JPH06145091A - Production of aromatic ether compound - Google Patents

Production of aromatic ether compound

Info

Publication number
JPH06145091A
JPH06145091A JP4294917A JP29491792A JPH06145091A JP H06145091 A JPH06145091 A JP H06145091A JP 4294917 A JP4294917 A JP 4294917A JP 29491792 A JP29491792 A JP 29491792A JP H06145091 A JPH06145091 A JP H06145091A
Authority
JP
Japan
Prior art keywords
solvent
aromatic ether
ether compound
compound
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4294917A
Other languages
Japanese (ja)
Inventor
Mamoru Watabiki
守 綿引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP4294917A priority Critical patent/JPH06145091A/en
Publication of JPH06145091A publication Critical patent/JPH06145091A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To economically obtain an aromatic ether compound in high efficiency without the need for pressurizing operation using a highly active and selective catalyst. CONSTITUTION:The objective compound can be obtained by reaction of a phenolic compound with an alkyl carbonic ester in the presence of an alkaline catalyst such as potassium carbonate in a specific nitrogen-contg. compound (e.g. pyridine) as solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、芳香族エ−テル化合物
の製造に関するものである。
FIELD OF THE INVENTION The present invention relates to the production of aromatic ether compounds.

【0002】[0002]

【従来の技術】一般に芳香族水酸化物は融点が高く、炭
酸アルキルエステルはそれに比べて沸点が低いという特
徴がある。また、芳香族水酸化物は炭酸アルキルエステ
ルには溶解しにくい。これらのことにより、目的とする
芳香族エ−テル化合物は上記に示した原料で製造する
時、反応は必然的に加圧条件となる。反応条件が加圧と
なると、固定費や比例費が増加する。
2. Description of the Related Art Generally, aromatic hydroxides have a high melting point and carbonic acid alkyl esters have a lower boiling point. In addition, aromatic hydroxide is difficult to dissolve in alkyl carbonate ester. Due to these facts, when the target aromatic ether compound is produced from the above-mentioned raw materials, the reaction is necessarily a pressurized condition. When the reaction condition is pressurized, fixed cost and proportional cost increase.

【0003】また、従来より反応において溶媒を使用す
るという概念はあったが、上述の条件における芳香族エ
−テル化合物の製造においては詳細には検討されていな
い。溶媒としてジオキサンを使用している実施例(特公
昭61−43334)もあるが、触媒があまり有効でな
いため反応速度が遅い(比較例2にて補足説明)。ま
た、反応速度を早くするため塩基性の強い触媒を使用す
ると、溶媒が分解したり、副反応が起こりやすくなる可
能性がある。(比較例3にて補足説明)。
Although there has been the concept of using a solvent in the reaction, it has not been studied in detail in the production of aromatic ether compounds under the above-mentioned conditions. There is also an example (Japanese Patent Publication No. Sho 61-43334) using dioxane as a solvent, but the reaction rate is slow because the catalyst is not very effective (supplementary explanation in Comparative Example 2). Further, if a catalyst having a strong basicity is used to accelerate the reaction rate, the solvent may be decomposed or side reactions may easily occur. (Supplementary explanation in Comparative Example 3).

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、前述
の問題点を解決し、加圧操作を必要とせずに効率よく芳
香族エ−テル化合物を製造する方法を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method for efficiently producing an aromatic ether compound without requiring a pressurizing operation.

【0005】[0005]

【課題を解決するための手段】即ち、本発明はアルカリ
性触媒の存在下で、フェノ−ル類を炭酸アルキルエステ
ルと反応させる芳香族エ−テル化合物の製造方法におい
て、含窒素複素環式化合物又はアミド結合を持つ化合物
を溶媒として用いることを特徴とする芳香族エ−テル化
合物の製造方法である。
That is, the present invention provides a method for producing an aromatic ether compound in which a phenol is reacted with a carbonic acid alkyl ester in the presence of an alkaline catalyst. A method for producing an aromatic ether compound, which comprises using a compound having an amide bond as a solvent.

【0006】アルカリ性触媒とは例えばNaOH、KO
H、Ca(OH)、KCO、MgCO等であ
り、また、NaOCHやNaOCのような有機
物との塩であってもよい。また、アンバ−リストのよう
なイオン交換樹脂を触媒として使用することもできる。
The alkaline catalyst is, for example, NaOH or KO.
H, a Ca (OH) 2, K 2 CO 3, MgCO 3 , etc., may also be a salt with an organic, such as NaOCH 3 and NaOC 2 H 5. Also, an ion exchange resin such as Amberlyst can be used as a catalyst.

【0007】フェノ−ル類とは例えばフェノ−ルであり
カテコ−ル、ハイドロキノンのような多価フェノ−ルで
あり、グアイアコ−ル、p−クロロフェノ−ルのような
置換フェノ−ルであり、メチルハイドロキノンのような
置換多価フェノ−ルである。置換基について特に制限は
ない。
The phenols are, for example, phenol and polyvalent phenols such as catechol and hydroquinone, and substituted phenols such as guaiacol and p-chlorophenol. It is a substituted polyphenol such as methylhydroquinone. There is no particular limitation on the substituent.

【0008】特に、本発明より前述した問題点が解決さ
れるようなものとしては、融点の高いものがより効果が
期待される。
In particular, the one having a high melting point is expected to be more effective as a solution to the above-mentioned problems according to the present invention.

【0009】炭酸アルキルエステルとは、例えばジメチ
ルカ−ボネ−トやジエチルカ−ボネ−ト等であり、これ
らは目的とするエ−テル化合物の構造によって選択され
る。溶媒としてはピリジン、ピコリン、キノリン等のピ
リジン及びピリジン誘導体や、N,N−ジメチルホルム
アミド、N,N−ジエチルホルムアミド等のホルムアミ
ド化合物、N,N−ジメチルアセトアミド等のアセトア
ミド化合物等が好ましい。また、N−メチル−2−ピロ
リドン等も使用できる。これらは常温で液体であるもの
がより好ましい。
The carbonic acid alkyl ester is, for example, dimethyl carbonate or diethyl carbonate, and these are selected depending on the structure of the target ether compound. As the solvent, pyridine and pyridine derivatives such as pyridine, picoline and quinoline, formamide compounds such as N, N-dimethylformamide and N, N-diethylformamide, acetamide compounds such as N, N-dimethylacetamide and the like are preferable. Further, N-methyl-2-pyrrolidone or the like can also be used. It is more preferable that these are liquids at room temperature.

【0010】フェノ−ル類は炭酸アルキルエステルと、
当量又は過剰もしくは不足量で反応させることができ
る。好ましい割合は、フェノ−ル類1モルに対し炭酸ジ
アルキルエステル0.1〜10モルである。また触媒の
量は、一般にフェノ−ル類1モルに対し、0.0001
〜10モルであり、0.001〜0.01モルが好まし
い。
The phenols are carbonic acid alkyl esters,
It is possible to react in an equivalent amount or an excess amount or an insufficient amount. The preferred ratio is 0.1 to 10 mol of carbonic acid dialkyl ester with respect to 1 mol of phenols. The amount of the catalyst is generally 0.0001 with respect to 1 mol of the phenols.
10 to 10 mol, preferably 0.001 to 0.01 mol.

【0011】溶媒量は、原料のフェノ−ル数10gに対
し1g〜10000gが好ましい。原料及び触媒は溶媒
に溶解することが好ましいが、必ずしも全部が溶解して
いる必要はない。
The amount of the solvent is preferably 1 g to 10000 g per 10 g of the raw material phenol. The raw material and the catalyst are preferably dissolved in the solvent, but it is not always necessary that all are dissolved.

【0012】反応温度は、溶媒の種類によっては適宜選
択されるが、一般に100〜300℃で、溶媒の沸点以
下でも可能であるが、副生するアルコ−ルを遂次抜き取
ることにより反応が促進される(特開昭62−2465
33)ので、そのために溶媒の沸点で反応させるのが好
ましい。アルコ−ルを抜き取る方法は特に限定されるも
のではないが、蒸留や吸着、膜分離等が好ましく使用で
きる。
The reaction temperature is appropriately selected depending on the kind of the solvent, but it is generally 100 to 300 ° C., and it is possible to be lower than the boiling point of the solvent, but the reaction is promoted by successively extracting the by-produced alcohol. (Japanese Patent Laid-Open No. 62-2465)
33), and therefore it is preferable to react at the boiling point of the solvent. The method for extracting the alcohol is not particularly limited, but distillation, adsorption, membrane separation and the like can be preferably used.

【0013】以下に実施例を示し、さらに詳しく本発明
を説明する。
The present invention will be described in more detail with reference to the following examples.

【0014】[0014]

【比較例1】ソックスレ−抽出器を装置として用いる。Comparative Example 1 A Soxhlet extractor is used as a device.

【0015】300mlの4口丸底フラスコにハイドロ
キノン(HQ)を11.0g(0.1mol)、ジメチ
ルカ−ボネ−トを18.00g(0.2mol)、炭酸
カリウムを0.69g(5mmol)を仕込む。溶媒は
使用しない。反応により副生したメタノ−ルを除去する
ため充填部にモレキュラ−シ−ブ(MS−4A)を3
0.0g充填する。オイルバスで加熱し、オイル温度1
20〜150℃、リフラックス状態で反応させる。8時
間後のHQ転化率は0%であった。
In a 300 ml 4-neck round bottom flask, 11.0 g (0.1 mol) of hydroquinone (HQ), 18.00 g (0.2 mol) of dimethyl carbonate and 0.69 g (5 mmol) of potassium carbonate were added. Prepare. No solvent is used. Molecular sieve (MS-4A) was added to the packing part to remove methanol by-produced by the reaction.
Fill with 0.0 g. Heat in oil bath, oil temperature 1
The reaction is carried out in a reflux state at 20 to 150 ° C. The HQ conversion rate after 8 hours was 0%.

【0016】[0016]

【比較例2】ソックスレ−抽出器を装置として用いる。Comparative Example 2 A Soxhlet extractor is used as a device.

【0017】300mlの4口丸底フラスコにHQを1
1.0g(0.1mol)、ジメチルカ−ボネ−トを1
8.00g(0.2mol)、溶媒かつ触媒としてピリ
ジンを100ml仕込む。充填部にモレキュラ−シ−ブ
(MS−4A)を30.0g充填する。オイルバスで加
熱し、オイル温度170〜200℃、リフラックス状態
で反応させる。520分後のHQ転化率は29%、ハイ
ドロキノンモノメチルエ−テル(MQ)の選択率100
%であった。
Add 1 HQ to a 300 ml 4-neck round bottom flask.
1.0 g (0.1 mol) of dimethyl carbonate
Charge 8.00 g (0.2 mol) and 100 ml of pyridine as a solvent and a catalyst. 30.0 g of molecular sieve (MS-4A) is charged in the filling part. The mixture is heated in an oil bath and reacted at an oil temperature of 170 to 200 ° C in a reflux state. After 520 minutes, the HQ conversion was 29%, and the hydroquinone monomethyl ether (MQ) selectivity was 100.
%Met.

【0018】[0018]

【実施例1】ソックスレ−抽出器を装置として用いる。Example 1 A Soxhlet extractor is used as a device.

【0019】300mlの4口丸底フラスコにHQを1
1.0g(0.1mol)、ジメチルカ−ボネ−トを1
8.00g(0.2mol)、炭酸カリウムを0.69
g(5mmol)、溶媒としてピリジンを100ml仕
込む。充填部にモレキュラ−シ−ブ(MS−4A)を3
0.0g充填する。オイルバスで加熱し、オイル温度1
70〜200℃、リフラックス状態で反応させる。17
0分後のHQ転化率15%、MQの選択率100%であ
り、520分後のHQ転化率48%、MQの選択率98
%、ハイドロキノンジメチルエ−テル(HQDME)の
選択率2%であった。
Add 1 HQ to a 300 ml 4-neck round bottom flask.
1.0 g (0.1 mol) of dimethyl carbonate
8.00 g (0.2 mol), 0.69 potassium carbonate
g (5 mmol) and 100 ml of pyridine as a solvent are charged. 3 molecular sieves (MS-4A) in the filling part
Fill with 0.0 g. Heat in oil bath, oil temperature 1
The reaction is performed at 70 to 200 ° C. in a reflux state. 17
The HQ conversion rate after 0 minutes was 15%, the MQ selectivity was 100%, and the HQ conversion rate after 520 minutes was 48% and the MQ selectivity was 98.
%, And the selectivity of hydroquinone dimethyl ether (HQDME) was 2%.

【0020】[0020]

【比較例3】ソックスレ−抽出器を装置として用いる。Comparative Example 3 A Soxhlet extractor is used as a device.

【0021】300mlの4口丸底フラスコにハイドロ
キノン(HQ)を11.0g(0.1mol)、ジメチ
ルカ−ボネ−トを18.00g(0.2mol)、炭酸
カリウムを0.69g(5mmol)、溶媒としてシク
ロヘキサノンを100mol仕込む。充填部にモレキュ
ラ−シ−ブ(MS−4A)を30.0g充填する。オイ
ルバスで加熱し、オイル温度170〜200℃、リフラ
ックス状態で反応させる。490分後のHQ転化率60
%、ハイドロキノンモノメチルエ−テル(MQ)の選択
率73%、ハイドロキノンジメチルエ−テル(HQDM
E)の選択率27%であったが、ガスクロマトグラフィ
−分析において、シクロヘキサノンに由来する生成物を
含む上記物質以外(原料、溶媒、生成物以外)の不純物
がピ−ク面積百分率で約15%含まれることを確認し
た。
In a 300 ml four-neck round bottom flask, 11.0 g (0.1 mol) of hydroquinone (HQ), 18.00 g (0.2 mol) of dimethyl carbonate and 0.69 g (5 mmol) of potassium carbonate were added. 100 mol of cyclohexanone is charged as a solvent. 30.0 g of molecular sieve (MS-4A) is charged in the filling part. The mixture is heated in an oil bath and reacted at an oil temperature of 170 to 200 ° C in a reflux state. HQ conversion 60 after 490 minutes
%, Hydroquinone monomethyl ether (MQ) selectivity 73%, hydroquinone dimethyl ether (HQDM)
Although the selectivity of E) was 27%, gas chromatography analysis revealed that impurities other than the above substances (other than raw materials, solvents and products) including products derived from cyclohexanone were about 15% in terms of peak area percentage. Confirmed to be included.

【0022】[0022]

【実施例2】ソックスレ−抽出器を装置として用いる。Example 2 A Soxhlet extractor is used as a device.

【0023】300mlの4口丸底フラスコにハイドロ
キノン(HQ)を11.0g(0.1mol)、ジメチ
ルカ−ボネ−トを18.00g(0.2mol)、炭酸
カリウムを0.69g(5mmol)、溶媒としてN,
N−ジメチルホルムアミドを100ml仕込む。充填部
にモレキュラ−シ−ブ(MS−4A)を30.0g充填
する。オイルバスで加熱し、オイル温度170〜200
℃、リフラックス状態で反応させる。150分後のHQ
転化率42%、ハイドロキノンモノメチルエ−テル(H
Q)の選択率72%、ハイドロキノンジメチルエ−テル
(HQDME)の選択率28%であり、500分後のH
Q転化率99%、MQの選択率12%、HQDMEの選
択率88%であった。また、ガスクロマトグラフィ−に
おける不純物の割合は約0.5%であった。
In a 300 ml four-necked round bottom flask, 11.0 g (0.1 mol) of hydroquinone (HQ), 18.00 g (0.2 mol) of dimethyl carbonate and 0.69 g (5 mmol) of potassium carbonate, N as a solvent
Charge 100 ml of N-dimethylformamide. 30.0 g of molecular sieve (MS-4A) is charged in the filling part. Heated in an oil bath, oil temperature 170-200
React in the reflux condition at ℃. HQ after 150 minutes
42% conversion, hydroquinone monomethyl ether (H
The selectivity of Q) is 72%, the selectivity of hydroquinone dimethyl ether (HQDME) is 28%, and H after 500 minutes
The Q conversion was 99%, the MQ selectivity was 12%, and the HQDME selectivity was 88%. The ratio of impurities in gas chromatography was about 0.5%.

【0024】[0024]

【発明の効果】本発明によれば、含窒素複素環式化合物
又はアミド結合を持つ化合物を溶媒として使用すること
により、上記の反応が大気圧以下の圧力で行うことがで
きる。これにより設備費、用役費を抑制することが可能
となり、目的とする芳香族エ−テル化合物をより安価で
製造することができる。また、溶媒が安定であるため、
塩基性び強い触媒の使用が可能であり、反応速度を大き
くできる。さらに、不純物の量を最小限に抑えることが
できるので、精製の負担が小さくコストを抑えることが
できる。
INDUSTRIAL APPLICABILITY According to the present invention, the above reaction can be carried out under atmospheric pressure by using a nitrogen-containing heterocyclic compound or a compound having an amide bond as a solvent. This makes it possible to reduce equipment costs and utility costs, and to produce the desired aromatic ether compound at a lower cost. Also, since the solvent is stable,
It is possible to use a basic and strong catalyst, and the reaction rate can be increased. Further, since the amount of impurities can be minimized, the burden of purification is small and the cost can be suppressed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ性触媒の存在下で、フェノ−ル
類を炭酸アルキルエステルと反応させる芳香族エ−テル
化合物の製造方法において、含窒素複素環式化合物又は
アミド結合を持つ化合物を溶媒として用いることを特徴
とする芳香族エ−テル化合物の製造方法。
1. A method for producing an aromatic ether compound in which a phenol is reacted with a carbonic acid alkyl ester in the presence of an alkaline catalyst, a nitrogen-containing heterocyclic compound or a compound having an amide bond is used as a solvent. A method for producing an aromatic ether compound, comprising:
【請求項2】 溶媒としてピリジン、ピリジン誘導体、
アルキルホルムアミド又はアルキルアセトアミドを用い
ることを特徴とする請求項1記載の芳香族エ−テル化合
物の製造方法。
2. A solvent such as pyridine or a pyridine derivative,
The method for producing an aromatic ether compound according to claim 1, wherein alkylformamide or alkylacetamide is used.
【請求項3】 触媒としてアルカリ金属の塩を用いるこ
とを特徴とする請求項1記載の芳香族エ−テル化合物の
製造方法。
3. The method for producing an aromatic ether compound according to claim 1, wherein an alkali metal salt is used as the catalyst.
JP4294917A 1992-11-04 1992-11-04 Production of aromatic ether compound Pending JPH06145091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4294917A JPH06145091A (en) 1992-11-04 1992-11-04 Production of aromatic ether compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4294917A JPH06145091A (en) 1992-11-04 1992-11-04 Production of aromatic ether compound

Publications (1)

Publication Number Publication Date
JPH06145091A true JPH06145091A (en) 1994-05-24

Family

ID=17813930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4294917A Pending JPH06145091A (en) 1992-11-04 1992-11-04 Production of aromatic ether compound

Country Status (1)

Country Link
JP (1) JPH06145091A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846672A1 (en) * 1996-12-05 1998-06-10 ENICHEM S.p.A. Process for the synthesis of 2-hydroxy-4-alkyloxy benzophenone
US6794547B2 (en) 2001-02-23 2004-09-21 Snpe Process for the synthesis of aryl alkyl monoethers
CN113509947A (en) * 2021-07-21 2021-10-19 陕西煤业化工技术研究院有限责任公司 Catalyst for synthesizing p-methyl anisole and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846672A1 (en) * 1996-12-05 1998-06-10 ENICHEM S.p.A. Process for the synthesis of 2-hydroxy-4-alkyloxy benzophenone
US5849955A (en) * 1996-12-05 1998-12-15 Enichem S.P.A. Process for the synthesis of 2-hydroxy-4-alkyloxy benzophenone
US6794547B2 (en) 2001-02-23 2004-09-21 Snpe Process for the synthesis of aryl alkyl monoethers
CN113509947A (en) * 2021-07-21 2021-10-19 陕西煤业化工技术研究院有限责任公司 Catalyst for synthesizing p-methyl anisole and preparation method and application thereof
CN113509947B (en) * 2021-07-21 2023-09-26 陕西煤业化工技术研究院有限责任公司 Catalyst for synthesizing p-methylanisole as well as preparation method and application thereof

Similar Documents

Publication Publication Date Title
Lerman et al. Acetyl hypofluorite, a new moderating carrier of elemental fluorine and its use in fluorination of 1, 3-dicarbonyl derivatives
EP0192480B1 (en) Bis(3-aminophenoxy) aromatics and method of preparing the same
JPS638929B2 (en)
FR2946339A1 (en) PROCESS FOR HYDROXYDING HALOGEN COMPLEX COMPOUNDS
KR20070011507A (en) Process for producing cyclic n-hydroxyimide compound
JPH06145091A (en) Production of aromatic ether compound
US3551465A (en) Preparation of organic esters from alpha-nitro-ketones
McClure et al. The Oxidation of Anisole and Diphenyl Ether with Trifluoroperoxyacetic Acid
EP1961730A1 (en) Method for producing polymerizable hydroxydiamantyl ester compound
WO2009096265A1 (en) Method for producing fluorine-containing epoxide
US5430173A (en) Process for preparing alkyl 3-hydroxy-2, 4, 5-trifluorobenzoates and/or alkyl 3-alkoxy-2, 4, 5-trifluorobenzoates
US5124477A (en) Process for preparing para-hydroxybenzoic acid
WO2005092828A1 (en) Processes for producing 3-methyl-2-butenyl acetate
FR2571047A1 (en) PROCESS FOR THE PREPARATION OF PERFLUOROALCANOLS
CN101321720B (en) Method for producing tetrafluoroterephthalic acid difluoride
US5068336A (en) Process for producing 2-(4'-hydroxphenoxy)-3-chloro-5-trifluoromethylpyridine
Kundu et al. L‐Proline Catalyzed Enamination of β‐Dicarbonyl Compounds under Solvent‐free Conditions
Faure et al. Asymmetric α-Alkylation of α, β-Unsaturated Esters. Application to the Synthesis of (R)-Lavandulol,(R)-Sesquilavandulol and Related Trifluoromethyl Compounds
US4021489A (en) Reaction of sulfur trioxide with cyclic (4- and 5-membered ring) fluorovinylethers
US4656311A (en) Process for preparing hydroxylated aromatic compounds
JP3477915B2 (en) Method for producing 1,6-dioxyiminohexane
JPH0579655B2 (en)
JPH01258639A (en) Production of 2,4,5-trifluorobenzoic acid
SU515437A3 (en) Method for producing alkanedicarboxylic acids
JPH0328424B2 (en)