JPH06146078A - Anodic oxidation method - Google Patents

Anodic oxidation method

Info

Publication number
JPH06146078A
JPH06146078A JP4323836A JP32383692A JPH06146078A JP H06146078 A JPH06146078 A JP H06146078A JP 4323836 A JP4323836 A JP 4323836A JP 32383692 A JP32383692 A JP 32383692A JP H06146078 A JPH06146078 A JP H06146078A
Authority
JP
Japan
Prior art keywords
film
voltage
cathode
metal film
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4323836A
Other languages
Japanese (ja)
Other versions
JP3433351B2 (en
Inventor
Hisatoshi Mori
久敏 森
Kunihiro Matsuda
邦宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP32383692A priority Critical patent/JP3433351B2/en
Priority to US08/147,129 priority patent/US5441618A/en
Priority to KR1019930023837A priority patent/KR960002417B1/en
Publication of JPH06146078A publication Critical patent/JPH06146078A/en
Priority to US08/694,210 priority patent/US5733420A/en
Application granted granted Critical
Publication of JP3433351B2 publication Critical patent/JP3433351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain an oxide film without generating a defective breakdown strength part and with high reliability by increasing a voltage applied between metallic film and a cathode while controlling a current value on the metallic film consisting of an Al alloy at a constant value and prescribed current density. CONSTITUTION:The metallic film 11 consisting of the Al alloy formed on an insulating substrate 10 is confronted with the cathode 3 in an electrolyte 2 in an electrolytic cell 1, and the surface of the film is anodized by applying the voltage. At this time, the voltage to be applied to the metallic film 11 and the cathode 3 is increased to a value in accordance with the film thickness of the oxide film to be generated by keeping the current on the metallic film (metallic film to be oxidized) 11 constant and controlling current density at 3-15A/cm<2>. Since anodic oxidation is performed with high current density in such a way, an amorphous barrier type film can be generated, which reduces the occurrence of a part with weak withstand voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁性基板の上に形成
されたAl 系合金からなる金属膜の表面を陽極酸化する
陽極酸化方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anodizing method for anodizing the surface of a metal film made of an Al-based alloy formed on an insulating substrate.

【0002】[0002]

【従来の技術】例えばTFTアクティブマトリックス液
晶表示素子に用いられるTFTパネルは、ガラス等から
なる絶縁性基板の上にゲート配線とデータ配線とを互い
に直交させて形成するとともに、このゲート配線とデー
タ配線との交差部にそれぞれ薄膜トランジスタ(TF
T)を形成し、これら薄膜トランジスタにそれぞれ対応
させて画素電極を配列形成したもので、このTFTパネ
ルとしては、一般に、ゲート配線を基板上に形成し、デ
ータ配線を前記ゲート配線を覆う絶縁膜の上に形成した
ものが知られている。
2. Description of the Related Art For example, in a TFT panel used for a TFT active matrix liquid crystal display element, a gate wiring and a data wiring are formed on an insulating substrate made of glass or the like so as to be orthogonal to each other, and the gate wiring and the data wiring are also formed. And the thin film transistor (TF
T) is formed and pixel electrodes are formed in an array corresponding to each of these thin film transistors. Generally, in this TFT panel, a gate wiring is formed on a substrate, and a data wiring is formed of an insulating film covering the gate wiring. The one formed above is known.

【0003】このTFTパネルの薄膜トランジスタは、
上記ゲート配線に一体に形成されたゲート電極と、この
ゲート電極およびゲート配線を覆って基板上のほぼ全面
に形成されたゲート絶縁膜と、このゲート絶縁膜の上に
前記ゲート電極と対向させて形成されたa−Si (アモ
ルファスシリコン)からなる半導体膜と、この半導体膜
の上に形成されたソース,ドレイン電極とからなってお
り、そのソース電極は画素電極に接続され、ドレイン電
極はデータ配線につながっている。
The thin film transistor of this TFT panel is
A gate electrode formed integrally with the gate wiring, a gate insulating film formed over almost the entire surface of the substrate to cover the gate electrode and the gate wiring, and the gate electrode facing the gate electrode on the gate insulating film. It comprises a formed semiconductor film made of a-Si (amorphous silicon) and source and drain electrodes formed on the semiconductor film. The source electrode is connected to the pixel electrode, and the drain electrode is the data wiring. Connected to.

【0004】ところで、上記TFTパネルのゲート配線
およびデータ配線は、一般に、低抵抗金属であるAl 系
合金で形成されており、また下層の金属膜であるゲート
配線およびこのゲート配線に一体に形成されたゲート電
極の表面は、ゲート配線の端子部を除いて陽極酸化され
ている。
By the way, the gate wiring and the data wiring of the TFT panel are generally formed of an Al alloy which is a low resistance metal, and are formed integrally with the gate wiring which is a lower metal film and the gate wiring. The surface of the gate electrode is anodized except for the terminal portion of the gate wiring.

【0005】このように下層金属膜であるゲート配線お
よびゲート電極の表面を陽極酸化しているのは、ゲート
配線とデータ配線との間、およびゲート電極とソース,
ドレイン電極との間の絶縁耐圧を十分高くして層間短絡
の発生を防ぐためであり、前記ゲート配線およびゲート
電極の表面を陽極酸化してその表面に酸化膜を生成させ
ておけば、ゲート配線およびゲート電極と上記データ配
線およびソース,ドレイン電極との間が前記酸化膜とそ
の上の絶縁膜とによって二重に絶縁されるため、十分な
絶縁耐圧を得ることができる。
The surfaces of the gate wiring and the gate electrode, which are the lower metal film, are anodized in this manner between the gate wiring and the data wiring, and between the gate electrode and the source.
This is because the dielectric strength between the drain electrode and the drain electrode is sufficiently high to prevent the occurrence of an interlayer short circuit. If the surface of the gate wiring and the gate electrode is anodized to form an oxide film on the surface, the gate wiring Since the gate electrode and the data line and the source and drain electrodes are doubly insulated by the oxide film and the insulating film thereon, a sufficient withstand voltage can be obtained.

【0006】なお、下層金属膜の陽極酸化は、上記TF
Tパネルに限らず、絶縁性基板上に複数層に配線を形成
した多層配線パネル等にも適用されており、この多層配
線パネル等においても、下層金属膜である下部配線の表
面を陽極酸化して、その上に絶縁膜を介して形成される
上部配線との間の絶縁耐圧を高くしている。
Incidentally, the anodic oxidation of the lower metal film is performed by the above-mentioned TF.
It is applied not only to T-panels but also to multi-layer wiring panels in which wiring is formed in multiple layers on an insulating substrate, and in this multi-layer wiring panel, etc., the surface of the lower wiring, which is the lower metal film, is anodized. The withstand voltage between the upper wiring and the upper wiring formed via the insulating film is increased.

【0007】上記TFTパネルや多層配線パネル等の下
層金属膜の陽極酸化は、図3に示した陽極酸化装置によ
って行なわれている。この陽極酸化装置は、電解液(被
酸化金属膜がAl 系合金膜である場合は、硼酸アンモニ
ウム水溶液等)2を満たした電解液槽1内に、白金等の
耐蝕性金属からなる網状の陰極3を電解液2中に浸漬し
て垂直に配置したもので、陰極3は直流電源4の−側に
接続されている。
The anodic oxidation of the lower metal film of the TFT panel or the multilayer wiring panel is performed by the anodic oxidation apparatus shown in FIG. This anodizing device is a net-shaped cathode made of corrosion-resistant metal such as platinum in an electrolytic solution tank 1 filled with an electrolytic solution (ammonium borate aqueous solution when the metal film to be oxidized is an Al-based alloy film) 2. 3 is immersed in the electrolytic solution 2 and arranged vertically, and the cathode 3 is connected to the negative side of the DC power supply 4.

【0008】この陽極酸化装置による陽極酸化は、被酸
化金属膜11を形成した基板10を電解液槽1の電解液
2中に垂直に浸漬してこの基板10上の被酸化金属膜1
1を陰極3と対向させ、前記被酸化金属膜11を陽極と
して、この金属膜11と陰極3との間に電源4から化成
電圧を印加して行なわれている。
In the anodization by this anodizing apparatus, the substrate 10 on which the metal film 11 to be oxidized is formed is vertically dipped in the electrolytic solution 2 in the electrolytic solution tank 1 to be oxidized on the substrate 10.
1 is made to face the cathode 3, the metal film 11 to be oxidized is used as an anode, and a formation voltage is applied from the power source 4 between the metal film 11 and the cathode 3.

【0009】このように電解液2中で被酸化金属膜11
と上記陰極3との間に化成電圧を印加すると、陽極であ
る被酸化金属膜11が電解液中で化成反応を起してその
表面から陽極酸化され、この金属膜11の表面に酸化膜
が生成する。
As described above, the metal film 11 to be oxidized is formed in the electrolytic solution 2.
When a formation voltage is applied between the cathode 3 and the cathode 3, the metal film 11 to be oxidized, which is an anode, undergoes a formation reaction in an electrolytic solution and is anodized from its surface, and an oxide film is formed on the surface of the metal film 11. To generate.

【0010】なお、図3に示した金属膜11は、例えば
上述したTFTパネルのゲート配線であり、各ゲート配
線には薄膜トランジスタのゲート電極(図示せず)が一
体に形成されている。この各ゲート配線は、基板10の
端縁部(TFTパネルの完成後または液晶表示素子の組
立て後に分離される部分)に形成した給電路11aに共
通接続されており、各ゲート配線への+電圧の供給は、
前記給電路11aを基板端縁部を挾持するクリップ形接
続部材5により電源4の+側に接続して行なわれてい
る。
The metal film 11 shown in FIG. 3 is, for example, a gate wiring of the above-mentioned TFT panel, and a gate electrode (not shown) of a thin film transistor is integrally formed on each gate wiring. Each of the gate wirings is commonly connected to a power supply path 11a formed at an edge portion of the substrate 10 (a portion separated after completion of the TFT panel or after assembly of the liquid crystal display element), and a positive voltage to each gate wiring is applied. Supply of
The feeding path 11a is connected to the + side of the power source 4 by a clip-shaped connecting member 5 that holds the edge of the substrate.

【0011】ところで、上記陽極酸化において金属膜の
表面に生成する酸化膜の膜厚は、被酸化金属膜と陰極と
の間に印加する化成電圧によって決まるとされており、
そのため従来は、被酸化金属膜と陰極との間に印加する
化成電圧を次のように制御して金属膜の陽極酸化を行な
っている。
By the way, it is said that the film thickness of the oxide film formed on the surface of the metal film in the anodization is determined by the formation voltage applied between the metal film to be oxidized and the cathode.
Therefore, conventionally, the formation voltage applied between the metal film to be oxidized and the cathode is controlled as follows to anodize the metal film.

【0012】図4は従来の陽極酸化方法におけるAl 系
合金膜を陽極酸化する場合の化成電圧および電流の制御
パターンを示しており、従来は、被酸化金属膜(Al 系
合金膜)と陰極との間に印加する化成電圧を、被酸化金
属膜に流れる化成電流(電解液を介して被酸化金属膜と
陰極との間に流れる電流)の値を一定に保ち、かつその
電流密度を2.5mA/cm2 以下(図4では1.5m
A/cm2 )に制御しながら、酸化膜の生成膜厚に応じ
た電圧値まで上昇させている。
FIG. 4 shows a control pattern for forming voltage and current when anodizing an Al-based alloy film in a conventional anodizing method. In the prior art, a metal film to be oxidized (Al-based alloy film) and a cathode are used. The formation voltage applied between the two is kept constant at a formation current flowing in the metal film to be oxidized (current flowing between the metal film to be oxidized and the cathode through the electrolytic solution), and its current density is 2. 5 mA / cm 2 or less (1.5 m in Fig. 4
The voltage value is raised to a voltage value according to the film thickness of the oxide film, while controlling A / cm 2 ).

【0013】なお、従来は、電圧値が所定値に達した後
も、その値の化成電圧の印加をある時間だけ保持し、被
酸化金属膜に流れる電流値がある設定値以下になったと
きに酸化膜の膜厚が所望の値になったと判定して、この
時点でその後、電圧印加を停止して陽極酸化を終了して
いる。
Conventionally, even after the voltage value reaches a predetermined value, the application of the formation voltage of that value is maintained for a certain period of time, and when the value of the current flowing through the metal film to be oxidized falls below a certain set value. In addition, it is determined that the film thickness of the oxide film has reached a desired value, and at this time point, the voltage application is stopped and the anodic oxidation is completed.

【0014】上記のように電流密度を2.5mA/cm
2 以下に制御して被酸化金属膜(Al 系合金膜)の表面
に生成された酸化膜(Al 2 3 膜)は、微結晶状のバ
リア型被膜であり、高い真性絶縁破壊耐圧(欠陥がない
場合の絶縁破壊耐圧)をもっている。
As described above, the current density is 2.5 mA / cm.
The oxide film (Al 2 O 3 film) formed on the surface of the metal film to be oxidized (Al-based alloy film) by controlling to 2 or less is a microcrystalline barrier type film, and has a high intrinsic dielectric breakdown voltage (defects). Dielectric breakdown voltage when there is no).

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上記従
来の陽極酸化方法でAl 系合金膜の表面に生成された酸
化膜(微結晶状のバリア型被膜)は、その真性絶縁破壊
耐圧は高いが、その反面、被膜が微小な結晶粒を含んで
いるために絶縁耐圧の弱い耐圧不良箇所が多く、そのた
め、3MV/cm程度の比較的低い電界でも絶縁破壊を
発生してしまうという問題をもっていた。
However, although the oxide film (microcrystalline barrier type film) formed on the surface of the Al-based alloy film by the conventional anodic oxidation method has a high intrinsic dielectric breakdown voltage, On the other hand, since the coating film contains fine crystal grains, there are many places where the withstand voltage is weak and the withstand voltage is poor. Therefore, there is a problem that dielectric breakdown occurs even in a relatively low electric field of about 3 MV / cm.

【0016】本発明は、Al 系合金からなる金属膜の表
面に、耐圧不良箇所がほとんどない信頼性の高い酸化膜
を生成させることができる陽極酸化方法を提供すること
を目的としたものである。
An object of the present invention is to provide an anodizing method capable of forming a highly reliable oxide film having few withstand voltage defects on the surface of a metal film made of an Al alloy. .

【0017】[0017]

【課題を解決するための手段】本発明の陽極酸化方法
は、Al 系合金からなる被酸化金属膜と陰極との間に印
加する電圧を、前記金膜膜に流れる電流値を一定に保
ち、かつその電流密度を3.0mA/cm2 以上15.
0mA/cm2 以下の範囲に制御しながら、前記酸化膜
の生成膜厚に応じた所定の電圧値まで上昇させることを
特徴とするものである。
According to the anodic oxidation method of the present invention, the voltage applied between the metal oxide film made of Al alloy and the cathode is kept constant at the current value flowing through the gold film. And its current density is 3.0 mA / cm 2 or more 15.
It is characterized in that the voltage is raised to a predetermined voltage value according to the thickness of the oxide film produced while controlling the range to 0 mA / cm 2 or less.

【0018】[0018]

【作用】このように電流密度を3.0mA/cm2 以上
15.0mA/cm2 以下の範囲の値に制御して生成さ
れた酸化膜は、無定形(アモルファス)のバリア型被膜
であり、この酸化膜は、従来の陽極酸化方法で生成され
た酸化膜(微結晶状のバリア型被膜)のように結晶粒を
含んでいないため、絶縁耐圧の弱い耐圧不良箇所が発生
することはほとんどない。
[Action] Thus current density 3.0 mA / cm 2 or more 15.0 mA / cm 2 or less in the range oxide film formed by controlling the value of a barrier type film of amorphous (amorphous) Since this oxide film does not contain crystal grains unlike an oxide film (microcrystalline barrier type film) produced by a conventional anodic oxidation method, there is almost no occurrence of a defective withstand voltage with a weak withstand voltage. .

【0019】[0019]

【実施例】以下、本発明の一実施例を図1および図2を
参照して説明する。図1は被酸化金属膜と陰極との間に
印加する化成電圧および電流の制御パターンを示す図、
図2は陽極酸化された金属膜の断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a control pattern of formation voltage and current applied between a metal film to be oxidized and a cathode,
FIG. 2 is a sectional view of the anodized metal film.

【0020】まず、陽極酸化する金属膜について説明す
ると、図2に示した金属膜11は、例えばTFTパネル
の基板10上に形成されたゲート配線である。この金属
膜11は、Al (アルミニウム)にTi (チタン)また
はTa (タンタル)等の高融点金属を数重量%含有させ
たAl 系合金膜であり、その表面に生成する酸化膜12
はAl 2 3 膜である。
First, the metal film to be anodized will be described. The metal film 11 shown in FIG. 2 is, for example, a gate wiring formed on the substrate 10 of the TFT panel. The metal film 11 is an Al-based alloy film in which Al (aluminum) contains several wt% of a refractory metal such as Ti (titanium) or Ta (tantalum), and an oxide film 12 formed on the surface thereof.
Is an Al 2 O 3 film.

【0021】この実施例の陽極酸化方法は、上記基板1
0上に形成されたAl 系合金からなる金属膜11の表面
を図3に示した陽極酸化装置を用いて陽極酸化するもの
であり、この陽極酸化方法では、図1に示した化成電圧
および電流の制御パターンのように、基板10上の被酸
化金属膜(Al 系合金膜)11と図3に示した陰極3と
の間に印加する化成電圧を、被酸化金属膜11に流れる
化成電流(電解液を介して被酸化金属膜と陰極との間に
流れる電流)の値を一定に保ち、かつ被酸化金属膜11
の単位面積当りの電流密度を4.5mA/cm2 に制御
しながら、被酸化金属膜11の表面に生成させる酸化膜
12の膜厚に応じた所定の電圧値まで上昇させている。
The anodizing method of this embodiment is the same as the substrate 1 described above.
The surface of the metal film 11 made of Al-based alloy formed on the anode 0 is anodized by using the anodizing apparatus shown in FIG. 3. In this anodizing method, the formation voltage and current shown in FIG. The control voltage applied between the metal film to be oxidized (Al alloy film) 11 on the substrate 10 and the cathode 3 shown in FIG. The value of current flowing between the metal film to be oxidized and the cathode via the electrolytic solution is kept constant, and the metal film to be oxidized 11
While controlling the current density per unit area to 4.5 mA / cm 2 , the voltage is increased to a predetermined voltage value according to the thickness of the oxide film 12 formed on the surface of the metal film 11 to be oxidized.

【0022】なお、従来の陽極酸化方法では、化成電圧
を所定値まで上昇させた後にその電圧の印加をある時間
だけ保持しているが、この電圧保持は行なっても省略し
てもよく、前記電圧保持を省略する場合は、化成電圧を
所定値に達したところで図1に実線で示したように電圧
印加を停止し、前記電圧保持を行なう場合は、この電圧
を図1に鎖線で示したように被酸化金属膜に流れる電流
値がある設定値以下になるまで保持すればよい。
In the conventional anodic oxidation method, the formation voltage is raised to a predetermined value and then the application of the voltage is held for a certain time, but this voltage may be held or omitted. When the voltage holding is omitted, when the formation voltage reaches a predetermined value, the voltage application is stopped as shown by the solid line in FIG. 1, and when the voltage holding is performed, this voltage is shown by the chain line in FIG. As described above, the current value flowing through the metal film to be oxidized may be held until it becomes a certain value or less.

【0023】すなわち、上記陽極酸化方法は、Al 系合
金からなる被酸化金属膜11を、その単位面積当りの電
流密度を従来の陽極酸化方法における電流密度(2.5
mA/cm2 以下)よりも大きい密度(この実施例では
4.5mA/cm2 )に制御して陽極酸化するものであ
り、このように電流密度を大きくしてAl 系合金膜を陽
極酸化すると、その表面に生成する酸化膜(Al 2 3
膜)12が、無定形(アモルファス)のバリア型被膜と
なる。
That is, in the above-mentioned anodizing method, the current density per unit area of the metal film 11 to be oxidized made of an Al-based alloy is determined by the current density (2.5
The density of the Al-based alloy film is increased by increasing the current density in this way to control the anodization at a density (4.5 mA / cm 2 in this embodiment) larger than the current density (mA / cm 2 or less). , Oxide film formed on the surface (Al 2 O 3
The film 12 serves as an amorphous (amorphous) barrier-type film.

【0024】そして、この酸化膜12は、無定形のバリ
ア型被膜であるため、従来の陽極酸化方法で生成された
酸化膜、つまり微結晶状のバリア型被膜に比べると、そ
の真性絶縁破壊耐圧は若干低くなるが、薄膜トランジス
タ等の絶縁膜に要求される絶縁破壊耐圧は十分にもって
いるし、また、この酸化膜12は、従来の陽極酸化方法
で生成された酸化膜(微結晶状のバリア型被膜)のよう
に結晶粒を含んでいないため、絶縁耐圧の弱い耐圧不良
箇所が発生することはほとんどない。
Since the oxide film 12 is an amorphous barrier type film, its intrinsic dielectric breakdown voltage is higher than that of an oxide film formed by a conventional anodic oxidation method, that is, a microcrystalline barrier type film. However, the dielectric breakdown voltage required for an insulating film such as a thin film transistor is sufficiently high, and the oxide film 12 is an oxide film (microcrystalline barrier formed by a conventional anodic oxidation method. Since it does not contain crystal grains as in the case of a mold coating), there is almost no occurrence of a defective withstand voltage where the withstand voltage is weak.

【0025】したがって、上記陽極酸化方法によれば、
Al 系合金からなる金属膜11の表面に、耐圧不良箇所
がほとんどない信頼性の高い酸化膜12を生成させるこ
とができる。
Therefore, according to the above anodic oxidation method,
On the surface of the metal film 11 made of Al alloy, it is possible to form a highly reliable oxide film 12 having almost no defective withstand voltage.

【0026】なお、上記実施例では、被酸化金属膜11
の単位面積当りの電流密度を4.5mA/cm2 とした
が、この電流密度は、従来の陽極酸化方法における電流
密度(2.5mA/cm2 以下)よりも大きい密度であ
れば任意でよい。ただし、電流密度を3.0mA/cm
2 より小さくすると酸化膜が微結晶状のバリア型被膜に
近くなり、また電流密度を15.0mA/cm2 より大
きくすると酸化膜の膜質が粗になって欠陥を発生するた
め、上記電流密度は、電流密度は3.0mA/cm2
上15.0mA/cm2 以下の範囲が望ましい。
In the above embodiment, the oxidized metal film 11 is used.
The current density per unit area was set to 4.5 mA / cm 2 , but this current density may be arbitrary as long as it is higher than the current density ( 2.5 mA / cm 2 or less) in the conventional anodic oxidation method. . However, the current density is 3.0 mA / cm
When the value is smaller than 2 , the oxide film becomes close to a microcrystalline barrier type film, and when the current density is larger than 15.0 mA / cm 2 , the oxide film quality becomes rough and defects occur. The current density is preferably in the range of 3.0 mA / cm 2 or more and 15.0 mA / cm 2 or less.

【0027】[0027]

【発明の効果】本発明の陽極酸化方法は、Al 系合金か
らなる金属膜と陰極との間に印加する電圧を、前記金膜
膜に流れる電流値を一定に保ち、かつその電流密度を
3.0mA/cm2 以上15.0mA/cm2 以下の範
囲に制御しながら、前記酸化膜の生成膜厚に応じた所定
の電圧値まで上昇させるものであるから、Al 系合金か
らなる金属膜の表面に、耐圧不良箇所がほとんどない信
頼性の高い酸化膜を生成させることができる。
According to the anodic oxidation method of the present invention, the voltage applied between the metal film made of Al-based alloy and the cathode keeps the current value flowing through the gold film film constant, and the current density is 3%. Since the voltage is raised to a predetermined voltage value according to the film thickness of the oxide film while controlling the range of 0.0 mA / cm 2 or more and 15.0 mA / cm 2 or less, the metal film of Al-based alloy It is possible to form a highly reliable oxide film on the surface of which there are almost no defective withstand voltages.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す被酸化金属膜と陰極と
の間に印加する化成電圧および電流の制御パターン図。
FIG. 1 is a control pattern diagram of a chemical conversion voltage and a current applied between a metal film to be oxidized and a cathode showing an embodiment of the present invention.

【図2】本発明の陽極酸化方法によって陽極酸化された
金属膜の断面図。
FIG. 2 is a sectional view of a metal film anodized by the anodizing method of the present invention.

【図3】陽極酸化装置の斜視図。FIG. 3 is a perspective view of an anodizing device.

【図4】従来の陽極酸化方法を示す被酸化金属膜と陰極
との間に印加する化成電圧および電流の制御パターン
図。
FIG. 4 is a control pattern diagram of formation voltage and current applied between a metal film to be oxidized and a cathode showing a conventional anodic oxidation method.

【符号の説明】[Explanation of symbols]

10…基板 11…被酸化金属膜(Al 系合金膜) 12…酸化膜 10 ... Substrate 11 ... Oxidized metal film (Al-based alloy film) 12 ... Oxide film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板の上に形成されたAl 系合金か
らなる金属膜を電界液中において陰極と対向させ、この
金属膜と前記陰極との間に電圧を印加して前記金属膜の
表面を陽極酸化する方法において、 Al 系合金からなる被酸化金属膜と前記陰極との間に印
加する電圧を、前記金膜膜に流れる電流値を一定に保
ち、かつその電流密度を3.0mA/cm2 以上15.
0mA/cm2 以下の範囲に制御しながら、前記酸化膜
の生成膜厚に応じた所定の電圧値まで上昇させることを
特徴とする陽極酸化方法。
1. A metal film made of an Al-based alloy formed on an insulating substrate is opposed to a cathode in an electrolytic solution, and a voltage is applied between the metal film and the cathode to form the metal film. In the method of anodizing the surface, the voltage applied between the metal oxide film made of an Al-based alloy and the cathode keeps the current value flowing through the gold film film constant and the current density is 3.0 mA. / Cm 2 or more 15.
An anodic oxidation method characterized in that the voltage is raised to a predetermined voltage value according to the thickness of the oxide film formed, while controlling within a range of 0 mA / cm 2 or less.
【請求項2】被酸化金属膜は、高融点金属を含有するA
l 系合金膜であることを特徴とする請求項1に記載の陽
極酸化方法。
2. A metal film to be oxidized is A containing a refractory metal.
The anodic oxidation method according to claim 1, which is an l-based alloy film.
JP32383692A 1992-11-10 1992-11-10 Anodizing method Expired - Fee Related JP3433351B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32383692A JP3433351B2 (en) 1992-11-10 1992-11-10 Anodizing method
US08/147,129 US5441618A (en) 1992-11-10 1993-11-02 Anodizing apparatus and an anodizing method
KR1019930023837A KR960002417B1 (en) 1992-11-10 1993-11-10 Anodizing apparatus and an anodizing method
US08/694,210 US5733420A (en) 1992-11-10 1996-08-08 Anodizing apparatus and an anodizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32383692A JP3433351B2 (en) 1992-11-10 1992-11-10 Anodizing method

Publications (2)

Publication Number Publication Date
JPH06146078A true JPH06146078A (en) 1994-05-27
JP3433351B2 JP3433351B2 (en) 2003-08-04

Family

ID=18159138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32383692A Expired - Fee Related JP3433351B2 (en) 1992-11-10 1992-11-10 Anodizing method

Country Status (1)

Country Link
JP (1) JP3433351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232487A (en) * 2004-02-17 2005-09-02 Kanagawa Acad Of Sci & Technol Anodically oxidized porous alumina, and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232487A (en) * 2004-02-17 2005-09-02 Kanagawa Acad Of Sci & Technol Anodically oxidized porous alumina, and production method therefor
JP4623977B2 (en) * 2004-02-17 2011-02-02 財団法人神奈川科学技術アカデミー Anodized porous alumina and method for producing the same

Also Published As

Publication number Publication date
JP3433351B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
EP0466495B1 (en) Liquid crystal display apparatus
US5583366A (en) Active matrix panel
EP0430702B1 (en) Line material, electronic device using the line material and liquid crystal display
KR960006110B1 (en) Semiconductor device and the method for producing the same
JP3433351B2 (en) Anodizing method
JPH0843859A (en) Active matrix circuit
JP3180474B2 (en) Anodizing method
US5970326A (en) Thin film transistor films made with anodized film and reverse-anodized etching technique
US5300209A (en) Anodizing method and apparatus
Liang et al. Characterization of anodic aluminum oxide film and its application to amorphous silicon thin film transistors
US20040077140A1 (en) Apparatus and method for forming uniformly thick anodized films on large substrates
JPH07326766A (en) Semiconductor device and manufacture thereof
JPH05271993A (en) Production of insulating film
JPH01219721A (en) Metal insulator construction and liquid crystal display device
JP3384022B2 (en) Liquid crystal device and nonlinear resistance element
JPH10223483A (en) Chemical conversion method of electrode foil for aluminum electrolytic capacitor
CN1558447A (en) Method of making thin film transistor
JPH06216389A (en) Manufacture of thin film transistor and the same transistor
JPH10112423A (en) Formation method for anodic foil for aluminum electrolytic capacitor
JP3237125B2 (en) Anodizing method for conductive film
JP3161003B2 (en) Anodizing method for wiring surface
JPH06336694A (en) Anodic oxidation and device therefor
JPH05323304A (en) Image display device and its manufacture
JPH0682822A (en) Liquid crystal display element and its production
JP3294621B2 (en) Anodizing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees