984-07-19 Kogata Gas Reibou Gijutsu Kenkyu Kumiai Heat exchanger
JPS59150950A (en) * 1983-02-15 1984-08-29 Asahi Glass Co Ltd Heat exchanger tube used in hot gas machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287533A (en) * 2004-03-31 2005-10-20 Nippon Koden Corp Sphygmomanometer cuff

Also Published As

Publication number Publication date
JP2887360B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
US5269147A (en) Pulse tube refrigerating system
JP4824256B2 (en) Apparatus and method for obtaining temperature stability in a two-stage cryocooler
JPH0129983B2 (en)
JPH0660770B2 (en) Heat driven heat pump
JPH06147320A (en) Pressure container
EP1666817A3 (en) Pressure control valve
GB2195754A (en) Seal-less cryogenic expander
JPH0932965A (en) Adaptive joule thomson cryostat having servo control
JP2600720B2 (en) Cryogenic refrigerator
JP2000292022A (en) Gas cycle engine refrigerating machine
KR101421045B1 (en) Pulse tube refrigerator having gas storage unit to which heat exchanger is attached
JP2003139426A (en) Pulse tube type refrigerator
US4877434A (en) Cryogenic refrigerator
JP2550243Y2 (en) Split sterling refrigerator
JPS6043158A (en) Stirling engine
JPS6321820B2 (en)
JP2006112654A (en) Stirling engine and stirling cooling storage
JPH0689954B2 (en) Cryogenic cooling unit structure
JP2006207851A (en) Regenerator, its manufacturing method, stirling engine and stirling cooling storage
JPH10185340A (en) Pulse tube type refrigerating machine
JPS6152562A (en) Control system of cooling temperature of refrigerator
JP2699939B2 (en) Regenerator refrigerator
JP2000150750A (en) Device for limiting temperature of light-emitting laser diode
JP2719433B2 (en) Cryogenic refrigeration equipment
JPS6221976B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 14