JPH06141885A - Monoclonal antibody - Google Patents

Monoclonal antibody

Info

Publication number
JPH06141885A
JPH06141885A JP32247692A JP32247692A JPH06141885A JP H06141885 A JPH06141885 A JP H06141885A JP 32247692 A JP32247692 A JP 32247692A JP 32247692 A JP32247692 A JP 32247692A JP H06141885 A JPH06141885 A JP H06141885A
Authority
JP
Japan
Prior art keywords
antibody
ser
gly
hiv
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32247692A
Other languages
Japanese (ja)
Inventor
Yasuyuki Eda
康幸 江田
Kiyoshi Nagatomi
潔 長富
Kouichi Shiosaki
巧一 塩先
Hiroaki Maeda
浩明 前田
Kazuhiko Kurumi
和彦 来海
Yukio Tokiyoshi
幸男 時吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP32247692A priority Critical patent/JPH06141885A/en
Publication of JPH06141885A publication Critical patent/JPH06141885A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the novel monoclonal antibody or its fragment having an ability for substantially neutralizing human immunodeficiency virus(HIV) by binding to a glucoprotein antigen (gp 120) existing on the outer coat membrane of the human immunodeficiency virus and having a mol.wt. of approximately 120000 dalton. CONSTITUTION:A synthetic peptide corresponding to the sixth-25th (NNTRKAIRVGPGRTLYATRR) of the amino acid sequence in the outer coat membrane glucoprotein PND (gp 120) of a separated virus originated from an HIV-infected patient is used as an immunogen to prepare a monoclonal antibody having a neutralization activity against plural strains including this virus. A gene fragment coding the variable region of the monoclonal antibody or the complementarity-determining group of the region is transduced into a human antibody gene to provide a chimera antibody or modified antibody having an HIV-resistant neutralization activity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はウイルス感染の予防、治
療、あるいは診断に有用な、並びに生化学及び組織学の
研究に有用な新規物質を提供する免疫学的技術に関す
る。より詳しくは、後天性免疫不全症候群(エイズ)の
原因ウイルスと認められるヒト免疫不全ウイルス(HI
V)を実質的に中和する能力を有するモノクローナル抗
体及び該抗体を分泌するハイブリドーマに関する。さら
には、当該モノクローナル抗体の可変領域をコードする
遺伝子断片またはその一部を用いたキメラ抗体並びに改
変抗体、及び該抗体の調製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immunological technique which provides a novel substance useful for prevention, treatment, or diagnosis of viral infection, and useful for biochemical and histological research. More specifically, human immunodeficiency virus (HI) recognized as a causative virus of acquired immunodeficiency syndrome (AIDS).
V) and a hybridoma that secretes the antibody. Further, it relates to a chimeric antibody and a modified antibody using a gene fragment encoding the variable region of the monoclonal antibody or a part thereof, and a method for preparing the antibody.

【0002】[0002]

【技術の背景】HIVは、後天性免疫不全症候群(エイ
ズ)及びエイズ関連症候群(ARC)等の一連の疾患の
原因であるヒトレトロウイルスである。よく知られてい
るように、HIVのプロトタイプはヒトT細胞リンパ球
趨向性ウイルス-III(Human T-Lymphotropic Virus Typ
e III; HTLV-III)とリンパ腫症関連ウイルス(Lymphad
enopathy Associated Virus; LAV)とである。今日、こ
れらの疾患は世界的に大きな問題となっているが、これ
らに有効なワクチンや確固とした治療法はまだ提供され
ていない。
BACKGROUND OF THE INVENTION HIV is a human retrovirus that is responsible for a range of diseases such as acquired immunodeficiency syndrome (AIDS) and AIDS-related syndrome (ARC). As is well known, the prototype of HIV is Human T-Lymphotropic Virus Typ (III).
e III; HTLV-III) and lymphoma disease-related virus (Lymphad
enopathy Associated Virus; LAV). Today, these diseases have become a major problem worldwide, but effective vaccines or robust treatments for them have not yet been provided.

【0003】エイズに関連する最も特徴的な血液学的異
常は、細胞表面にCD4抗原を持つヘルパー/インデュ
ーサーTリンパ球の機能的及び量的欠損である。HIV
の起こす免疫不全は、感染している宿主(ヒト)の生体
防御機構に様々な障害を起こし、例えば、カリニ肺炎の
ような日和見感染やカポジ肉腫のような通常では観察さ
れにくい悪性腫瘍を高発させる。HIVによる免疫不全
は、進行性、非可逆的で、死亡率はきわめて高く、数年
間におそらく100%に達すると言われている。
The most characteristic hematological abnormality associated with AIDS is a functional and quantitative defect of helper / inducer T lymphocytes carrying the CD4 antigen on the cell surface. HIV
The immunodeficiency caused by various disorders causes various obstacles to the biological defense mechanism of the infected host (human), and for example, an opportunistic infection such as Karini pneumonia or a malignant tumor that is not normally observed such as Kaposi's sarcoma is frequently caused. Let Immunodeficiency due to HIV is progressive, irreversible, and has a very high mortality rate, which is estimated to reach 100% in several years.

【0004】HIVがT細胞に感染する第1段階におい
て、ウイルス粒子の感染の場合、レセプターであるCD
4抗原に対するウイルス粒子の結合が起こる。その一方
でHIVはまた、細胞間感染によっても感染を拡大して
いく。すなわち、既に感染している細胞と非感染細胞と
が細胞融合を起こし、特に脳やリンパ節等の臓器におい
て、合胞体(多核巨大細胞)形成を起こす。このような
合胞体形成は、試験管内の実験系でも観察されている。
CD4陽性の細胞が欠損する原因は、HIVの感染した
T細胞がHIVの起こす細胞障害効果を受け易いことに
よると言われている。
In the first step of HIV infection of T cells, in the case of viral particle infection, the receptor CD
Viral particle binding to the four antigens occurs. On the other hand, HIV also spreads infections through cell-to-cell infections. That is, already infected cells and non-infected cells cause cell fusion, and especially in organs such as the brain and lymph nodes, syncytia (multinucleated giant cells) are formed. Such syncytia formation has also been observed in in vitro experimental systems.
It is said that the cause of the deficiency of CD4-positive cells is that T cells infected with HIV are susceptible to the cytotoxic effect caused by HIV.

【0005】HIVはこのヘルパー/インデューサーT
細胞群のみに感染するのではなく、単球/マクロファー
ジ群にも感染することが知られている。また、ほとんど
の単球/マクロファージ群と一部のT細胞とは、HIV
の起こす細胞障害効果に対して抵抗性を示し、長時間ウ
イルスを保有し、ウイルスを産生し続けることも知られ
ている。また、HIVに感染したヒトの血清中にHIV
に対する抗体が存在するが、一般にその中和活性は低い
ことが知られている(Weiss et al., Nature, 316, p.6
9-72 (1985))。
HIV is this helper / inducer T
It is known that not only the cell group is infected, but also the monocyte / macrophage group is infected. In addition, most monocytes / macrophages and some T cells
It is also known that it is resistant to the cytotoxic effect caused by, retains the virus for a long time, and continues to produce the virus. In addition, in the serum of humans infected with HIV,
Antibodies against E. coli exist, but their neutralizing activity is generally known to be low (Weiss et al., Nature, 316 , p. 6).
9-72 (1985)).

【0006】HIVの構造蛋白抗原として、コア(ga
g)抗原と外皮膜(envelope)抗原の存在がよく知られ
ている。HIVの外皮膜は160キロダルトンの前駆体糖
蛋白(gp160)とそれが切断されてできる120キロダルト
ン(gp120)と41キロダルトン(gp41)のウイルス粒子
に存在する膜糖蛋白とを含んでいる。その中で、gp120
は次の観点から重要性が高い。 (1) gp120またはgp120由来のある種の断片で実験動物を
免疫すると、ポリクローン性中和抗体が得られる。この
ことは、gp120が少なくともウイルス中和能力を有する
抗体の標的分子の一つであることを意味する(Lasky et
al., Science, 233,p.209-212(1986))。 (2) HIVの感染の第1段階において、gp120はウイル
スレセプターであるCD4分子と結合する。このこと
は、gp120がHIVの感染にとって最も重要な分子であ
ることを意味する(McDougal et al., Science 231,p.3
82-385 (1986))。 (3) HIVによる合胞体形成、すなわちHIVの細胞間
(cell-to-cell)感染は、gp120と非感染細胞のCD4
分子との直接的相互作用によって生じる(Lifsonet a
l., Nature, 323, p.725-728 (1985))。
As a structural protein antigen of HIV, the core (ga
g) The presence of antigens and envelope antigens is well known. The outer coat of HIV contains a 160-kilodalton precursor glycoprotein (gp160) and the 120-kilodalton (gp120) and 41-kilodalton (gp41) membrane glycoproteins present in its cleavage. . Among them, gp120
Is highly important from the following viewpoints. (1) Immunization of experimental animals with gp120 or certain fragments of gp120 yields polyclonal neutralizing antibodies. This means that gp120 is one of the target molecules for antibodies with at least virus neutralizing capacity (Lasky et al.
al., Science, 233 , p.209-212 (1986)). (2) In the first stage of HIV infection, gp120 binds to the viral receptor CD4 molecule. This means that gp120 is the most important molecule for HIV infection (McDougal et al., Science 231 , p. 3).
82-385 (1986)). (3) HIV-induced syncytium formation, that is, HIV cell-to-cell infection, is caused by gp120 and CD4 in uninfected cells.
Caused by direct interaction with the molecule (Lifsonet a
L., Nature, 323 , p.725-728 (1985)).

【0007】HTLV-IIIやLAVの構成蛋白に対する
種々のモノクローナル抗体、例えば、ウイルスの内部に
あるコア抗原の一つであるp24に対するもの(Veronese
F.D., Proc. Natl. Acad. Sci., U.S.A.82, p.5199-52
02 (1985))、ウイルスの逆転写酵素をコードしている
pol遺伝子産物に対するもの(Veronese F.D., Scien
ce, 231, p.1289-1291 (1986))、及び外皮膜のもう一
つの構成蛋白であるgp41に対するもの(Veronese F.D.,
Science, 229, p.1402-1405 (1985))が知られてい
る。しかしながら、これらの公知のモノクローナル抗体
の中にはエイズの治療や予防に重要なgp120抗原に反応
するものはない。それどころか、精製されたLAVで免
疫してもgp120抗原を効果的に中和する能力を持つモノ
クローナル抗体は得られなかったという報告もある(Ch
assange J. et al., J. Immunol. 136, p.1442-1445 (1
985))。
Various monoclonal antibodies against the constituent proteins of HTLV-III and LAV, for example, against p24 which is one of the core antigens inside the virus (Veronese
FD, Proc. Natl. Acad. Sci., USA 82 , p.5199-52
02 (1985)), for the pol gene product encoding viral reverse transcriptase (Veronese FD, Scien.
ce, 231 , p.1289-1291 (1986)), and for gp41, another constituent protein of the outer membrane (Veronese FD,
Science, 229 , p.1402-1405 (1985)) is known. However, none of these known monoclonal antibodies react with the gp120 antigen, which is important for the treatment and prevention of AIDS. On the contrary, it has been reported that immunization with purified LAV did not yield a monoclonal antibody capable of effectively neutralizing the gp120 antigen (Ch
assange J. et al., J. Immunol. 136 , p. 1442-1445 (1
985)).

【0008】エイズウイルスを効果的に中和する能力を
有し、エイズの予防や診断に役立つモノクローナル抗体
を得るために種々の試みがなされた。合成ペプチドを免
疫源として、gp120抗原に反応するモノクローナル抗体
を得たこと、この抗体に認識されるエピトープは、HI
Vの外皮膜のアミノ酸配列の第503-532番目以内にある
ことが報告された(Chanh T.C. et al., Eur. J. Immun
ol. 16,p.1455-1468(1986))。しかし、報告されたこの
抗体の結合活性は、ウエスターン・ブロット法によって
も、細胞表面の蛍光染色法によっても弱かった。さら
に、この報告にはモノクローナル抗体の中和能力の存在
の証明が記載されていない。
Various attempts have been made to obtain a monoclonal antibody which has the ability to effectively neutralize the AIDS virus and is useful for the prevention and diagnosis of AIDS. A monoclonal antibody that reacts with the gp120 antigen was obtained using a synthetic peptide as an immunogen. The epitope recognized by this antibody was HI.
It was reported to be within the 503-532nd amino acid sequence of the outer coat of V (Chanh TC et al., Eur. J. Immun
ol. 16 , p. 1455-1468 (1986)). However, the reported binding activity of this antibody was weak both by Western blotting and by cell surface fluorescent staining. Furthermore, this report does not provide any proof of the existence of the neutralizing capacity of the monoclonal antibody.

【0009】上述のような状況の中で、Matsushitaら
は、HTLV-IIIB株のgp120と結合し、該ウイルスを強
力に中和する能力を有するモノクローナル抗体(0.5
β)を作製した(Matsushita et al., J. Virology, 6
2, p.2107-2114 (1988))。ここで、この抗体の認識す
るエピトープは、gp120上の第3番目の可変領域(V3
ドメイン)内に存在する。これはアミノ酸番号303〜338
に相当する領域であり、両端の303番目と338番目に存在
するシステイン残基がS-S結合してできるループ構造の
一部である。最近では、この抗体が認識するエピトープ
は主要中和領域(principal neutralizing determinan
t;PND)と呼ばれ、治療用抗体及びワクチン開発の主要
なターゲットとなっている。続いて、本発明者らは臨床
応用可能なヒト型抗体に変換するために、抗原結合に関
与する0.5β抗体の可変(V)領域遺伝子をヒトIgG1
常(C)領域遺伝子に結合させてヒト型キメラ抗体(C
β1)を作製した(Matsushita et al., AIDS Res., in
press, (1992))。また、in vivoでの有効性をみるため
に、ヒト型キメラ抗体Cβ1を用いてチンパンジーの受動
免疫試験を行なった結果、初感染を完全に防御できるこ
とも既に報告した(EminiE.A. et al., Nature, 355,
p.728 (1992))。更に、疫学上多いとみなされているH
TLV-IIIMN株のgp120のPNDと結合し、該ウイルスを強
力に中和する能力を有するモノクローナル抗体(μ5.5
及びμ39.1)も作製し、既に特許出願を行なっている
(特願平2-188300号)。
In the above-mentioned situation, Matsushita et al. Reported that a monoclonal antibody (0.5%) capable of binding to gp120 of HTLV-III B strain and strongly neutralizing the virus (0.5
β) was prepared (Matsushita et al., J. Virology, 6
2 , p. 2107-2114 (1988)). Here, the epitope recognized by this antibody is the third variable region (V3
Domain). This is amino acid number 303-338
Is a region corresponding to, and is a part of the loop structure formed by SS-bonding cysteine residues at the 303rd and 338th positions on both ends. Recently, the epitope recognized by this antibody is the principal neutralizing determinan.
t; PND) and is a major target for therapeutic antibody and vaccine development. Next, the present inventors linked the variable (V) region gene of the 0.5β antibody involved in antigen binding to the human IgG 1 constant (C) region gene in order to convert it into a human antibody that can be clinically applied. Human chimeric antibody (C
β1) was prepared (Matsushita et al., AIDS Res., in
press, (1992)). In addition, as a result of carrying out a passive immunity test of chimpanzees using the human chimeric antibody Cβ1 in order to examine the efficacy in vivo, it was already reported that primary infection can be completely protected (EminiE.A. Et al., Nature, 355 ,
p.728 (1992)). Furthermore, H, which is considered to be epidemiologically high
A monoclonal antibody (μ5.5) having the ability to bind to the PND of gp120 of TLV-III MN strain and strongly neutralize the virus.
, And μ39.1) were also produced and a patent application has already been filed (Japanese Patent Application No. 2-188300).

【0010】しかしながら、0.5βはHTLV-IIIBを、
μ39.1及びμ5.5抗体は疫学上多いとされるHTLV-II
IMN株を中和することはできるが、HIVにはこれら以
外にも多くの臨床分離ウイルスの報告(Hattori et a
l., AIDS Res and Human Retroviruses, 7, p.825, (19
91))がなされており、それらのすべてをこの3種の抗
体で完全に中和することはできない。
However, 0.5β is HTLV-III B ,
HTLV-II, which is predominantly epidemiologic for μ39.1 and μ5.5 antibodies
Although it can neutralize the IMN strain, there are many other clinically isolated viruses reported in HIV (Hattori et a
l., AIDS Res and Human Retroviruses, 7 , p.825, (19
91)), and all of them cannot be completely neutralized by these three antibodies.

【0011】一方、PND以外のエピトープで各株間でよ
く保存されている定常領域に対する中和抗体については
いくつかの報告があるが、いずれも中和活性の低いポリ
クローナル抗体(Chanh T.C. et al., EMBO J, 5, p.30
65, (1986))やモノクローナル抗体(Dalgleish A.G. e
t al., Virology, 165, p.209, (1988); Sun N. et a
l., J Virol., 63, p.3579, (1989))であり、エイズの
予防及び治療には問題があった。
On the other hand, there are some reports on neutralizing antibodies against constant regions that are well conserved among strains with epitopes other than PND, but all of them are polyclonal antibodies with low neutralizing activity (Chanh TC et al., EMBO J, 5 , p.30
65, (1986)) and monoclonal antibody (Dalgleish AG e
t al., Virology, 165 , p.209, (1988); Sun N. et a
L., J Virol., 63 , p. 3579, (1989)), and there was a problem in the prevention and treatment of AIDS.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、従来
の報告された中和抗体では中和することのできないHI
Vを実質的に中和する能力を有するモノクローナル抗体
及び該抗体を産生する能力を持つハイブリドーマを提供
することであり、HIV感染者由来の分離ウイルスの多
様性に対応することにある。さらに本発明の目的は、当
該モノクローナル抗体はマウス由来の抗体でヒトへの応
用が困難であるため、臨床応用可能なヒト型抗体及びそ
の調製法を提供することにある。ここに、中和という用
語はHIV粒子の感染(cell free infection)の阻止
及び/またはgp120とCD4との相互作用によってHI
V感染細胞と非感染細胞との間で起こる合胞体形成の様
な細胞間感染(cell-to-cell infection)の阻止を意味
する。
The object of the present invention is to prevent HI from being neutralized by the previously reported neutralizing antibodies.
The purpose of the present invention is to provide a monoclonal antibody capable of substantially neutralizing V and a hybridoma capable of producing the antibody, and to cope with the diversity of isolated viruses derived from HIV-infected persons. A further object of the present invention is to provide a human-type antibody that is clinically applicable and a method for preparing the same, since the monoclonal antibody is a mouse-derived antibody that is difficult to apply to humans. Here, the term neutralization is due to the inhibition of cell free infection of HIV particles and / or the interaction of gp120 with CD4.
V means the prevention of cell-to-cell infection such as syncytia formation between infected and uninfected cells.

【0013】[0013]

【課題を解決するための手段】本発明により、既知の中
和HIV抗体では中和できないHIVのgp120のPNDと結
合して当該ウイルスを実質的に中和する能力を有する新
規なモノクローナル抗体またはその断片が提供される。
以下、本発明のモノクローナル抗体及びその調製法につ
いて概説する。
According to the present invention, a novel monoclonal antibody having the ability to bind to the PND of HIV gp120 that cannot be neutralized by known neutralizing HIV antibodies and to substantially neutralize the virus, or a novel monoclonal antibody thereof is provided. Fragments are provided.
Hereinafter, the monoclonal antibody of the present invention and a method for preparing the same will be outlined.

【0014】本発明に基づくモノクローナル抗体は、H
TLV−IIIB及びHTLV−IIIMN以外の感染者由来の
臨床分離ウイルス蛋白のアミノ酸配列に基づいて調製さ
れる好適な合成ペプチド、好ましくは下記のgp120のPND
(配列表配列番号3記載:ここで、N端側Cysのアミノ
酸番号を1とする)の一部のアミノ酸配列第6〜25に対
応する合成ペプチドをマウスに免疫し、得られた脾臓細
胞を例えば、マウスのミエローマ細胞と融合させ、得ら
れたハイブリドーマから、前記合成ペプチドに反応する
細胞を選択し、該細胞を培養することによって、調製す
ることができる。 Asn-Asn-Thr-Arg-Lys-Ala-Ile-Arg-Val-Gly-Pro-Gly-Ar
g-Thr-Leu-Tyr-Ala-Thr-Arg-Arg 以後、HIVのgp120のPNDのアミノ酸番号は、PNDのN
端側のCysを1として表記する。
The monoclonal antibody according to the present invention is H
Suitable synthetic peptides prepared based on the amino acid sequences of clinically isolated viral proteins from infected individuals other than TLV-III B and HTLV-III MN , preferably the PND of gp120 below.
Mice were immunized with a synthetic peptide corresponding to a part of the amino acid sequences 6 to 25 (described in the sequence listing, SEQ ID NO: 3 where the amino acid number of N-terminal Cys is 1), and the resulting spleen cells were isolated. For example, it can be prepared by fusing with mouse myeloma cells, selecting cells that react with the synthetic peptide from the obtained hybridomas, and culturing the cells. Asn-Asn-Thr-Arg-Lys-Ala-Ile-Arg-Val-Gly-Pro-Gly-Ar
After g-Thr-Leu-Tyr-Ala-Thr-Arg-Arg, the amino acid number of PND of HIV gp120 is N of PND.
The Cys on the end side is expressed as 1.

【0015】このハイブリドーマの調製に関しては、Ko
hlerとMilsteinの方法(Nature, 256, p.495(1975))に
基づいて行なう。抗原としては、該ウイルス蛋白のアミ
ノ酸配列に基づいて調製される合成ペプチドが好適に用
いられるが、他の方法で得られる免疫用抗原も同様に使
用することができる。免疫用マウスとしては、BALB/c系
マウス、BALB/c系マウスと他系マウスとのF1マウスなど
が用いられる。免疫はマウス1匹(4〜8週齢、20〜30
g)に対して抗原20〜200μgを用いて2〜3週間ごとに
3〜6回行なう。なお、マウスの飼育及び脾臓細胞の採
取は常法に従う。
Regarding the preparation of this hybridoma, Ko
Based on the method of hler and Milstein (Nature, 256, p.495 (1975)). As the antigen, a synthetic peptide prepared on the basis of the amino acid sequence of the viral protein is preferably used, but an immunizing antigen obtained by another method can be used as well. As the immunizing mouse, BALB / c mouse, F1 mouse of BALB / c mouse and other mouse, etc. are used. Immunization is 1 mouse (4-8 weeks old, 20-30
For g), 20 to 200 μg of the antigen is used, and every 2 to 3 weeks, 3 to 6 times. The breeding of mice and the collection of spleen cells follow conventional methods.

【0016】ミエローマ細胞としては、MOPC-21NS/1(N
ature, 256, p495 (1975)), SP2/0-Ag14(Nature, 27
6,p.269(1979)), p3X63Ag8-U1(Eur.J.Immunol. 6, p.
511 (1976)), p3X63-Ag8(Nature, 256, p.495(197
5)), p3X63-Ag8.653(J.Immunol. 123, p.1548(197
9))等が好適に用いられる。脾臓細胞とミエローマ細胞
は1対1〜10対1の割合で混合し、融合はNaCl(約0.85
%)、ジメチルスルホキシド(10〜20v/v%)および分
子量1,000〜6,000のポリエチレングリコールを含有する
リン酸緩衝液(pH7.2〜7.4)中で行なう。融合は両細胞
の混合物を35〜37℃で1〜5分間インキュベートするこ
とによって行なう。融合細胞(ハイブリドーマ)の選択
は、ヒポキサンチン(1.3〜1.4mg/dl),アミノプテリン
(18〜20μg/dl),チミジン(375〜4,000μl/dl),スト
レプトマイシン(50〜100μg/ml),ペニシリン(50〜10
0単位/ml),グルタミン(3.5〜4.0g/l),牛胎児血清(1
0〜20%)を含有する基礎培地を用い、生育してくる細
胞として選択する。基礎培地としては、動物細胞の培養
に一般に使用されているRPMI1640培地、EagleのMEM培地
などが用いられる。融合細胞のクローン化は限界希釈法
にて少なくとも3回繰り返して行なう。
As myeloma cells, MOPC-21NS / 1 (N
ature, 256 , p495 (1975)), SP2 / 0-Ag14 (Nature, 27
6 , p.269 (1979)), p3X63Ag8-U1 (Eur.J.Immunol. 6 , p.
511 (1976)), p3X63-Ag8 (Nature, 256 , p.495 (197
5)), p3X63-Ag8.653 (J.Immunol. 123 , p.1548 (197
9)) and the like are preferably used. Spleen cells and myeloma cells were mixed at a ratio of 1: 1 to 10: 1 and fusion was performed using NaCl (about 0.85
%), Dimethyl sulfoxide (10 to 20 v / v%), and polyethylene glycol having a molecular weight of 1,000 to 6,000 in a phosphate buffer (pH 7.2 to 7.4). Fusion is performed by incubating a mixture of both cells at 35-37 ° C for 1-5 minutes. The selection of fused cells (hybridomas) is hypoxanthine (1.3 to 1.4 mg / dl), aminopterin (18 to 20 μg / dl), thymidine (375 to 4,000 μl / dl), streptomycin (50 to 100 μg / ml), penicillin. (50-10
0 unit / ml), glutamine (3.5 ~ 4.0g / l), fetal bovine serum (1
Basal medium containing 0-20%) is used to select for growing cells. As the basal medium, RPMI1640 medium, Eagle's MEM medium and the like which are generally used for culturing animal cells are used. The fused cells are cloned at least three times by the limiting dilution method.

【0017】ハイブリドーマを通常の動物細胞の培養と
同様にして培養すれば、その結果培地中に本発明の抗体
を得ることができる。例えば、2〜5×106のハイブリ
ドーマをストレプトマイシン(50〜100μg/ml),ペニシ
リン(50〜100単位/ml),グルタミン(3.5〜4.0g/l),
牛胎児血清(10〜20%)を含有する RPMI 1640培地10〜
20mlを用い、フラスコ内で5%CO2存在下、35〜37℃,3
〜7日間培養することによって培養液中に抗体が分泌、
蓄積される。また、該ハイブリドーマをプリスタン処理
のヌードマウスまたはBALB/cマウスの腹腔内に移植して
増殖させることにより腹水中に本発明の抗体を蓄積させ
ることができる。すなわち、これらのマウス腹腔内にプ
リスタン0.5〜1mlを接種し、その後2〜3週目に腹腔
に5×106〜1×107個のハイブリドーマを移植する。通
常7〜10日後に腹水が蓄積し、これを採取する。培養物
および腹水中のモノクローナル抗体はアフィゲルプロテ
インA MAPS-IIキット(BIO-RAD社)を用いたアフィニ
ティークロマトグラフィーの手段等により精製される。
When the hybridoma is cultured in the same manner as in the culture of normal animal cells, the antibody of the present invention can be obtained in the medium as a result. For example, 2 to 5 × 10 6 hybridomas were treated with streptomycin (50 to 100 μg / ml), penicillin (50 to 100 units / ml), glutamine (3.5 to 4.0 g / l),
RPMI 1640 medium containing fetal bovine serum (10-20%) 10-
Using 20 ml, in a flask in the presence of 5% CO 2 , at 35 to 37 ° C., 3
Antibody is secreted into the culture medium by culturing for ~ 7 days,
Accumulated. Further, the antibody of the present invention can be accumulated in ascites by transplanting the hybridoma into the abdominal cavity of a pristane-treated nude mouse or BALB / c mouse and allowing it to grow. That is, 0.5 to 1 ml of pristane was inoculated into the abdominal cavity of these mice, and 5 to 10 6 to 1 × 10 7 hybridomas were transplanted to the abdominal cavity in the second to third weeks. Ascites usually accumulates after 7 to 10 days and is collected. Monoclonal antibodies in the culture and ascites are purified by means of affinity chromatography using Affigel Protein A MAPS-II kit (BIO-RAD).

【0018】得られたモノクローナル抗体は、HIVの
外被膜にあるgp120のPND内にArg-Ile-Gly-Pro-Gly-Arg
またはArg-Val-Gly-Pro-Gly-Argのいずれかのアミノ酸
配列を含有するHIVを実質的に中和し得ることが明ら
かになった。詳細には以下の性状を有している。(a)Ig
G,κに分類され、(b)HIVのgp120のPNDのアミノ酸配
列第9〜22番目が下記のアミノ酸から選ばれた組み合せ
からなるアミノ酸配列を含有するHIVを中和する能力
を有し、 X9 = Arg, Lys, Ser, Ile, Glu, Pro, Gln, Gly, Me
t, Thr X10 = Lys, Arg, Asn, Gln X11 = Ser, Gly, Arg, His, Lys, Ala X12 = Ile, Leu, Met, Thr, Val, Glu, Phe X13 = Arg X14 = Ile, Val X15 = Gly X16 = Pro X17 = Gly X18 = Arg X19 = Ala, Val, Asn, Thr, Arg, Lys, Pro, Ser, Trp X20 = Phe, Ile, Val, Leu, Tyr, Trp, Thr, Ser, His X21 = Tyr, Val, His, Leu, Phe, Arg, Ser, Met, Ile X22 = Thr, Ala, Val, Gln, Tyr, Ser (c)上記アミノ酸配列を含有するHIV粒子の表面に結
合することにより、ウイルス粒子がCD4陽性細胞に感
染することを阻止する能力を有し、(d)上記アミノ酸配
列を含有するHIVに感染した細胞の表面に結合するこ
とによって、感染細胞と非感染細胞とにより、誘発され
る合胞体形成を阻止する能力を有する。
The obtained monoclonal antibody was Arg-Ile-Gly-Pro-Gly-Arg in the PND of gp120 on the outer coat of HIV.
Alternatively, it was revealed that HIV containing any amino acid sequence of Arg-Val-Gly-Pro-Gly-Arg can be substantially neutralized. In detail, it has the following properties. (a) Ig
(B) has the ability to neutralize HIV containing an amino acid sequence consisting of a combination of (b) the PND of HIV gp120 PNDs consisting of a combination of the following amino acids: 9 = Arg, Lys, Ser, Ile, Glu, Pro, Gln, Gly, Me
t, Thr X 10 = Lys, Arg, Asn, Gln X 11 = Ser, Gly, Arg, His, Lys, Ala X 12 = Ile, Leu, Met, Thr, Val, Glu, Phe X 13 = Arg X 14 = Ile, Val X 15 = Gly X 16 = Pro X 17 = Gly X 18 = Arg X 19 = Ala, Val, Asn, Thr, Arg, Lys, Pro, Ser, Trp X 20 = Phe, Ile, Val, Leu, Tyr, Trp, Thr, Ser, His X 21 = Tyr, Val, His, Leu, Phe, Arg, Ser, Met, Ile X 22 = Thr, Ala, Val, Gln, Tyr, Ser (c) Having the ability to prevent viral particles from infecting CD4-positive cells by binding to the surface of HIV particles containing them, and (d) binding to the surface of cells infected with HIV containing the above amino acid sequence. Has the ability to block syncytia formation induced by infected and uninfected cells.

【0019】また、本発明のモノクローナル抗体はHI
Vのgp120のPNDのアミノ酸配列第9〜22番目が、下記の
アミノ酸配列から選ばれた組み合せからなるアミノ酸配
列を含有するHIVを中和する能力を有する。 X9 = Arg, Ser, Lys X10 = Lys, Arg X11 = Gly, Ala X12 = Ile X13 = Arg X14 = Ile, Val X15 = Gly X16 = Pro X17 = Gly X18 = Arg X19 = Ala, Thr X20 = Val, Ile, Leu X21 = Tyr, Met, Leu X22 = Thr, Ala, Gln, Ser
The monoclonal antibody of the present invention is HI
The 9th to 22nd amino acid sequences of PND of V gp120 have the ability to neutralize HIV containing an amino acid sequence consisting of a combination selected from the following amino acid sequences. X 9 = Arg, Ser, Lys X 10 = Lys, Arg X 11 = Gly, Ala X 12 = Ile X 13 = Arg X 14 = Ile, Val X 15 = Gly X 16 = Pro X 17 = Gly X 18 = Arg X 19 = Ala, Thr X 20 = Val, Ile, Leu X 21 = Tyr, Met, Leu X 22 = Thr, Ala, Gln, Ser

【0020】すなわち、本発明によるモノクローナル抗
体は合胞体形成のようなHIVの細胞間感染(cell-to-
cell infection)及び/またはHIVの感染(cell fre
e infection)を強力に阻止できることが明らかになっ
た。従って、本発明によるモノクローナル抗体をエイズ
の予防及び治療に用いることができる。また、ヒト宿主
におけるエイズウイルスの増殖の抑制にも有用である。
本発明によるモノクローナル抗体はHIVに対して強い
中和活性を有しているので、非感染T細胞への該ウイル
スの感染を予防することができる。なお、本発明のモノ
クローナル抗体を産生するハイブリドーマの代表例は、
工業技術院微生物工業技術研究所(微工研)に受託番号
微工研菌寄第12973号(FERM P-12973)として寄託され
ている。
That is, the monoclonal antibody according to the present invention is used for HIV cell-to-cell infection such as syncytium formation.
cell infection and / or HIV infection (cell fre
e infection) can be strongly prevented. Therefore, the monoclonal antibody according to the present invention can be used for the prevention and treatment of AIDS. It is also useful for suppressing the AIDS virus growth in human hosts.
Since the monoclonal antibody according to the present invention has a strong neutralizing activity against HIV, it is possible to prevent infection of non-infected T cells with the virus. A typical example of the hybridoma producing the monoclonal antibody of the present invention is
It has been deposited at the Institute of Microbial Science and Technology, Institute of Industrial Science and Technology (MICRO) under the accession number Micromachine Lab. No. 12973 (FERM P-12973).

【0021】本発明により得られるモノクローナル抗体
はマウス由来のものであるが、マウス抗体は副作用(マ
ウスモノクローナル抗体をヒトに投与した場合、異種タ
ンパクとしてアナフィラキーショックや血清病などの副
作用を起こすことが考えられる)等の点からその臨床応
用が難しく、最終的にはヒトモノクローナル抗体の使用
が好ましい。しかしながら、ハイブリドーマ法やEpstei
n Barr Virusを用いる形質転換によるヒトモノクローナ
ル抗体の調製においては、目的の特異性を有する抗体を
調製する点において克服する問題が多く、マウス型モノ
クローナル抗体の調製と比べて現実的には非常に困難を
伴う。
The monoclonal antibody obtained by the present invention is derived from mouse, but the mouse antibody has side effects (when the mouse monoclonal antibody is administered to human, it may cause side effects such as anaphylactic shock and serum disease as a heterologous protein. It is difficult to apply it clinically in view of the above), and finally, the use of human monoclonal antibody is preferable. However, the hybridoma method and Epstei
n In the preparation of human monoclonal antibodies by transformation with Barr Virus, there are many problems to overcome in the preparation of antibodies with the desired specificity, and it is very difficult in practice compared to the preparation of mouse monoclonal antibodies. Accompanied by.

【0022】このような問題を克服し、臨床応用可能な
ヒト型抗体を調製する方法として、キメラモノクローナ
ル抗体の作製が考えられる。これは、抗体の特異性、す
なわち、抗原結合に関与するV領域はマウス抗体由来の
アミノ酸配列を有し、定常領域のアミノ酸配列をヒト抗
体由来のものにしたものを、遺伝子組換え技術を応用し
て作製するものである。また、ヒトに対するマウス抗体
分子としての抗原性をさらに低減させるため、V領域の
アミノ酸配列の中でも、特に抗体分子の結合能を決定す
る重要な部位である相補性決定領域(CDR1〜CDR3)のみ
マウス抗体由来のアミノ酸配列とし、残りはヒト抗体由
来のものにした改変抗体を作製することも有効な手段で
ある。
As a method for overcoming these problems and preparing a human antibody that can be applied clinically, preparation of a chimeric monoclonal antibody is considered. This is because the specificity of the antibody, that is, the V region involved in antigen binding has a mouse antibody-derived amino acid sequence and the constant region has an amino acid sequence derived from a human antibody, and the gene recombination technology is applied. It is produced by doing. Further, in order to further reduce the antigenicity of the mouse antibody molecule to humans, only the complementarity determining regions (CDR1 to CDR3), which are important sites for determining the binding ability of the antibody molecule, among the amino acid sequences of the V region are used in the mouse. It is also an effective means to prepare a modified antibody in which the amino acid sequence is derived from the antibody and the rest is derived from the human antibody.

【0023】上述のような組換え抗体分子を作製するた
めにはV領域遺伝子の単離とアミノ酸配列決定が不可欠
である。一般に、抗体のV領域遺伝子には、数多いV領
域構成遺伝子群が存在している。例えば、マウス抗体の
特異性を決定するH鎖V領域のV遺伝子群だけでも少な
くとも100種以上異なる遺伝子を持ち、D遺伝子群とし
て11種以上、J遺伝子群として4種の遺伝子を持って
いる。同様にVκ鎖のV遺伝子群としては約300種以上
の遺伝子、J遺伝子群としては4種の遺伝子を保有して
いる。
Isolation of the V region gene and determination of the amino acid sequence are indispensable for producing the above-described recombinant antibody molecule. Generally, a large number of V region constituent genes exist in the V region gene of an antibody. For example, the V gene group of the H chain V region that determines the specificity of a mouse antibody has at least 100 different genes, the D gene group has 11 or more genes, and the J gene group has 4 genes. Similarly, the V gene group of the Vκ chain has about 300 or more genes, and the J gene group has 4 genes.

【0024】V領域遺伝子は通常の遺伝子操作技術によ
り単離することができる。例えば、その細胞の染色体D
NAから常法(例えば、T. Maniatis "Molecular Cloni
ng"Cold Spring Harbor Lab.(1982)参照)に従ってV領
域遺伝子をクローニングする方法、あるいは、その細胞
のmRNAを材料として常法(例えば、D.M.Glover編集" DN
A cloning Vol.I" IRL press (1985))によりcDNA
を合成しV領域遺伝子をクローニングする方法である。
いずれの方法も、V領域遺伝子クローニングの為のプロ
ーブとして、すでに報告されているマウス免疫グロブリ
ン遺伝子の核酸塩基配列(例えば、 坂野ら、Nature, 28
6,p676,(1980); E.E.Max ら、J. Biol.Chem., 256,p511
6,(1981))を参照して合成したDNAプローブ等を利用
することが出来る。また、PCR(ポリメレース連鎖反
応)を利用したクローニングも可能である(R.Orlandi,
et al., Proc. Natl. Acad. Sci. USA, 86, 3833 (198
9); W. D. Huse, et al., Science, 246, 1275 (198
9))。
The V region gene can be isolated by conventional gene manipulation techniques. For example, the chromosome D of the cell
From NA (eg, T. Maniatis "Molecular Cloni
ng "Cold Spring Harbor Lab. (1982)) or a method using the mRNA of the cell as a material (for example, DMGlover edit" DN).
CDNA by A cloning Vol.I "IRL press (1985))
Is used to clone the V region gene.
Both of these methods have been reported as nucleobase sequences of mouse immunoglobulin genes as probes for V region gene cloning (for example, Sakano et al., Nature, 28).
6, p676, (1980); EEMax et al., J. Biol. Chem., 256, p511.
6, (1981)) and a DNA probe or the like synthesized according to the method described above can be used. Also, cloning using PCR (polymerase chain reaction) is possible (R. Orlando,
et al., Proc. Natl. Acad. Sci. USA, 86, 3833 (198
9); WD Huse, et al., Science, 246, 1275 (198
9)).

【0025】このようにしてクローニングされた抗HI
V中和モノクローナル抗体のV領域のH鎖及びL鎖のア
ミノ酸配列並びにそれらをコードする塩基配列を図6及
び図7に示す。これらの配列の遺伝子解析を行なった結
果、抗HIV抗体V領域をコードする本発明の遺伝子断
片は、その特異的な遺伝子配列として、H鎖をコードす
る遺伝子に、 (H鎖) (a) Thr-Phe-Gly-Met-Gly-Val-Ser (b) His-Ile-Tyr-Trp-Asp-Asp-Asp-Lys-His-Tyr-Asn-Pr
o-Ser-Leu-Lys-Ser (c) Arg-Val-Phe-Tyr-Gly-Asn-Ser-Asp-Phe-Met-Asp-Hi
s のアミノ酸配列をコードする遺伝子配列をその一部に含
み、またL鎖をコードする遺伝子に、 (L鎖) (a) Lys-Ser-Ser-Gln-Ser-Leu-Leu-Asn-Ser-Gly-Asn-Gl
n-Lys-Asn-Tyr-Leu-Ala (b) Gly-Ala-Ser-The-Arg-Glu-Ser (c) Gln-Asn-Asp-His-Ser-Phe-Pro-Leu-Thr のアミノ酸配列をコードする遺伝子配列をその一部に有
することを特徴とすることが見い出された。このような
上記のH鎖、L鎖に含まれるそれぞれ3種のアミノ酸配
列は、抗体分子の結合能を決定する重要なアミノ酸配列
と考えられ、このようなアミノ酸配列が、HIVに対す
る中和活性を有する抗体分子の機能と密接に関連してい
るものと考えられた。すなわち、Kabatらにより報告さ
れている抗体遺伝子の一般的解析(Sequences of Prote
ins of Immunological Interest, 4th. ed. U.S. Depar
tment of Health and Human Services (1987))の結果
を参照することにより、上記のアミノ酸配列は、本発明
の抗HIV抗体の抗体活性を決定する可変領域の相補性
決定領域(CDR1〜CDR3)の配列であることが見いだされ
た。
Anti-HI cloned in this way
The amino acid sequences of the H chain and L chain of the V region of the V neutralizing monoclonal antibody and the nucleotide sequences encoding them are shown in FIGS. 6 and 7. As a result of the gene analysis of these sequences, the gene fragment of the present invention encoding the anti-HIV antibody V region has the following specific gene sequence: (H chain) (a) Thr -Phe-Gly-Met-Gly-Val-Ser (b) His-Ile-Tyr-Trp-Asp-Asp-Asp-Lys-His-Tyr-Asn-Pr
o-Ser-Leu-Lys-Ser (c) Arg-Val-Phe-Tyr-Gly-Asn-Ser-Asp-Phe-Met-Asp-Hi
The L-chain-encoding gene contains (a) Lys-Ser-Ser-Gln-Ser-Leu-Leu-Asn-Ser- Gly-Asn-Gl
n-Lys-Asn-Tyr-Leu-Ala (b) Gly-Ala-Ser-The-Arg-Glu-Ser (c) Gln-Asn-Asp-His-Ser-Phe-Pro-Leu-Thr amino acid sequence It has been found that it is characterized by having a gene sequence which encodes Such three kinds of amino acid sequences contained in each of the above H chain and L chain are considered to be important amino acid sequences that determine the binding ability of the antibody molecule, and such amino acid sequences have a neutralizing activity against HIV. It was considered to be closely related to the function of the antibody molecule. That is, the general analysis of antibody genes reported by Kabat et al. (Sequences of Prote
ins of Immunological Interest, 4th.ed.US Depar
tment of Health and Human Services (1987)), the above-mentioned amino acid sequence is the sequence of the complementarity determining regions (CDR1 to CDR3) of the variable region that determines the antibody activity of the anti-HIV antibody of the present invention. Was found.

【0026】このように本発明により提供される上記の
アミノ酸配列をコードする核酸配列をもとに、HIVに
対して中和活性を有する組換え抗体を調製することが可
能となる。すなわち、キメラ抗体作製法について述べた
特開昭60-155132号及び特開昭61-47500号等に記載の方
法に基づき、配列表配列番号1記載のH鎖可変領域をコ
ードする遺伝子断片の下流にヒト抗体のH鎖定常領域を
コードする遺伝子断片を連結させた抗HIVキメラ抗体
H鎖をコードする遺伝子と、その上流にプロモーターを
有する発現ベクター、及び配列表配列番号2記載のL鎖
可変領域をコードする遺伝子断片の下流にヒト抗体のL
鎖定常領域をコードする遺伝子断片を連結させた抗HI
Vキメラ抗体L鎖をコードする遺伝子と、その上流にプ
ロモーターを有する発現ベクターを構築し、これらを動
物細胞内で発現させることにより、抗HIVキメラ抗体
が得られる。また、改変抗体作製法について述べた特開
平4-141095号等の記載の方法に基づき、相補性決定領域
のみ上記のアミノ酸配列をコードするよう合成DNA等
をそれぞれ調製し、これらをヒト抗体をコードする遺伝
子に移植することにより、抗HIV改変抗体を調製する
ことが可能となる。
As described above, it becomes possible to prepare a recombinant antibody having a neutralizing activity against HIV based on the nucleic acid sequence encoding the above-mentioned amino acid sequence provided by the present invention. That is, based on the method described in JP-A-60-155132 and JP-A-61-47500, which describe the method for preparing a chimeric antibody, the downstream of the gene fragment encoding the H chain variable region shown in SEQ ID NO: 1 in the Sequence Listing. A gene encoding an anti-HIV chimeric antibody H chain in which a gene fragment encoding a human antibody H chain constant region is ligated to, an expression vector having a promoter upstream thereof, and the L chain variable region of SEQ ID NO: 2 in the Sequence Listing Of the human antibody downstream of the gene fragment encoding
Anti-HI to which a gene fragment encoding a chain constant region is ligated
An anti-HIV chimeric antibody can be obtained by constructing an expression vector having a gene encoding a V chimeric antibody L chain and a promoter upstream thereof and expressing these in animal cells. In addition, based on the method described in Japanese Patent Laid-Open No. 4-41095, which describes a method for producing a modified antibody, synthetic DNAs and the like are prepared so that only the complementarity determining regions encode the above amino acid sequences, and these encode human antibodies. It becomes possible to prepare an anti-HIV modified antibody by transplanting it into the gene.

【0027】このようにして調製される本発明の組換え
抗HIV抗体は、そのH鎖可変領域の相補性決定領域と
して下記の配列(CDR1〜CDR3)を有することを特徴とす
る(配列表配列番号4〜6記載)。 (H鎖) CDR1:Thr-Phe-Gly-Met-Gly-Val-Ser CDR2:His-Ile-Tyr-Trp-Asp-Asp-Asp-Lys-His-Tyr-Asn-
Pro-Ser-Leu-Lys-Ser CDR3:Arg-Val-Phe-Tyr-Gly-Asn-Ser-Asp-Phe-Met-Asp-
His また、L鎖可変領域の相補性決定領域として下記の配列
(CDR1〜CDR3)を有することを特徴とする(配列表配列
番号7〜9記載)。 (L鎖) CDR1:Lys-Ser-Ser-Gln-Ser-Leu-Leu-Asn-Ser-Gly-Asn-
Gln-Lys-Asn-Tyr-Leu-Ala CDR2:Gly-Ala-Ser-The-Arg-Glu-Ser CDR3:Gln-Asn-Asp-His-Ser-Phe-Pro-Leu-Thr
The thus-prepared recombinant anti-HIV antibody of the present invention is characterized by having the following sequences (CDR1 to CDR3) as complementarity determining regions of its H chain variable region (sequence listing). Nos. 4 to 6). (H chain) CDR1: Thr-Phe-Gly-Met-Gly-Val-Ser CDR2: His-Ile-Tyr-Trp-Asp-Asp-Asp-Lys-His-Tyr-Asn-
Pro-Ser-Leu-Lys-Ser CDR3: Arg-Val-Phe-Tyr-Gly-Asn-Ser-Asp-Phe-Met-Asp-
His is also characterized by having the following sequences (CDR1 to CDR3) as complementarity determining regions of the L chain variable region (described in SEQ ID NOs: 7 to 9 in the sequence listing). (L chain) CDR1: Lys-Ser-Ser-Gln-Ser-Leu-Leu-Asn-Ser-Gly-Asn-
Gln-Lys-Asn-Tyr-Leu-Ala CDR2: Gly-Ala-Ser-The-Arg-Glu-Ser CDR3: Gln-Asn-Asp-His-Ser-Phe-Pro-Leu-Thr

【0028】さらに、本発明者らは、改変抗体を調製す
る際には、これまで報告されているように、上記の相補
性決定領域のみマウス由来のアミノ酸配列に組換えるよ
りも、さらに相補性決定領域に隣接するフレーム(F
R)領域の一部についてもマウス由来の配列に組換える
ことで、より本来の抗体活性を維持した組換え抗体が得
られることを見いだした。本発明の抗HIV改変抗体の
H鎖V領域及びL鎖V領域のアミノ酸配列を、配列表配
列番号10及び11に示した。以下、本発明の理解を深
めるために実施例に沿って説明するが、本発明はこれら
の実施例に限定されるものではない。
Furthermore, the inventors of the present invention, when preparing a modified antibody, as described so far, rather than recombining only the above-mentioned complementarity determining region with a mouse-derived amino acid sequence, the complementarity The frame (F
It was found that even a part of the R region can be recombined with a mouse-derived sequence to obtain a recombinant antibody that maintains the original antibody activity. The amino acid sequences of the H chain V region and L chain V region of the anti-HIV modified antibody of the present invention are shown in SEQ ID NOs: 10 and 11 of the Sequence Listing. Hereinafter, the present invention will be described along with examples in order to deepen the understanding thereof, but the present invention is not limited to these examples.

【0029】[0029]

【実施例】【Example】

実施例1:モノクローナル抗体の調製 (1)抗原の調製 ウイルスの調製 本実施例で使用したHIVは、以下の方法により、分
離、調製されたものである。まず、各患者より採取した
血液(20〜40ml)から、常法により末梢血リンパ球を分
離し、これに、フィトヘモアグルチニン(PHA)で 4日
間刺激培養した正常人由来の末梢血リンパ球を加え、50
U/mlのインターロイキン2(IL-2)存在下で7〜21日間
培養した培養上清をウイルス液とした(以後、この感染
者由来の臨床分離株をNI-53株と呼ぶ)。また、HTLV-II
IB、IIIMN及びIIIRF株については、これらのウイルスを
産生する持続産生細胞 CEM/IIIB、H9/IIIMN、U937/III
RFの培養により得られた培養上清をそのウイルス液とし
た。
Example 1: Preparation of monoclonal antibody (1) Preparation of antigen Preparation of virus HIV used in this example was isolated and prepared by the following method. First, peripheral blood lymphocytes were separated from blood (20 to 40 ml) collected from each patient by a standard method, and then peripheral blood lymphocytes from a normal person who had been stimulated and cultured with phytohemoaglutinin (PHA) for 4 days were used. And add 50
The culture supernatant, which was cultured for 7 to 21 days in the presence of U / ml interleukin 2 (IL-2), was used as a virus solution (hereinafter, this clinical isolate derived from an infected person is referred to as NI-53 strain). Also, HTLV-II
I B, III MN and III for RF strain sustained production producing these viruses cells CEM / III B, H9 / III MN, U937 / III
The culture supernatant obtained by culturing RF was used as the virus solution.

【0030】合成ペプチド NI-53株外皮膜糖蛋白質gp120のアミノ酸配列第6〜25番
目に対応する合成ペプチド(NNTRKAIRVGPG
RTLYATRR;配列表配列番号3記載)を免疫抗原
及びアッセイ用抗原として使用した。上記ペプチドの化
学合成にはABI430Aペプチドシンセサイザー(アプ
ライドバイオシステム社)を用いた。その結果、粗生成
物が得られ、トリフルオロメタンスルホン酸(TFMSA)
法によりレジンからペプチドを切り出した後、逆相高速
液体クロマトグラフィー(HPLC)による精製を行な
った。逆相HPLCによる精製を3回繰り返し、得られ
たピーク画分を集め、アミノ酸分析を行なった結果、NI
-53株のアミノ酸組成と一致したことより、所望の上記
配列を有するNI-53株gp120の合成ペプチドと断定した。
次に得られた合成ペプチド(SP-12)を凍結乾燥し、免
疫用担体としてのKLH(キーホールリンペットヘモシ
アニン)と結合させ、ペプチド-KLHコンジュゲート
を作製した。まず、上記ペプチド10mgを10mMPBS(p
H7.0)2mlに溶解し、MBS型架橋剤のジメチルホルム
アミド溶液(40mg/100μl)を添加して室温で30分間攪
拌した。次に反応液をジクロルメタン2mlで3回洗浄
し、得られた水層を分取した(溶液A)。一方、KLH
20mgを0.2M Tris-HCl(pH8.6,8M尿素)5mlに溶解
し、ジチオトレイトール(DTT)を添加して室温で1
時間攪拌した。反応液に10%トリクロロ酢酸3mlを加
え、沈澱物を吸引濾過し、蒸留水2mlで洗浄した後、20
mM NaPB(pH7.0, 6M尿素)5mlに溶解した(溶液
B)。溶液Aと溶液Bとを室温にて3時間混合攪拌し、
反応生成物を透析した後、凍結乾燥した。以上のように
してNI-53株gp120合成ペプチド及びペプチド-KLHコ
ンジュゲートを調製し、免疫用抗原及びアッセイ用抗原
として用いた。
Synthetic Peptide Synthetic peptide (NNTRKAIRVGPG) corresponding to the 6th to 25th amino acid sequences of NI-53 strain outer coat glycoprotein gp120.
RTLYATRR (described in SEQ ID NO: 3 in the sequence listing) was used as an immunogen and an assay antigen. An ABI430A peptide synthesizer (Applied Biosystems) was used for the chemical synthesis of the above peptides. As a result, a crude product was obtained, and trifluoromethanesulfonic acid (TFMSA) was obtained.
The peptide was cleaved from the resin by the method and then purified by reverse phase high performance liquid chromatography (HPLC). Purification by reverse phase HPLC was repeated 3 times, and the obtained peak fractions were collected and analyzed for amino acids.
Based on the agreement with the amino acid composition of the -53 strain, it was determined to be a synthetic peptide of NI-53 strain gp120 having the above-mentioned desired sequence.
Next, the obtained synthetic peptide (SP-12) was lyophilized and coupled with KLH (keyhole limpet hemocyanin) as a carrier for immunization to prepare a peptide-KLH conjugate. First, 10 mg of the above peptide was added to 10 mM PBS (p
H7.0) was dissolved in 2 ml, MBS type cross-linking agent in dimethylformamide (40 mg / 100 μl) was added, and the mixture was stirred at room temperature for 30 minutes. Next, the reaction solution was washed 3 times with 2 ml of dichloromethane, and the obtained aqueous layer was separated (solution A). On the other hand, KLH
Dissolve 20 mg in 5 ml of 0.2 M Tris-HCl (pH 8.6, 8 M urea), add dithiothreitol (DTT), and add 1 at room temperature.
Stir for hours. 3 ml of 10% trichloroacetic acid was added to the reaction solution, and the precipitate was suction filtered and washed with 2 ml of distilled water, then 20
It was dissolved in 5 ml of mM NaPB (pH 7.0, 6M urea) (solution B). Solution A and solution B were mixed and stirred at room temperature for 3 hours,
The reaction product was dialyzed and then freeze-dried. The NI-53 strain gp120 synthetic peptide and the peptide-KLH conjugate were prepared as described above and used as the antigen for immunization and the antigen for assay.

【0031】臨床分離ウイルスのgp120V3ドメイン
(gp120アミノ酸No.247-370相当する領域)組換え発現
ペプチドの作製 HIV感染者の末梢血リンパ球(PBL)を1×RSBバ
ッファーに浮遊させ、SDS(最終濃度1%)、Protei
nase K(最終濃度1mg/ml)を加え、37℃で2時間イン
キュベートした。その後、フェノール抽出、エタノール
沈澱を繰り返し、高分子量DNA(genomic DNA)を
得た。この高分子量DNAを鋳型にして下記のA,Cプ
ライマーを用い、臨床分離ウイルスNI-53株の gp120 V
3ドメイン(アミノ酸 247-370)を常法に従ってPCR
法で増幅した。 Aプライマー;(5')GCCGGATCCACACATGGAATTAGGCCAGTA
(3') Cプライマー;(3')AGTCCTCCCCTGGGTCTTTAAACTGACGTCTCG
(5') 増幅はTaqポリメラーゼを用い、30〜35サイクル行なっ
た。
Preparation of recombinantly expressed peptide of gp120V3 domain of clinically isolated virus (region corresponding to gp120 amino acid No. 247-370) HIV-infected peripheral blood lymphocytes (PBL) were suspended in 1 × RSB buffer and SDS (final). Concentration 1%), Protei
nase K (final concentration 1 mg / ml) was added and incubated at 37 ° C for 2 hours. Then, phenol extraction and ethanol precipitation were repeated to obtain high molecular weight DNA (genomic DNA). Using this high molecular weight DNA as a template and the following A and C primers, clinically isolated virus NI-53 strain gp120 V
PCR of 3 domains (amino acids 247-370) according to the standard method
Amplified by the method. A primer; (5 ') GCCGGATCCACACATGGAATTAGGCCAGTA
(3 ') C primer; (3') AGTCCTCCCCTGGGTCTTTAAACTGACGTCTCG
(5 ') amplification was performed using Taq polymerase for 30 to 35 cycles.

【0032】このようにして得た増幅DNAフラグメン
トをpUC18プラスミドにてクローニングし、ダイデオキ
シ法により増幅DNAフラグメントのシークエンスを行
なった。更に、このクローン化DNAフラグメントをpU
EX2発現ベクターに組み込み、大腸菌にトランスフェク
トして42℃で heat inductionを行ない発現させた。発
現したNI-53株のgp120V3ドメイン(アミノ酸No.247-37
0)はβ-ガラクトシダーゼとの融合蛋白となっており、
大腸菌封入体として以下の精製を行なった。発現した大
腸菌をグラスビーズにて破砕した後、リゾチーム処理
(最終濃度0.1mg/ml)を4℃にて行ない、得られた遠心
沈査物をTriton X-100(最終濃度0.5%)にて処理し
た。得られた遠心沈査物を8M尿素に可溶化して、免疫
用抗原及びアッセイ用抗原として使用した。
The amplified DNA fragment thus obtained was cloned with the pUC18 plasmid, and the amplified DNA fragment was sequenced by the dideoxy method. Furthermore, this cloned DNA fragment was added to pU
It was incorporated into an EX2 expression vector, transfected into E. coli, and subjected to heat induction at 42 ° C for expression. The expressed gp120V3 domain of the NI-53 strain (amino acid No. 247-37
0) is a fusion protein with β-galactosidase,
The following purification was performed as an E. coli inclusion body. After crushing the expressed Escherichia coli with glass beads, lysozyme treatment (final concentration 0.1 mg / ml) was performed at 4 ° C., and the obtained centrifugal precipitate was treated with Triton X-100 (final concentration 0.5%). . The obtained centrifugal precipitate was solubilized in 8M urea and used as an immunizing antigen and an assay antigen.

【0033】(2)マウスの免疫感作 一例として、前記で調製した合成ペプチドによる免疫感
作を以下に示す。4〜8週齢のBALB/cマウス群を使用し
た。免疫感作は腹腔内経路で3回接種した後、静脈内経
路で1回接種するものとし、0日目にフロイントの完全
アジュバント存在下、14日目にフロイントの不完全アジ
ュバント存在下、28日目にフロイントの不完全アジュバ
ント存在下、42日目にアジュバント非存在下でそれぞれ
100μgの前記で調製した合成ペプチドと合成ペプチド-
KLHコンジュゲート抗原混合物を接種した。
(2) Immunization of mouse As an example, immunization with the synthetic peptide prepared above is shown below. A group of 4-8 week old BALB / c mice was used. Immunization is to be performed three times by the intraperitoneal route and then once by the intravenous route. On the 0th day, in the presence of Freund's complete adjuvant, on the 14th day in the presence of Freund's incomplete adjuvant, 28 days. In the presence of Freund's incomplete adjuvant and on the 42nd day in the absence of adjuvant.
100 μg of synthetic peptide and synthetic peptide prepared above-
The KLH conjugate antigen mixture was inoculated.

【0034】(3)細胞融合及びハイブリドーマの培養 最終免疫の3日後に、常法によりマウスから脾臓細胞を
採取した。脾臓細胞をミエローマ細胞p3X63Ag8-U1と細
胞数1対5の割合で混合して、遠心処理(1,200r.p.m./
5分)して上清を除き、沈澱した細胞塊を充分ほぐした
後、攪拌しながら、1mlの混合液(ポリエチレングリコ
ール-4000(2g),MEM(2ml),ジメチルスルホキシド)
に加えた。5分間37℃にてインキュベートした後、液の
全量が50mlになるようにゆっくりとMEMを加えた。遠
心分離後(900r.p.m./5分)後、上清を除き、ゆるやか
に細胞をほぐした。これに正常培地(RPMI-1640培地に
牛胎児血清10%を加えたもの)100mlを加え、メスピペ
ットを用いてゆるやかに細胞を懸濁した。
(3) Cell fusion and culture of hybridoma Three days after the final immunization, spleen cells were collected from mice by a conventional method. Spleen cells were mixed with myeloma cells p3X63Ag8-U1 at a ratio of 1 to 5 cells and centrifuged (1,200 rpm /
After 5 minutes), the supernatant was removed, and the precipitated cell mass was thoroughly loosened. Then, with stirring, 1 ml of a mixed solution (polyethylene glycol-4000 (2 g), MEM (2 ml), dimethyl sulfoxide).
Added to. After incubating for 5 minutes at 37 ° C., MEM was slowly added so that the total amount of the solution was 50 ml. After centrifugation (900 rpm./5 minutes), the supernatant was removed and the cells were loosely loosened. To this, 100 ml of normal medium (RPMI-1640 medium plus 10% fetal calf serum) was added, and the cells were gently suspended using a measuring pipette.

【0035】懸濁液を24穴の培養プレートに分注し(1
ml/穴)5%の炭酸ガスを含む培養器中で、温度37℃で2
4時間培養した。次に、1ml/穴のHAT培地(正常培地
にヒポキサンチン(1×10-4M),チミジン(1.5×10-3M)
及びアミノプテリン(4×10-7M))を加え、さらに24時
間培養した。その後、2日間、24時間毎に、1mlの培養
上清を同量のHT培地(HAT培地からアミノプテリン
を除く)と交換し、前記と同様にして10〜14日間培養し
た。
Dispense the suspension into a 24-well culture plate (1
2 ml at a temperature of 37 ℃ in an incubator containing 5% carbon dioxide gas.
Cultured for 4 hours. Next, 1 ml / well of HAT medium (hypoxanthine (1 × 10 −4 M) and thymidine (1.5 × 10 −3 M) were added to normal medium).
And aminopterin (4 × 10 −7 M) were added and the cells were further cultured for 24 hours. Thereafter, every 24 hours for 2 days, 1 ml of the culture supernatant was replaced with the same amount of HT medium (except for aminopterin from the HAT medium), and the cells were cultured for 10 to 14 days in the same manner as above.

【0036】コロニー状に生育した融合細胞(約300
個)の認められたそれぞれの穴について、1mlの培養上
清を同量のHT培地と交換し、その後、2日間、24時間
毎に、同様の交換を行なった。HT培地で3〜4日培養
した後、培養上清の一部を採り、以下に述べるスクリー
ニング法にて目的のハイブリドーマを選別した。
Fused cells (about 300
1 ml of the culture supernatant was replaced with the same amount of the HT medium, and then the same replacement was performed every 24 hours for 2 days. After culturing in HT medium for 3 to 4 days, a part of the culture supernatant was collected and the target hybridoma was selected by the screening method described below.

【0037】(4)ハイブリドーマのスクリーニング 目的のハイブリドーマの選別には下記のEIA法、ウエ
スタン・ブロット法を組み合わせて行なった。このよう
にして選別されたクローンについて中和活性を測定し
た。
(4) Screening of hybridomas The desired hybridomas were selected by combining the following EIA method and Western blotting method. The neutralizing activity of the clones thus selected was measured.

【0038】EIA法 96穴のマイクロテストプレートに前記のごとく作製した
合成ペプチド抗原、もしくは精製gp120抗原、もしくは
組換えペプチド(蛋白質濃度2μg/ml)を100μl/穴で
加え、4℃で一晩インキュベートすることにより固相化
した。さらに、1%BSA(ウシ血清アルブミン)溶液
150μlを加え、同様にインキュベートしてマスキングを
行なった。このようにして作製した抗原固相化プレート
に細胞融合法によって得られたハイブリドーマおよびク
ローニング後のハイブリドーマの培養上清を加えて、4
℃で1.5時間インキュベート後、0.1%Tween20/PBS
で3回洗浄し、ペルオキシダーゼ標識抗マウス免疫グロ
ブリン抗体溶液(カッペル社製、5,000倍希釈)を100μ
l/穴加えた。4℃で1時間インキュベート後、0.1%Twe
en20/PBSにて5回洗浄し、その後TMBZ基質溶液
を加え、常法により発色させ、その吸光度を波長450nm
にて測定した。こうしてNI-53株由来の合成ペプチドと
のみ強く反応し、HTLV-IIIMN由来の合成ペプチドと
反応しないハイブリドーマクローンを選択した。
EIA method To a 96-well microtest plate, 100 μl / well of synthetic peptide antigen or purified gp120 antigen or recombinant peptide (protein concentration 2 μg / ml) prepared as described above was added and incubated at 4 ° C. overnight. By doing so, it was solid-phased. Furthermore, 1% BSA (bovine serum albumin) solution
150 μl was added and incubated in the same manner for masking. The thus prepared antigen-immobilized plate was added with the culture supernatant of the hybridoma obtained by the cell fusion method and the hybridoma after cloning, and
After incubating at ℃ for 1.5 hours, 0.1% Tween20 / PBS
Wash 3 times with 100 μl of peroxidase-labeled anti-mouse immunoglobulin antibody solution (Kappel, 5,000-fold diluted)
l / hole added. After incubating at 4 ℃ for 1 hour, 0.1% Twe
After washing 5 times with en20 / PBS, TMBZ substrate solution was added and color was developed by a conventional method, and the absorbance was measured at a wavelength of 450 nm.
It was measured at. Thus, a hybridoma clone that strongly reacts only with the synthetic peptide derived from the NI-53 strain and does not react with the synthetic peptide derived from HTLV-III MN was selected.

【0039】ウエスタン・ブロッティング法 トービン等の方法に準じて行なった(Towbin et al., P
roc. Natl. Acad. Sci. U.S.A., 76, p.4350(1979))。
NI-53精製ウイルスを文献記載の方法(Science, 224 p.
497(1984))で調製し、これを12%のSDS-PAGEを
用いて電気泳動し、ゲルをニトロセルロース膜に乗せて
ウイルスを膜上に移行させ、膜を0.4〜0.5cm幅に切断し
た。各細片をハイブリドーマ培養上清液に浸し、一晩イ
ンキュベートした。その後、細片をPBSで3回洗浄し
た後、ビオチン標識抗マウスIgG(TAGO社製)の1:750
希釈液中で2時間保温した。細片をPBSで3回洗浄
後、西洋わさびペルオキシダーゼを結合させたアビジン
(シグマ社製)(1:1000希釈)に浸し、1時間保温し
た。PBSで3回洗浄後、4-クロロ-1-ナフトールを用
いる発色試薬(Bio-Rad社製)で発色させ、NI-53gp120
の発色バンドを示すハイブリドーマを選びクローニング
した。クローニング後のハイブリドーマクローンについ
ても同様の手法で選別した。
Western blotting method This was carried out according to the method of Tobin et al. (Towbin et al., P
roc. Natl. Acad. Sci. USA, 76 , p. 4350 (1979)).
NI-53 purified virus was prepared by the method described in the literature (Science, 224 p.
497 (1984)), this was electrophoresed using 12% SDS-PAGE, the gel was placed on a nitrocellulose membrane to transfer the virus onto the membrane, and the membrane was cut to a width of 0.4 to 0.5 cm. . Each strip was immersed in the hybridoma culture supernatant and incubated overnight. Then, the strips were washed 3 times with PBS, and then 1: 750 of biotin-labeled anti-mouse IgG (TAGO) was used.
Incubated in the diluted solution for 2 hours. The strips were washed 3 times with PBS, dipped in avidin (manufactured by Sigma) conjugated with horseradish peroxidase (1: 1000 dilution), and kept warm for 1 hour. After washing three times with PBS, color is developed with a color-developing reagent (Bio-Rad) using 4-chloro-1-naphthol, and NI-53gp120.
A hybridoma showing a colored band of was selected and cloned. The hybridoma clones after cloning were also selected by the same method.

【0040】中和活性測定法 中和活性測定には、各PNDアミノ酸シークエンスを有す
る患者からの分離ウイルス及びそのクローン化ウイルス
の培養上清をウイルス原液(104.5〜105 TCID50)とし
て使用した。ウイルスのクローニングは、限界希釈法、
または、CD4-HeLaの細胞でのプラーク法を用いた。分離
ウイルス及びそのクローン化ウイルスについて、実施例
1(1)抗原の調製のに示したPCR-シークエンス法によ
りPNDのアミノ酸配列を再度確認した。
Neutralizing activity measurement method For the neutralizing activity measurement, culture supernatants of isolated viruses from patients having each PND amino acid sequence and cloned viruses thereof were used as virus stock solutions (10 4.5 to 10 5 TCID 50 ). . Cloning of viruses is carried out by the limiting dilution method,
Alternatively, the plaque method with cells of CD4-HeLa was used. With respect to the isolated virus and its cloned virus, the amino acid sequence of PND was confirmed again by the PCR-sequencing method described in Example 1 (1) Preparation of antigen.

【0041】細胞非介在型ウイルス感染(cell-freeウ
イルス感染)に対する中和活性測定については、まず、
10TCID50/50μlに調製したウイルス液とハイブリドーマ
クローン培養上清または腹水精製液の50μl(種々の段
階希釈したもの)とを96穴の平底プレートに播種し、37
℃で1時間インキュベートした。その後、MT4細胞を1
04個/100μl/穴(5%FCS、L-グルタミン 3.5〜4.0
g/l、ペニシリン50U/ml及びストレプトマイシン50μg/m
lを含むRPMI1640の培地に浮遊したもの)で添加し、5
日間培養した。そして、感染時に生じる合胞体形成(シ
ンシチウムフォーメーション)を抗体が抑制するか否か
で中和活性を判定した。また、中和力価は合胞体形成を
100%抑制する抗体の最低有効濃度として表した。
Regarding the measurement of neutralizing activity against cell-free virus infection (cell-free virus infection), first,
Inoculate a 96-well flat-bottomed plate with the virus solution prepared to 10TCID 50/50 μl and 50 μl of hybridoma clone culture supernatant or ascites purified solution (various serial dilutions),
Incubated at 0 ° C for 1 hour. Then, add MT4 cells to 1
0 4 pieces / 100 μl / hole (5% FCS, L-glutamine 3.5 to 4.0
g / l, penicillin 50 U / ml and streptomycin 50 μg / m
suspended in RPMI1640 medium containing 1), and added 5
Cultured for a day. Then, the neutralizing activity was determined by whether or not the antibody suppresses syncytium formation that occurs during infection. In addition, the neutralizing titer is in syncytia formation.
Expressed as the lowest effective concentration of antibody that inhibits 100%.

【0042】次に、HIV持続産生細胞による細胞間感
染(cell to cell感染)の阻害活性については、まず、
103〜104個/50μl/穴に調製したエフェクター細胞(HUT
78/NI53細胞等)とハイブリドーマクローン培養上清ま
たは腹水精製液の50μl(種々の段階希釈したもの)と
を96穴の平底プレートに播種し、37℃で30分間インキュ
ベートした。その後、標的細胞であるMT4細胞を5×
104個/100μl/穴で添加し、37℃で24時間培養した。そ
して、標的細胞であるMT4細胞の合胞体形成を抗体抑
制するか否かで中和活性を判定した。また、中和力価は
感染細胞による細胞間感染による合胞体形成を80%抑制
する抗体の最低有効濃度として表した。上記の選別方法
によって所望のモノクローナル抗体を産生するハイブリ
ドーマ(α64)が得られた。
Next, regarding the inhibitory activity of cell-to-cell infection by HIV persistently producing cells, first,
Effector cells (HUT) prepared at 10 3 to 10 4 cells / 50 μl / well
78 / NI53 cells and the like) and 50 μl of hybridoma clone culture supernatant or ascites purified solution (various serial dilutions) were seeded in a 96-well flat bottom plate and incubated at 37 ° C. for 30 minutes. Then, target MT4 cells 5 ×
10 4 cells / 100 μl / well were added, and the cells were cultured at 37 ° C. for 24 hours. Then, the neutralizing activity was judged depending on whether or not the antibody suppresses the syncytium formation of MT4 cells as the target cells. The neutralizing titer was expressed as the minimum effective concentration of an antibody that suppresses syncytium formation due to cell-to-cell infection by infected cells by 80%. A hybridoma (α64) producing the desired monoclonal antibody was obtained by the above selection method.

【0043】(5)α64によるモノクローナル抗体の製造 プリスタン処理した8週齢のBalb/c雌マウスに前記実施
例で得られたハイブリドーマα64株の5×106個/匹を各
々のマウスの腹腔内に投与した。10〜21日目後に、腹水
癌が誘発された。マウスから腹水を採り、3000r.p.m./
5分の遠心処理により固形成分を除去した後、アフィゲ
ルプロテインA MAPS-IIキット(Bio-Rad社製)を
用いたアフィニティークロマトグラフィーにて精製し
た。
(5) Production of Monoclonal Antibody Using α64 5 × 10 6 hybridoma α64 strains obtained in the above-described example were injected intraperitoneally into each pristane-treated 8-week-old Balb / c female mouse. Was administered to Ascites cancer was induced after 10 to 21 days. Ascites was collected from the mouse, 3000r.pm/
After removing the solid component by centrifugation for 5 minutes, it was purified by affinity chromatography using an Affigel Protein A MAPS-II kit (Bio-Rad).

【0044】実施例2:α64抗体の性状解析 (1)α64抗体の有する中和特性 α64抗体の有する中和特性について検討した。方法は実
施例1(4)ハイブリドーマのスクリーニングの中和活
性測定法の項に示した。結果を表1に示す。
Example 2: Characteristic analysis of α64 antibody (1) Neutralizing property of α64 antibody The neutralizing property of α64 antibody was examined. The method is described in Example 1 (4) Hybridoma screening screening method. The results are shown in Table 1.

【0045】[0045]

【表1】 1.感染細胞による細胞間感染を80%阻害する抗体の最低
有効濃度(μg/ml) 2.ウイルス感染を100%阻害する抗体の最低有効濃度
(μg/ml)
[Table 1] 1. Minimum effective concentration of antibody that inhibits cell-to-cell infection by infected cells by 80% (μg / ml) 2. Minimum effective concentration of antibody that inhibits virus infection by 100% (μg / ml)

【0046】右側のカラムはそれぞれの変異株によるウ
イルス感染を100%阻害する抗体の最低有効濃度を示し
ている。コントロールである0.5β抗体はIIIB/LAV株
に対して特異的な中和活性を、また、μ5.5抗体及びμ3
9.1抗体は逆にIIIMN株の感染をそれぞれ0.5μg/mlと31
μg/mlの濃度で100%阻害し、他のIIIB、IIIRF株は阻害
しないIIIMN株特異的な中和抗体であった。これに対し
て、α64抗体は、IIIM N、IIIB/LAV、及びIIIRF株を阻害
することはできないが、HIV感染者由来の分離ウイル
スNI-53株を2μg/mlの濃度で100%阻害することが確認
された。更に、ここに示していないが、他の臨床分離ウ
イルスでNI-61株及びKM-03株(Hattoriet al., AIDS Re
s and Human Retroviruses, 7, p825,(1991))の感染も
それぞれ 12.8μg/mlと10.9μg/mlの濃度で100%阻害し
た。
The column on the right shows the lowest effective concentration of the antibody that completely inhibits the virus infection by each mutant strain. The control 0.5β antibody had a specific neutralizing activity against the III B / LAV strain, and the μ5.5 antibody and μ3 antibody
On the contrary, the 9.1 antibody was infected with the III MN strain by 0.5 μg / ml and 31
It was a neutralizing antibody specific to the III MN strain that inhibited 100% at a concentration of μg / ml and did not inhibit other III B and III RF strains. On the other hand, the α64 antibody cannot inhibit III M N , III B / LAV, and III RF strains, but the isolated virus NI-53 strain derived from an HIV-infected person is 100% at a concentration of 2 μg / ml. It was confirmed to inhibit. Although not shown here, other clinically isolated viruses such as NI-61 strain and KM-03 strain (Hattori et al., AIDS Res.
S. and Human Retroviruses, 7, p825, (1991)) were also 100% inhibited at the concentrations of 12.8 μg / ml and 10.9 μg / ml, respectively.

【0047】また、左側のカラムはそれぞれの感染細胞
による細胞間感染を80%阻害する抗体の最低有効濃度を
示しているが、コントロールの0.5β抗体はIIIB/LAV
感染細胞特異的な中和活性を示し、μ5.5抗体及びμ39.
1抗体はIIIMN感染細胞による細胞間感染をそれぞれ16μ
g/mlと63μg/mlの濃度で阻害し、他のIIIB、IIIRF株感
染細胞による細胞間感染は阻害しなかった。ここでもα
64抗体は、NI-53株感染細胞による細胞間感染を16μg/m
lの濃度で阻害した。すなわち、感染細胞による細胞間
感染阻害においても臨床分離ウイルスNI-53株特異的な
中和抗体であることが判明した。
The left column shows the minimum effective concentration of the antibody that inhibits 80% of the cell-to-cell infection by each infected cell, but the control 0.5β antibody is III B / LAV.
Shows neutralizing activity specific to infected cells, μ5.5 antibody and μ39.
1 antibody caused 16 μm of cell-to-cell infection by III MN- infected cells.
It inhibited at concentrations of g / ml and 63 μg / ml, but did not inhibit intercellular infection by cells infected with other III B and III RF strains. Again α
64 antibody induces cell-to-cell infection with NI-53 strain infected cells at 16 μg / m
It was inhibited at a concentration of l. That is, it was revealed that the neutralizing antibody specific to the clinically isolated virus NI-53 strain is also effective in inhibiting cell-to-cell infection by infected cells.

【0048】(2)感染細胞由来のgp120との反応性(ウ
エスタン・ブロッティング法) α64抗体の感染細胞由来の外皮膜蛋白質gp120との反応
性を調べる為に、ウエスタン・ブロッティングを行なっ
た。抗原としてHUT78/NI-53細胞ライゼートを用いた。
方法は前述した実施例1(4)ハイブリドーマのスクリー
ニングのウエスタン・ブロッティング法の項に示し
た。Aのストリップは陽性コントロールとしてヒトHI
V抗体陽性血清を用いたが、この部分にgp120のバンド
が観察される。Bのストリップは、HTLVーIIIMN株の
gp120と結合し、該ウイルスを強力に中和する能力を有
するμ5.5モノクローナル抗体を用いているが、NI-53感
染細胞のgp120は認識していない。これに対して、本発
明に基づくα64抗体(ストリップC)は、明確にNI-53
感染細胞のgp120を認識していることが判明した(図
1)。
(2) Reactivity with Infected Cell-Derived gp120 (Western Blotting Method) Western blotting was carried out to examine the reactivity of α64 antibody with the infected cell-derived outer coat protein gp120. HUT78 / NI-53 cell lysate was used as an antigen.
The method is shown in the section of Western blotting method of the hybridoma screening in Example 1 (4) described above. Strip A is positive for human HI
V antibody-positive serum was used, and a gp120 band is observed in this portion. Strip B is for HTLV-III MN strain
A μ5.5 monoclonal antibody capable of binding to gp120 and strongly neutralizing the virus was used, but it does not recognize gp120 of NI-53-infected cells. In contrast, the α64 antibody (strip C) according to the present invention clearly shows NI-53.
It was found that the infected cells recognized gp120 (Fig. 1).

【0049】(3)α64抗体によるエピトープマッピング エピトープ・スキャニング・キット(ケンブリッジ・リ
サーチ・バイオケミカルズ社製)を用いて、以下に示す
ようにNI-53のPND(主要中和領域)のヘキサペプチドを
合成した。そして、これらのヘキサペプチドとα64抗体
とのEIAを行ない、その結果を表2に示した。また、認
識するエピトープを図2に要約した。
(3) Epitope mapping with α64 antibody Using the Epitope Scanning Kit (Cambridge Research Biochemicals), the hexapeptides of PND (major neutralization region) of NI-53 as shown below were analyzed. Synthesized. Then, EIA was performed between these hexapeptides and the α64 antibody, and the results are shown in Table 2. In addition, the recognized epitopes are summarized in FIG.

【0050】[0050]

【表2】 [Table 2]

【0051】表2及び図2より、臨床分離ウイルスNI-5
3株に対して強い中和活性を有するα64抗体は、2種類
のヘキサペプチド即ちRVGPGRとVGPGRTに反応性を示し、
特にRVGPGRを強く認識していることが確認された。以上
の結果より、α64抗体の中和エピトープはRVGPGR配列で
あることが明らかになった。
From Table 2 and FIG. 2, clinically isolated virus NI-5
Α64 antibody, which has a strong neutralizing activity against 3 strains, shows reactivity with two types of hexapeptides, RVGPGR and VGPGRT,
In particular, it was confirmed that RVGPGR was strongly recognized. From the above results, it was revealed that the neutralizing epitope of α64 antibody is the RVGPGR sequence.

【0052】(4)各種HIV変異株由来PND(principal
neutralizing determinant)合成ペプチドとの反応性 各種合成ペプチドとしてHTLV-IIIMN、HTLV-III
RF、及び臨床分離株由来のそれぞれのPND合成ペプチド
を使用した。その使用したPND合成ペプチドのアミノ酸
配列を図3に示す。そして、方法は前述した実施例1
(4)ハイブリドーマのスクリーニングのEIA法の項
に示した。図4に示すように、α64抗体は、IIIMN由来
ペプチド及びIIIRF由来ペプチドとは反応しないが、臨
床分離ウイルス由来の合成ペプチドのうち免疫原として
用いたSP-12(NI-53株由来ペプチド)に加えて、SP-6
(NI-61株由来ペプチド)及びSP-11(NI54-2株由来ペプ
チド)とも強く反応する抗体であることが示された。
(4) PND (principal) derived from various HIV mutants
Neutralizing determinant) Reactivity with synthetic peptides As various synthetic peptides, HTLV-III MN , HTLV-III
RF and the respective PND synthetic peptides from clinical isolates were used. The amino acid sequence of the PND synthetic peptide used is shown in FIG. Then, the method is the same as the first embodiment described above.
(4) It is shown in the section of EIA method for screening of hybridoma. As shown in FIG. 4, α64 antibody did not react with III MN- derived peptide and III RF- derived peptide, but among the synthetic peptides derived from clinically isolated virus, SP-12 (NI-53 strain-derived peptide used as an immunogen). ) In addition to SP-6
It was shown that the antibody strongly reacts with (NI-61 strain-derived peptide) and SP-11 (NI54-2 strain-derived peptide).

【0053】(5)各種HIV変異株由来PND組換え発現
ペプチドとの結合特性 α64抗体の有する結合特性及び中和活性について検討し
た。方法は実施例1(1)抗原の調製の臨床分離ウイル
スのgp120V3ドメイン組換え発現ペプチドの作製の項
と同様に行なった。その結果を図5に示した。
(5) Binding Properties with PND Recombinantly Expressed Peptides Derived from Various HIV Variants The binding properties and neutralizing activity of α64 antibody were examined. The method was carried out in the same manner as in the section of preparation of recombinant isolated peptide of gp120V3 domain of clinically isolated virus in Example 1 (1) Preparation of antigen. The results are shown in Fig. 5.

【0054】(6)PND組換え発現ペプチドとの結合特性
の解析 α64抗体と各種HIV変異株由来PND組換えペプチドと
の結合特性について検討した結果、図2及び図5に示し
たように、本発明のα64抗体は、PND内にRVGPGRまたはR
IGPGRのいずれかのアミノ酸配列が保存されている組換
え発現ペプチドに対しては結合(中和)活性を示した
が、その他のアミノ酸配列を有する組換え発現ペプチド
に対しては結合(中和)活性を示さないことが明らかに
なった。従って、この結果に基づいてα64抗体の結合
(中和)スペクトラムをまとめると以下のようになり、
本発明のα64抗体は、下記のアミノ酸から選ばれた組み
合せからなるアミノ酸配列を含有するHIVを中和する
能力を有することが明らかになった。 X9 = Arg, Ser, Lys X10 = Lys, Arg X11 = Gly, Ala X12 = Ile X13 = Arg X14 = Ile, Val X15 = Gly X16 = Pro X17 = Gly X18 = Arg X19 = Ala, Thr X20 = Val, Ile, Leu X21 = Tyr, Met, Leu X22 = Thr, Ala, Gln, Ser
(6) Analysis of binding properties with PND recombinant expressed peptide The binding properties between α64 antibody and PND recombinant peptides derived from various HIV mutant strains were examined. As a result, as shown in FIGS. The α64 antibody of the invention has RVGPGR or R
It showed binding (neutralizing) activity to recombinant expressed peptides in which any amino acid sequence of IGPGR was conserved, but bound (neutralizing) to recombinant expressed peptides having other amino acid sequences. It was revealed that it showed no activity. Therefore, based on this result, the binding (neutralization) spectrum of α64 antibody is summarized as follows:
It was revealed that the α64 antibody of the present invention has the ability to neutralize HIV containing an amino acid sequence consisting of a combination selected from the following amino acids. X 9 = Arg, Ser, Lys X 10 = Lys, Arg X 11 = Gly, Ala X 12 = Ile X 13 = Arg X 14 = Ile, Val X 15 = Gly X 16 = Pro X 17 = Gly X 18 = Arg X 19 = Ala, Thr X 20 = Val, Ile, Leu X 21 = Tyr, Met, Leu X 22 = Thr, Ala, Gln, Ser

【0055】さらに、α64抗体の中和エピトープ(RVGP
GRまたはRIGPGR配列)近傍のアミノ酸について、LaRosa
らの245例のHIV感染者由来分離株のPNDシークエンス
解析の結果(LaRosa G.J. et al., Science, 249, p932
(1990))を考慮すると、本発明のα64抗体は、下記の
アミノ酸から選ばれた組み合せからなるアミノ酸配列を
含有するHIVを中和することも可能である。 X9 = Arg, Lys, Ser, Ile, Glu, Pro, Gln, Gly, Me
t, Thr X10 = Lys, Arg, Asn, Gln X11 = Ser, Gly, Arg, His, Lys, Ala X12 = Ile, Leu, Met, Thr, Val, Glu, Phe X13 = Arg X14 = Ile, Val X15 = Gly X16 = Pro X17 = Gly X18 = Arg X19 = Ala, Val, Asn, Thr, Arg, Lys, Pro, Ser, Trp X20 = Phe, Ile, Val, Leu, Tyr, Trp, Thr, Ser, His X21 = Tyr, Val, His, Leu, Phe, Arg, Ser, Met, Ile X22 = Thr, Ala, Val, Gln, Tyr, Ser
Furthermore, the neutralizing epitope of the α64 antibody (RVGP
Amino acids near the GR or RIGPGR sequence)
Of 245 isolates from HIV-infected individuals (LaRosa GJ et al., Science, 249 , p932).
(1990)), the α64 antibody of the present invention can also neutralize HIV containing an amino acid sequence consisting of a combination selected from the following amino acids. X 9 = Arg, Lys, Ser, Ile, Glu, Pro, Gln, Gly, Me
t, Thr X 10 = Lys, Arg, Asn, Gln X 11 = Ser, Gly, Arg, His, Lys, Ala X 12 = Ile, Leu, Met, Thr, Val, Glu, Phe X 13 = Arg X 14 = Ile, Val X 15 = Gly X 16 = Pro X 17 = Gly X 18 = Arg X 19 = Ala, Val, Asn, Thr, Arg, Lys, Pro, Ser, Trp X 20 = Phe, Ile, Val, Leu, Tyr, Trp, Thr, Ser, His X 21 = Tyr, Val, His, Leu, Phe, Arg, Ser, Met, Ile X 22 = Thr, Ala, Val, Gln, Tyr, Ser

【0056】実施例3:α64キメラ抗体 (1)α64抗体マウスV領域遺伝子の単離 マウス免疫グロブリン可変(V)領域遺伝子の単離につ
いては以下のように行なった。α64細胞から常法(D.M.
Glover編集 " DNA cloning Vol.I" IRL press(1985))
に従って全RNAを抽出し、cDNA合成システム・プ
ラス( アマシャム)を用いて1本鎖cDNAを合成し
た。この1本鎖cDNAを鋳型に、Kabatら(Sequences
of Proteins of Immunological Interest 4th ed., Pu
blic Health Service, NIH, Washington DC, 1987)の
分類したV領域とJ領域の核酸塩基配列をもとにして合
成したDNAプライマーを用いてポリメレース連鎖反応
(PCR)を行なった。V領域プライマーとJ領域プラ
イマーにはそれぞれHindIII とBamHIサイトが付加され
ている。PCRはシータス社のプロトコールに従って行
なった。すなわち、これらのプライマーはともに100 pm
ol 使い、PCRの試薬はシータス社のキットを使用し
た。PCRの条件は、94℃1分、55℃1分、72℃1分で
25サイクル行なった。PCR後、得られたDNA断片をpUC
18(宝酒造製;以下本実施例で使用した試薬は特に断り
のない限り宝酒造製あるいは東洋紡製を使用した)のHi
ncIIサイトへサブクローニングした。
Example 3: α64 chimera antibody (1) Isolation of α64 antibody mouse V region gene The mouse immunoglobulin variable (V) region gene was isolated as follows. α64 cells from conventional method (DM
Edited by Glover "DNA cloning Vol.I" IRL press (1985))
The total RNA was extracted according to the method described above, and single-stranded cDNA was synthesized using the cDNA synthesis system plus (Amersham). Using this single-stranded cDNA as a template, Kabat et al. (Sequences
of Proteins of Immunological Interest 4th ed., Pu
Polymerase chain reaction (PCR) was carried out using a DNA primer synthesized based on the nucleobase sequences of the classified V region and J region of Blic Health Service, NIH, Washington DC, 1987). HindIII and BamHI sites are added to the V region primer and J region primer, respectively. PCR was performed according to the protocol of Cetus. That is, both of these primers are 100 pm
The PCR reagent used was a kit from Cetus. PCR conditions are 94 ° C 1 minute, 55 ° C 1 minute, 72 ° C 1 minute
Twenty-five cycles were performed. After PCR, the obtained DNA fragment is pUC
18 (manufactured by Takara Shuzo; the reagents used in the following examples were Takara Shuzo or Toyobo unless otherwise specified) Hi
Subcloned into the ncII site.

【0057】(2)α64抗体マウスV領域遺伝子の核酸塩
基配列 東洋紡社のシークナーゼVer.2キットを用いて、pUC18に
組み込まれたV領域遺伝子をシークエンスした。その結
果得られたα64のH鎖V領域(VH)及びL鎖V領域(V
L)の核酸塩基配列を図6及び図7に示す。また、その
核酸塩基配列から得られるアミノ酸配列についても同様
に図6及び図7に示す。α64の核酸塩基配列いずれもV
領域遺伝子特有の再配列を起こしており、しかも発現可
能なオープンリーディングフレーム(ORF)をとって
いた。
(2) Nucleotide sequence of α64 antibody mouse V region gene The V region gene incorporated in pUC18 was sequenced using Sequenase Ver.2 kit from Toyobo. The α chain H chain V region (VH) and L chain V region (V
The nucleotide sequence of L) is shown in FIGS. 6 and 7. The amino acid sequences obtained from the nucleic acid base sequences are also shown in FIGS. 6 and 7. All α64 nucleobase sequences are V
The rearrangement peculiar to the region gene was caused, and the open reading frame (ORF) capable of expression was taken.

【0058】(3)α64キメラ抗体の作製 単離されたα64抗体V領域遺伝子が本当に抗HIV活性
を担うV領域をコードする遺伝子であるかどうかを確認
するために、マウス−ヒトキメラ抗体を作製した。キメ
ラ抗体の発現のためにヒトサイトメガロウイルス(HCM
V)のエンハンサー、プロモーター(N. Whittle, et a
l., Protein Engineering, 1, 499 (1987))を持った発
現ベクター HCMV-κ,HCMV-γ1 がそれぞれ使われた。HC
MV-κは、ヒトκ鎖定常領域遺伝子と選択マーカーとし
てジヒドロ葉酸還元酵素(DHFR)遺伝子を持ち HCMV-γ
1 はヒトγ1鎖定常領域遺伝子と選択マーカーとしてne
o遺伝子を持つ。前述の調製されたα64V領域をHindIII
とBamHI制限酵素で消化し、VH及びVLの遺伝子断片をそ
れぞれ HCMV-γ1、HCMV-κの HindIII-BamHIサイトに
組み込んだ(CHα64及びCLα64)。
(3) Preparation of α64 Chimeric Antibody To confirm whether or not the isolated α64 antibody V region gene really encodes the V region responsible for anti-HIV activity, a mouse-human chimeric antibody was prepared. . Human cytomegalovirus (HCM) for expression of chimeric antibodies
V) enhancer and promoter (N. Whittle, et a
l., Protein Engineering, 1, 499 (1987)), which were used as expression vectors HCMV-κ and HCMV-γ1, respectively. HC
MV-κ has human κ chain constant region gene and dihydrofolate reductase (DHFR) gene as a selectable marker. HCMV-γ
1 is the human γ1 chain constant region gene and ne as a selection marker
o Have a gene. The α64V region prepared above was added to HindIII
Digested with BamHI restriction enzyme, and VH and VL gene fragments were incorporated into the HindIII-BamHI sites of HCMV-γ1 and HCMV-κ, respectively (CHα64 and CLα64).

【0059】(4)α64キメラ抗体の発現 上記のように構築したα64キメラ抗体遺伝子の持つ抗体
活性をCOS7細胞(ATCCCRL 1651)を用いた一時的発現系
で検討した。CHα64及びCLα64プラスミドDNAの混合物
をBio-Rad社製のエレクトロポレーション装置を用い
て、Bio-Rad社のプロトコールに従ってCOS7細胞に導入
し、10%牛胎児血清を含むDMEM培地(GIBCO社)で培
養した。3日後その培養上清を回収し、抗ヒトIgGある
いはSP-12抗原ペプチドを用いたELISA 法によりその培
養上清に存在する抗体の活性を測定した。その結果、CH
α64及びCLα64プラスミドDNAの混合物の発現産物はSP-
12ペプチドに結合性を示した。 更に、分離ウイルスNI-
53株に対する中和活性を確認したところ、マウスα64抗
体と同様に2μg/mlの最低有効濃度でウイルス感染を10
0%阻害することが明らかになった。従って上記の単離
したα64V領域遺伝子が間違いなく中和活性を持った抗
体のV領域をコードしている遺伝子であることが確認さ
れた。
(4) Expression of α64 chimeric antibody The antibody activity of the α64 chimeric antibody gene constructed as described above was examined in a temporary expression system using COS7 cells (ATCC CRL 1651). A mixture of CHα64 and CLα64 plasmid DNA was introduced into COS7 cells using an electroporation apparatus manufactured by Bio-Rad according to the protocol of Bio-Rad, and cultured in DMEM medium containing 10% fetal bovine serum (GIBCO). did. After 3 days, the culture supernatant was collected and the activity of the antibody present in the culture supernatant was measured by an ELISA method using anti-human IgG or SP-12 antigen peptide. As a result, CH
The expression product of the mixture of α64 and CLα64 plasmid DNA was SP-
It showed binding to 12 peptides. In addition, the isolated virus NI-
When the neutralizing activity against 53 strains was confirmed, it was confirmed that the virus was infected with virus at the lowest effective concentration of 2 μg / ml, similar to the mouse α64 antibody.
It was revealed to inhibit 0%. Therefore, it was confirmed that the above isolated α64 V region gene is definitely the gene encoding the V region of an antibody having neutralizing activity.

【0060】(5)α64キメラ抗体高産生細胞株の作製 α64キメラ抗体(Cα64)を産生する安定形質細胞株を
作製する為に、前述のプラスミドDNA CLα64とCHα64を
PvuIで線状化し、リポフェクチンとの混合物にしてCHO
-DG44細胞及びP3-653細胞に形質転換した。そして、キ
メラ抗体の一時発現の場合と同様にしてNeo耐性及びDHF
R耐性の遺伝子導入細胞の培養上清を回収、抗ヒトIgGと
SP-12ペプチドを用いたELISA法により、その培養上清に
存在する抗体の活性を測定した。CLα64及びCHα64プラ
スミドDNAの共形質転換による発現産物が、SP-12ペプチ
ドと結合したので、この形質転換細胞のクローニングを
行なった。更に、MTXを4〜32×10-7Mの濃度範囲で添加
することによって、DHFR遺伝子の増幅操作を繰り返し
た。その結果、MTX耐性で且つCα64を50〜70μg/mlのレ
ベルで産生する安定形質細胞株を作製した。
(5) Preparation of α64 Chimera Antibody High-Producing Cell Line In order to prepare a stable plasma cell line producing the α64 chimeric antibody (Cα64), the above-mentioned plasmid DNA CLα64 and CHα64 were prepared.
Linearize with PvuI, mix with lipofectin and mix with CHO
-Transformed into DG44 cells and P3-653 cells. Then, as in the case of temporary expression of the chimeric antibody, Neo resistance and DHF
The culture supernatant of R-resistant transgenic cells was collected and treated with anti-human IgG.
The activity of the antibody present in the culture supernatant was measured by the ELISA method using SP-12 peptide. Since the expression product of the co-transformation of CLα64 and CHα64 plasmid DNA bound to the SP-12 peptide, this transformed cell was cloned. Furthermore, the amplification operation of the DHFR gene was repeated by adding MTX in the concentration range of 4 to 32 × 10 −7 M. As a result, a stable plasma cell line resistant to MTX and producing Cα64 at a level of 50 to 70 μg / ml was prepared.

【0061】実施例4:抗HIV改変抗体 (1)抗HIV改変抗体の作製 クローニングしたα64のVH、VL領域の中で、どの領域が
抗原結合に関して重要であるかどうかを調べるために、
α64のCDR(相補性決定)領域をそれぞれヒトV領域へ移
植した。その方法は、特開平4-141095号記載の改変抗体
作製法に従った。α64のVH領域のCDR領域はヒトサブグ
ループIIのFR(フレームワーク)領域を持ったVH領域
(NEW:これは英国MRC Collabrative Center のDr. Ben
digより分与されたもの)へ移植し(図8)、α64のVL
領域のCDR領域はヒトκ鎖のFR領域を持ったVL領域(RE
I:W. Palm and N. Hilscmann Z.Physiol. Chem., 356,
167(1975)参照)に移植した(図9)。
Example 4: Anti-HIV modified antibody (1) Preparation of anti-HIV modified antibody In order to examine which region of the cloned VH and VL regions of α64 is important for antigen binding,
The CDR (complementarity determining) region of α64 was transplanted to the human V region. The method was in accordance with the method for producing a modified antibody described in JP-A-4-41095. The CDR region of the VH region of α64 is a VH region that has the FR (framework) region of human subgroup II (NEW: This is Dr. Ben of the MRC Collabrative Center in the UK.
transplanted to the one provided by dig) (Fig. 8), and α64 VL
The CDR region of the region is the VL region (RE region having the FR region of human κ chain).
I: W. Palm and N. Hilscmann Z. Physiol. Chem., 356,
167 (1975)) (Fig. 9).

【0062】具体的には、改変抗体は、アマシャムのキ
ット(Oligonucleotide-directed in vitro mutagenesi
s system version 2 code RPN.1523)と PCR(Saiki,
R. G.et al., Science, 239, 487 (1988))を組み合わ
せたアマシャム-PCR法に従って作製した。α64のVH、VL
領域の移植部位をコードする長鎖ヌクレオチドを、NEW
あるいはREIのV領域遺伝子を組み込んだM13DNAにアニー
リングさせた後にdCTPαS を含む溶液中でDNA の伸長・
結合を行ない、NciIで鋳型M13DNAを切断、Exonuclease
IIIによる鋳型DNA の消化を行なって突然変異したM13DN
Aのみのストランドを得た(ここまではアマシャムのキ
ットのプロトコールに従って行なった)。
Specifically, the modified antibody is an Amersham kit (Oligonucleotide-directed in vitro mutagenesi).
s system version 2 code RPN.1523) and PCR (Saiki,
RGet al., Science, 239, 487 (1988)) was combined and prepared according to the Amersham-PCR method. α64 VH, VL
The long chain nucleotides that encode the transplant site
Alternatively, after annealing to M13 DNA in which the V region gene of REI has been integrated, elongation of the DNA in a solution containing dCTPαS
Bind, cleave the template M13 DNA with NciI, Exonuclease
M13DN mutated by digestion of template DNA with III
A strand of A alone was obtained (up to this point, according to the protocol of Amersham's kit).

【0063】さらに、Exonuclease III消化産物を鋳型
にユニバーサルプライマー(UP:M13mp18 の5'側に相補
的な配列を持つ)とリバースプライマー(RSP:M13mp18
の3'側と同じ配列を持つ)を用いてPCR を行なった。こ
れらのプライマーはともに20 pmol 使い、PCR の試薬は
CETUS 社のものを使用した。PCR の条件は、94℃1分、
55℃1分、72℃1分で25サイクル行なった。
Furthermore, a universal primer (having a complementary sequence on the 5'side of UP: M13mp18) and a reverse primer (RSP: M13mp18) using the Exonuclease III digestion product as a template.
PCR was carried out using the same sequence as that of the 3'side). We used 20 pmol of each of these primers and the PCR reagents were
The one from CETUS was used. PCR conditions are 94 ° C for 1 minute,
25 cycles were performed at 55 ° C. for 1 minute and 72 ° C. for 1 minute.

【0064】PCR 終了後、産物をBamHI/HindIII で消化
しpUC18 の BamHI-HindIIIサイトに組み込み、DH5 α
(BRL社)に形質転換し、1次スクリーニングとして、
突然変異に使用したCDR プライマーを用いてアマシャム
キットのプロトコールに従ってコロニーハイブリダイゼ
ーションを行ない、CDRの突然変異に成功しているクロ
ーンを選んだ。さらに、2次スクリーニングとして、1
次スクリーニングで得られたクローンよりプラスミドを
調製しシークナーゼキット(東洋紡)を用いてシークエ
ンスを行ない、正確にCDR移植が出来ていることを確認
した。
After completion of PCR, the product was digested with BamHI / HindIII and integrated into the BamHI-HindIII site of pUC18, and DH5 α
(BRL) and the primary screening
Colonies were hybridized using the CDR primers used for mutation according to the Amersham kit protocol, and clones that had successfully mutated the CDRs were selected. Furthermore, as a secondary screening, 1
Plasmids were prepared from the clones obtained by the subsequent screening and sequenced using the Sequenase kit (Toyobo) to confirm that the CDR transplantation was successful.

【0065】このようにして改変されたα64のV領域
(それぞれRHα64 、RLα64:図8及び図9参照)を得
た。これらの改変V領域断片をキメラ抗体の作製(実施
例3参照)と同様にしてHindIIIとBamHI制限酵素で消化
し、VH、VL断片をそれぞれ HCMV-γ1、HCMV-κのHindI
II-BamHI サイトに組み込んだ。このようにしてα64改
変抗体遺伝子発現ベクター(それぞれRHα64 、RLα6
4)が調製された。
Thus, the modified V region of α64 (RHα64, RLα64: see FIGS. 8 and 9, respectively) was obtained. These modified V region fragments were digested with HindIII and BamHI restriction enzymes in the same manner as in the production of chimeric antibody (see Example 3), and the VH and VL fragments were HindI of HCMV-γ1 and HCMV-κ, respectively.
Incorporated into the II-BamHI site. In this way, α64-modified antibody gene expression vectors (RHα64 and RLα6, respectively)
4) was prepared.

【0066】(2)抗HIV改変抗体の発現 この改変α64抗体遺伝子によって得られる抗体活性を前
述のCOS7細胞における一時的発現系で検討した。キメラ
抗体の一時的発現の場合と同様にして遺伝子導入細胞の
培養上清を回収、抗ヒトIgG あるいはSP-12ペプチドを
用いたELISA 法によりその培養上清に存在する抗体の活
性を測定した。その結果、RHα64及びRLα64プラスミド
DNAの混合物の発現産物がSP-12ペプチドに結合した。更
に、分離ウイルスNI-53株に対する中和活性を確認した
ところ、α64マウス抗体及びキメラ抗体と同様に2μg/m
lの最低有効濃度でウイルス感染を100%阻害することが
明らかになった。従って、図8及び図9で示されたα64
のアミノ酸配列の中で移植CDR領域は、抗HIV活性を担う
重要な領域であり、これらの領域をコードする遺伝子は
組換え抗体を作製するにあたり、最も重要な遺伝子であ
る。
(2) Expression of anti-HIV modified antibody The antibody activity obtained by this modified α64 antibody gene was examined by the above-mentioned transient expression system in COS7 cells. The culture supernatant of the transgenic cells was collected in the same manner as in the case of transient expression of the chimeric antibody, and the activity of the antibody present in the culture supernatant was measured by the ELISA method using anti-human IgG or SP-12 peptide. As a result, the RHα64 and RLα64 plasmids
The expression product of the mixture of DNA bound to the SP-12 peptide. Furthermore, when the neutralizing activity against the isolated virus NI-53 strain was confirmed, it was 2 μg / m2 similarly to the α64 mouse antibody and the chimeric antibody.
It was found that the lowest effective concentration of l inhibited 100% of the viral infection. Therefore, α64 shown in FIG. 8 and FIG.
In the amino acid sequence of, the transplanted CDR region is an important region responsible for anti-HIV activity, and the genes encoding these regions are the most important genes in producing a recombinant antibody.

【0067】(3)抗HIV改変抗体高産生細胞株の作製 改変α64抗体(Rα64)を産生する安定形質細胞株を作
製する為に、前述のプラスミドDNA RLα64とRHα64をPv
uIで線状化し、リポフェクチンとの混合物にしてCHO-D
G44細胞及びP3-653細胞に形質転換した。そして、キメ
ラ抗体の一時発現の場合と同様にしてNeo耐性及びDHFR
耐性の遺伝子導入細胞の培養上清を回収、抗ヒトIgGとS
P-12ペプチドを用いたELISA法により、その培養上清に
存在する抗体の活性を測定した。RLα64及びRHα64プラ
スミドDNAの共形質転換による発現産物が、SP-12ペプチ
ドと結合したので、この形質転換細胞のクローニングを
行なった。更に、MTXを4〜32×10-7Mの濃度範囲で添加
することによって、DHFR遺伝子の増幅操作を繰り返し
た。その結果、MTX耐性で且つRα64を80〜100μg/mlの
レベルで産生する安定形質細胞株を作製した。
(3) Preparation of anti-HIV modified antibody high-producing cell line In order to prepare a stable plasma cell line producing a modified α64 antibody (Rα64), the above-mentioned plasmid DNAs RLα64 and RHα64 were added to Pv.
Linearize with uI and mix with Lipofectin to make CHO-D
The cells were transformed into G44 cells and P3-653 cells. Then, as in the case of the temporary expression of the chimeric antibody, Neo resistance and DHFR
Collect the culture supernatant of resistant transgenic cells, and use anti-human IgG and S
The activity of the antibody present in the culture supernatant was measured by the ELISA method using the P-12 peptide. Since the expression product of the co-transformation of RLα64 and RHα64 plasmid DNA bound to the SP-12 peptide, this transformed cell was cloned. Furthermore, the amplification operation of the DHFR gene was repeated by adding MTX in the concentration range of 4 to 32 × 10 −7 M. As a result, a stable plasma cell line resistant to MTX and producing Rα64 at a level of 80 to 100 μg / ml was produced.

【0068】[0068]

【発明の効果】HIVの高度変異性及びヒトからヒトへ
の感染の過程を考えると、HIVによる感染は、単一の
塩基配列をもったHIVウイルスによる考え方よりも、
複数の一部塩基配列の異なるウイルス変異株の亜集団に
よっておこると考える方が妥当である。これに対応する
ためには、2つの方法が考えられる。1つは、HIVの
各株間で保存されている定常領域に対する中和抗体を用
いる方法であり、もう1つは株特異的な特異性の異なる
中和抗体を混合型にする方法である。前者については、
いくつかの報告があるが、いずれも中和活性の低いポリ
クロナール抗体やモノクローナル抗体であり、エイズの
治療や予防における実用性が低い。これに対して、後者
の場合、本発明者らが先に調製したIIIB株に対する0.5
βのヒト型キメラ抗体Cβ1はチンパンジーの受動免疫試
験を行なった結果、初感染を完全に防御することができ
るという報告(E. A. Emini et al., Nature, 355,p.72
8(1992))がある。この点から、中和活性の強い株特異
的な抗体の方が、エイズの治療や予防において実用性が
高いと考えられる。本発明はIIIB株、IIIMN株に対する
中和抗体(0.5β、μ39.1及びμ5.5抗体)が中和できな
い臨床分離株を広く中和できる抗体の作製及びそのヒト
型化に関するものであり、この混合型の効果を高めるの
に貢献した。
EFFECTS OF THE INVENTION Considering the hypermutability of HIV and the process of human-to-human transmission, infection with HIV is more likely than that with HIV virus having a single nucleotide sequence.
It is more appropriate to think that it is caused by multiple subgroups of virus mutants having different partial base sequences. Two methods can be considered to deal with this. One is a method of using neutralizing antibodies against constant regions conserved among HIV strains, and the other is a method of mixing neutralizing antibodies having different strain-specific specificities. For the former,
Although there are several reports, all of them are polyclonal antibodies or monoclonal antibodies with low neutralizing activity and have low practicality in the treatment or prevention of AIDS. On the other hand, in the latter case, the value of 0.5 against the III B strain prepared by the present inventors was used.
A human chimeric antibody for β, Cβ1, was reported to be able to completely protect against primary infection as a result of a chimpanzee passive immunization test (EA Emini et al., Nature, 355 , p.72).
8 (1992)). From this point, it is considered that the strain-specific antibody having a strong neutralizing activity is more practical in the treatment and prevention of AIDS. The present invention relates to making and its humanized of III B strain, neutralizing antibody (0.5β, μ39.1 and μ5.5 antibody) against III MN strain antibodies capable of neutralizing a wide clinical isolates that can not be neutralized Yes, and contributed to enhance the effect of this mixed type.

【0069】[0069]

【配列表】[Sequence list]

配列番号:1 配列の長さ:366 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to genomic RNA 起源 生物名:マウス 配列 CAG GTT ACT CTG AAA GAG TCT GGC CCT GGT ATA TTG CAG CCC TCC CAG 48 Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 1 5 10 15 ACC CTC AGT CTG ACC TGT TCT TTC TCT GGG TTT TCA CTG AGC ACT TTT 96 Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Phe 20 25 30 GGT ATG GGT GTG AGC TGG ATT CGT CAG CCT TCA GGG AAG GTT CTG GAG 144 Gly Met Gly Val Ser Trp Ile Arg Gln Pro Ser Gly Lys Val Leu Glu 35 40 45 TGG CTG GCA CAC ATT TAT TGG GAT GAT GAC AAG CAC TAT AAC CCA TCC 192 Trp Leu Ala His Ile Tyr Trp Asp Asp Asp Lys His Tyr Asn Pro Ser 50 55 60 TTG AAG AGC CGA CTC ACA ATC TCC GAA GAT ACC TCC AAC AAT CAG GTA 240 Leu Lys Ser Arg Leu Thr Ile Ser Glu Asp Thr Ser Asn Asn Gln Val 65 70 75 80 TTC CTC AAG ATC ACC ACT GTG GAC ACT GCA GAT ACT GCC ACA TAC TAC 288 Phe Leu Lys Ile Thr Thr Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr 85 90 95 TGT GCT CGA AGG GTC TTC TAT GGT AAC TCC GAT TTT ATG GAC CAC TGG 336 Cys Ala Arg Arg Val Phe Tyr Gly Asn Ser Asp Phe Met Asp His Trp 100 105 110 GGT CAA GGA ACC TCA GTC ACC GTC TCC TCA 366 Gly Gln Gly Thr Ser Val Thr Val Ser Ser 115 120 SEQ ID NO: 1 Sequence length: 366 Sequence type: Nucleic acid Number of strands: Double-stranded topology: Linear Sequence type: cDNA to genomic RNA Origin organism name: Mouse sequence CAG GTT ACT CTG AAA GAG TCT GGC CCT GGT ATA TTG CAG CCC TCC CAG 48 Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 1 5 10 15 ACC CTC AGT CTG ACC TGT TCT TTC TCT GGG TTT TCA CTG AGC ACT TTT 96 Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Phe 20 25 30 GGT ATG GGT GTG AGC TGG ATT CGT CAG CCT TCA GGG AAG GTT CTG GAG 144 Gly Met Gly Val Ser Trp Ile Arg Gln Pro Ser Gly Lys Val Leu Glu 35 40 45 TGG CTG GCA CAC ATT TAT TGG GAT GAT GAC AAG CAC TAT AAC CCA TCC 192 Trp Leu Ala His Ile Tyr Trp Asp Asp Asp Lys His Tyr Asn Pro Ser 50 55 60 TTG AAG AGC CGA CTC ACA ATC TCC GAA GAT ACC TCC AAC AAT CAG GTA 240 Leu Lys Ser Arg Leu Thr Ile Ser Glu Asp Thr Ser Asn Asn Gln Val 65 70 75 80 TTC CTC AAG ATC ACC ACT GTG GAC ACT GCA GAT ACT GCC ACA TAC TAC 288 Phe Leu Lys Ile Thr Thr Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr 85 90 95 TGT GCT CGA AGG GTC TTC TAT GGT AAC TCC GAT TTT ATG GAC CAC TGG 336 Cys Ala Arg Arg Val Phe Tyr Gly Asn Ser Asp Phe Met Asp His Trp 100 105 110 GGT CAA GGA ACC TCA GTC ACC GTC TCC TCA 366 Gly Gln Gly Thr Ser Val Thr Val Ser Ser 115 120

【0070】 配列番号:2 配列の長さ:339 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to genomic RNA 起源 生物名:マウス 配列 GAC ATT GTG ATG ACA CAG TCT CCA TCC TCC CTG AGT GTG TCA GCA GGA 48 Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ser Val Ser Ala Gly 1 5 10 15 GAG AAG GTC ACT ATG AGG TGC AAG TCC AGT CAG AGT CTG TTA AAC AGT 96 Glu Lys Val Thr Met Arg Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30 GGA AAT CAA AAG AAC TAC TTG GCC TGG TAC CAG CAG AAA CCA GGG CAG 144 Gly Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45 CCT CCT AAA CTG TTG ATC TAC GGG GCA TCC ACT AGG GAA TCT GGG GTC 192 Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 CCT GAT CGC TTC ACA GGC AGT GGA TCT GGA ACC GAT TTC ACT CTT ACC 240 Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80 ATC AGC AGT GTG CAG GCT GAA GAC CTG GCA GTT TAT TAC TGT CAG AAT 288 Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85 90 95 GAT CAT AGT TTT CCG CTC ACG TTC GGT GCT GGG ACC AAG CTG GAG CTG 336 Asp His Ser Phe Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu 100 105 110 AAA 339 LysSEQ ID NO: 2 Sequence length: 339 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: cDNA to genomic RNA Origin organism name: Mouse sequence GAC ATT GTG ATG ACA CAG TCT CCA TCC TCC CTG AGT GTG TCA GCA GGA 48 Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ser Val Ser Ala Gly 1 5 10 15 GAG AAG GTC ACT ATG AGG TGC AAG TCC AGT CAG AGT CTG TTA AAC AGT 96 Glu Lys Val Thr Met Arg Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30 GGA AAT CAA AAG AAC TAC TTG GCC TGG TAC CAG CAG AAA CCA GGG CAG 144 Gly Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Lys 35 40 45 CCT CCT AAA CTG TTG ATC TAC GGG GCA TCC ACT AGG GAA TCT GGG GTC 192 Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 CCT GAT CGC TTC ACA GGC AGT GGA TCT GGA ACC GAT TTC ACT CTT ACC 240 Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80 ATC AGC AGT GTG CAG GCT GAA GAC CTG GCA GTT TAT TAC TGT CAG AAT 288 Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85 90 95 GAT CAT AGT TTT CCG CTC ACG TTC GGT GCT GGG ACC AAG CTG GAG CTG 336 Asp His Ser Phe Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu 100 105 110 AAA 339 Lys

【0071】 配列番号:3 配列の長さ:25 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント:中間部フラグメント 起源 生物名:ヒト免疫不全ウイルス(HIV) 配列 Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ala Ile Arg Val Gly Pro 1 5 10 15 Gly Arg Thr Leu Tyr Ala Thr Arg Arg Ile Ile Gly Asp Ile Arg Gln 20 25 30 Ala His Cys 35SEQ ID NO: 3 Sequence Length: 25 Sequence Type: Amino Acid Topology: Linear Sequence Type: Peptide Fragment: Intermediate Fragment Origin Biological Name: Human Immunodeficiency Virus (HIV) Sequence Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ala Ile Arg Val Gly Pro 1 5 10 15 Gly Arg Thr Leu Tyr Ala Thr Arg Arg Ile Ile Gly Asp Ile Arg Gln 20 25 30 Ala His Cys 35

【0072】 配列番号:4 配列の長さ:7 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント:中間部フラグメント 起源 生物名:マウス SEQ ID NO: 4 Sequence length: 7 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Fragment: Intermediate fragment Origin Biological name: Mouse

【0073】 配列番号:5 配列の長さ:16 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント:中間部フラグメント 起源 生物名:マウス 配列 His Ile Tyr Trp Asp Asp Asp Lys His Tyr Asn Pro Ser Leu Lys Ser 55 60 65SEQ ID NO: 5 Sequence Length: 16 Sequence Type: Amino Acid Topology: Linear Sequence Type: Peptide Fragment: Intermediate Fragment Origin Biological Name: Mouse Sequence His Ile Tyr Trp Asp Asp Asp Lys His Tyr Asn Pro Ser Leu Lys Ser 55 60 65

【0074】 配列番号:6 配列の長さ:12 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント:中間部フラグメント 起源 生物名:マウス SEQ ID NO: 6 Sequence length: 12 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Fragment: Intermediate fragment Origin Biological name: Mouse

【0075】 配列番号:7 配列の長さ:17 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント:中間部フラグメント 起源 生物名:マウス 配列 Lys Ser Ser Gln Ser Leu Leu Asn Ser Gly Asn Gln Lys Asn Tyr Leu 25 30 35 Ala 40SEQ ID NO: 7 Sequence Length: 17 Sequence Type: Amino Acid Topology: Linear Sequence Type: Peptide Fragment: Intermediate Fragment Origin Biological Name: Mouse Sequence Lys Ser Ser Gln Ser Leu Leu Asn Ser Gly Asn Gln Lys Asn Tyr Leu 25 30 35 Ala 40

【0076】 配列番号:8 配列の長さ:7 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント:中間部フラグメント 起源 生物名:マウス SEQ ID NO: 8 Sequence Length: 7 Sequence Type: Amino Acid Topology: Linear Sequence Type: Peptide Fragment: Intermediate Fragment Origin Biological Name: Mouse

【0077】 配列番号:9 配列の長さ:9 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント:中間部フラグメント 起源 生物名:マウス SEQ ID NO: 9 Sequence Length: 9 Sequence Type: Amino Acid Topology: Linear Sequence Type: Peptide Fragment: Intermediate Fragment Origin Biological Name: Mouse

【0078】 配列番号:10 配列の長さ:122 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:その他のアミノ酸(合成アミノ酸) 起源 生物名:マウスおよびヒト 配列 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Arg Pro Ser Gln 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Thr Phe Ser Thr Phe 20 25 30 Gly Met Gly Val Ser Trp Val Arg Gln Pro Pro Gly Arg Gly Leu Glu 35 40 45 Trp Ile Gly His Ile Tyr Trp Asp Asp Asp Lys His Tyr Asn Pro Ser 50 55 60 Leu Lys Ser Arg Val Thr Met Ser Glu Asp Thr Ser Lys Asn Gln Phe 65 70 75 80 Ser Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95 Cys Ala Arg Arg Val Phe Tyr Gly Asn Ser Asp Phe Met Asp His Trp 100 105 110 Gly Gln Gly Ser Leu Val Thr Val Ser Ser 115 120SEQ ID NO: 10 Sequence Length: 122 Sequence Type: Amino Acid Topology: Linear Sequence Type: Other Amino Acid (Synthetic Amino Acid) Origin Organism Name: Mouse and Human Sequence Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Arg Pro Ser Gln 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Thr Phe Ser Thr Phe 20 25 30 Gly Met Gly Val Ser Trp Val Arg Gln Pro Pro Gly Arg Gly Leu Glu 35 40 45 Trp Ile Gly His Ile Tyr Trp Asp Asp Asp Lys His Tyr Asn Pro Ser 50 55 60 Leu Lys Ser Arg Val Thr Met Ser Glu Asp Thr Ser Lys Asn Gln Phe 65 70 75 80 Ser Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95 Cys Ala Arg Arg Val Phe Tyr Gly Asn Ser Asp Phe Met Asp His Trp 100 105 110 Gly Gln Gly Ser Leu Val Thr Val Ser Ser 115 120

【0079】 配列番号:11 配列の長さ:114 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:その他のアミノ酸(合成アミノ酸) 起源 生物名:マウスおよびヒト 配列 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Arg Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30 Gly Asn Gln lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys 35 40 45 Ala Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr 65 70 75 80 Ile Ser Ser Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Asn 85 90 95 Asp His Ser Phe Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Gln Ile 100 105 110 Thr ArgSEQ ID NO: 11 Sequence Length: 114 Sequence Type: Amino Acid Topology: Linear Sequence Type: Other Amino Acid (Synthetic Amino Acid) Origin Organ Name: Mouse and Human Sequence Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Arg Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30 Gly Asn Gln lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys 35 40 45 Ala Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr 65 70 75 80 Ile Ser Ser Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Asn 85 90 95 Asp His Ser Phe Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Gln Ile 100 105 110 Thr Arg

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるモノクローナル抗体(α64抗体)
のHUT78/NI-53株感染細胞由来の外皮膜糖蛋白質gp120と
の反応性を示す。
FIG. 1 Monoclonal antibody according to the present invention (α64 antibody)
Shows reactivity with the outer membrane glycoprotein gp120 derived from cells infected with HUT78 / NI-53 strain.

【図2】本発明によるモノクローナル抗体(α64抗体)
の認識するエピトープを示す。
FIG. 2 Monoclonal antibody according to the present invention (α64 antibody)
Shows the epitope recognized by.

【図3】本発明によるモノクローナル抗体(α64抗体)
の性状解析に用いた種々のHIV変異株由来のPND合成
ペプチドのアミノ酸配列を示す。
FIG. 3 Monoclonal antibody according to the present invention (α64 antibody)
3 shows the amino acid sequences of PND synthetic peptides derived from various HIV mutant strains used for the property analysis of A.

【図4】本発明によるモノクローナル抗体(α64抗体)
の種々のHIV変異株由来のPND合成ペプチドとの反応
性を示す。各抗体の初期濃度は20μg/mlである。
FIG. 4 Monoclonal antibody according to the present invention (α64 antibody)
Shows the reactivity with PND synthetic peptides derived from various HIV mutants of. The initial concentration of each antibody is 20 μg / ml.

【図5】本発明によるモノクローナル抗体(α64抗体)
の各種HIV変異株との結合特性及び中和活性を示す。
FIG. 5: Monoclonal antibody (α64 antibody) according to the present invention
Shows the binding properties and neutralizing activity of various HIV mutants of.

【図6】抗HIV中和抗体α64のH鎖可変領域をコード
する本発明のDNA断片の核酸配列及びアミノ酸配列を
示す。
FIG. 6 shows the nucleic acid sequence and amino acid sequence of the DNA fragment of the present invention encoding the H chain variable region of anti-HIV neutralizing antibody α64.

【図7】抗HIV中和抗体α64のL鎖可変領域をコード
する本発明のDNA断片の核酸配列及びアミノ酸配列を
示す。
FIG. 7 shows the nucleic acid sequence and amino acid sequence of the DNA fragment of the present invention encoding the L chain variable region of anti-HIV neutralizing antibody α64.

【図8】ヒト抗体NEW、マウスα64抗体及びα64改変抗
体(RHα64)のH鎖可変領域のアミノ酸配列を示す。
FIG. 8 shows amino acid sequences of H chain variable regions of human antibody NEW, mouse α64 antibody and α64 modified antibody (RHα64).

【図9】ヒト抗体REI、マウスα64抗体及びα64改変抗
体(RLα64)のL鎖可変領域のアミノ酸配列を示す。
FIG. 9 shows the amino acid sequences of the L chain variable region of human antibody REI, mouse α64 antibody, and α64 modified antibody (RLα64).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12N 15/13 15/62 G01N 33/569 H 9015−2J 33/577 B 9015−2J (C12P 21/08 C12R 1:91) (72)発明者 来海 和彦 熊本県熊本市鶴羽田町1161 (72)発明者 時吉 幸男 熊本県熊本市若葉3丁目14−19─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C12N 15/13 15/62 G01N 33/569 H 9015-2J 33/577 B 9015-2J (C12P 21 / 08 C12R 1:91) (72) Inventor Kazuhiko Kurumi 1161 Tsuruhaneda-cho, Kumamoto City, Kumamoto Prefecture (72) Inventor Yukio Tokiyoshi 3-14-19 Wakaba, Kumamoto City, Kumamoto Prefecture

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 ヒト免疫不全ウイルス(HIV)の外被膜
にある分子量約12万ダルトンの糖蛋白質抗原(gp120)の
主要中和領域(PND)内にArg-Ile-Gly-Pro-Gly-Argまた
はArg-Val-Gly-Pro-Gly-Argのいずれかのアミノ酸配列
を含有するHIVを中和する能力を有するモノクローナ
ル抗体またはその断片。
1. Arg-Ile-Gly-Pro-Gly-Arg within the main neutralizing region (PND) of a glycoprotein antigen (gp120) having a molecular weight of about 120,000 daltons on the outer coat of human immunodeficiency virus (HIV). Alternatively, a monoclonal antibody or a fragment thereof having the ability to neutralize HIV, which comprises any amino acid sequence of Arg-Val-Gly-Pro-Gly-Arg.
【請求項2】 下記の性状を有する請求項1記載のモノ
クローナル抗体またはその断片。(a)IgG、κに分類さ
れ、(b)HIVのgp120のPNDのアミノ酸配列第9〜22番
目が、下記のアミノ酸から選ばれた組み合せからなるア
ミノ酸配列を含有するHIVを中和する能力を有し、 X9 = Arg, Lys, Ser, Ile, Glu, Pro, Gln, Gly, Me
t, Thr X10 = Lys, Arg, Asn, Gln X11 = Ser, Gly, Arg, His, Lys, Ala X12 = Ile, Leu, Met, Thr, Val, Glu, Phe X13 = Arg X14 = Ile, Val X15 = Gly X16 = Pro X17 = Gly X18 = Arg X19 = Ala, Val, Asn, Thr, Arg, Lys, Pro, Ser, Trp X20 = Phe, Ile, Val, Leu, Tyr, Trp, Thr, Ser, His X21 = Tyr, Val, His, Leu, Phe, Arg, Ser, Met, Ile X22 = Thr, Ala, Val, Gln, Tyr, Ser (c)上記アミノ酸配列を含有するHIV粒子の表面に結
合することにより、ウイルス粒子がCD4陽性細胞に感
染することを阻止する能力を有し、(d)上記アミノ酸配
列を含有するHIVに感染した細胞の表面に結合するこ
とによって、感染細胞と非感染細胞とにより誘発される
合胞体形成を阻止する能力を有する。
2. The monoclonal antibody or fragment thereof according to claim 1, which has the following properties. (a) is classified into IgG and κ, and (b) the 9th to 22nd amino acid sequence of PND of HIV gp120 has the ability to neutralize HIV containing an amino acid sequence consisting of a combination selected from the following amino acids. Has, X 9 = Arg, Lys, Ser, Ile, Glu, Pro, Gln, Gly, Me
t, Thr X 10 = Lys, Arg, Asn, Gln X 11 = Ser, Gly, Arg, His, Lys, Ala X 12 = Ile, Leu, Met, Thr, Val, Glu, Phe X 13 = Arg X 14 = Ile, Val X 15 = Gly X 16 = Pro X 17 = Gly X 18 = Arg X 19 = Ala, Val, Asn, Thr, Arg, Lys, Pro, Ser, Trp X 20 = Phe, Ile, Val, Leu, Tyr, Trp, Thr, Ser, His X 21 = Tyr, Val, His, Leu, Phe, Arg, Ser, Met, Ile X 22 = Thr, Ala, Val, Gln, Tyr, Ser (c) Having the ability to prevent viral particles from infecting CD4-positive cells by binding to the surface of HIV particles containing them, and (d) binding to the surface of cells infected with HIV containing the above amino acid sequence. Has the ability to block syncytia formation induced by infected and uninfected cells.
【請求項3】 HIVのgp120のPNDのアミノ酸配列第9
〜22番目が、下記のアミノ酸から選ばれた組み合せから
なるアミノ酸配列を含有する分離ウイルスを中和する能
力を有する請求項2記載のモノクローナル抗体またはそ
の断片。 X9 = Arg, Ser, Lys X10 = Lys, Arg X11 = Gly, Ala X12 = Ile X13 = Arg X14 = Ile, Val X15 = Gly X16 = Pro X17 = Gly X18 = Arg X19 = Ala, Thr X20 = Val, Ile, Leu X21 = Tyr, Met, Leu X22 = Thr, Ala, Gln, Ser
3. Amino acid sequence 9 of PND of HIV gp120
The monoclonal antibody or fragment thereof according to claim 2, which has the ability to neutralize an isolated virus containing an amino acid sequence consisting of a combination selected from the following amino acids: X 9 = Arg, Ser, Lys X 10 = Lys, Arg X 11 = Gly, Ala X 12 = Ile X 13 = Arg X 14 = Ile, Val X 15 = Gly X 16 = Pro X 17 = Gly X 18 = Arg X 19 = Ala, Thr X 20 = Val, Ile, Leu X 21 = Tyr, Met, Leu X 22 = Thr, Ala, Gln, Ser
【請求項4】 工業技術院微生物工業技術研究所(微工
研)に受託番号微工研菌寄第12973号(FERM P-12973)
として寄託されたハイブリドーマより調製される請求項
1から3記載のモノクローナル抗体またはその断片。
4. The Institute of Microbial Science and Technology, Institute of Industrial Science and Technology (Ministry of Industrial Science), has an acceptance number of Microsociety No. 12973 (FERM P-12973).
The monoclonal antibody or fragment thereof according to claims 1 to 3, which is prepared from the hybridoma deposited as above.
【請求項5】 H鎖可変領域の相補性決定基(CDR1〜CD
R3)のアミノ酸配列が下記の配列である請求項1から4
記載のモノクローナル抗体またはその断片。 CDR1:Thr-Phe-Gly-Met-Gly-Val-Ser CDR2:His-Ile-Tyr-Trp-Asp-Asp-Asp-Lys-His-Tyr-Asn-
Pro-Ser-Leu-Lys-Ser CDR3:Arg-Val-Phe-Tyr-Gly-Asn-Ser-Asp-Phe-Met-Asp-
His
5. A complementarity determinant (CDR1 to CD in the H chain variable region)
The amino acid sequence of R3) is the following sequence:
The described monoclonal antibody or a fragment thereof. CDR1: Thr-Phe-Gly-Met-Gly-Val-Ser CDR2: His-Ile-Tyr-Trp-Asp-Asp-Asp-Lys-His-Tyr-Asn-
Pro-Ser-Leu-Lys-Ser CDR3: Arg-Val-Phe-Tyr-Gly-Asn-Ser-Asp-Phe-Met-Asp-
His
【請求項6】 H鎖可変領域のアミノ酸配列が配列表配
列番号1のアミノ酸配列である請求項1から5記載のモ
ノクローナル抗体またはその断片。
6. The monoclonal antibody or fragment thereof according to claim 1, wherein the amino acid sequence of the H chain variable region is the amino acid sequence of SEQ ID NO: 1 in Sequence Listing.
【請求項7】 L鎖可変領域の相補性決定基(CDR1〜CD
R3)のアミノ酸配列が下記の配列である請求項1から4
記載のモノクローナル抗体またはその断片。 CDR1:Lys-Ser-Ser-Gln-Ser-Leu-Leu-Asn-Ser-Gly-Asn-
Gln-Lys-Asn-Tyr-Leu-Ala CDR2:Gly-Ala-Ser-Thr-Arg-Glu-Ser CDR3:Gln-Asn-Asp-His-Ser-Phe-Pro-Leu-Thr
7. A complementarity determinant of the light chain variable region (CDR1 to CD
The amino acid sequence of R3) is the following sequence:
The described monoclonal antibody or a fragment thereof. CDR1: Lys-Ser-Ser-Gln-Ser-Leu-Leu-Asn-Ser-Gly-Asn-
Gln-Lys-Asn-Tyr-Leu-Ala CDR2: Gly-Ala-Ser-Thr-Arg-Glu-Ser CDR3: Gln-Asn-Asp-His-Ser-Phe-Pro-Leu-Thr
【請求項8】 L鎖可変領域のアミノ酸配列が配列表配
列番号2のアミノ酸配列である請求項1から4及び7記
載のモノクローナル抗体またはその断片。
8. The monoclonal antibody or fragment thereof according to claim 1, wherein the amino acid sequence of the L chain variable region is the amino acid sequence of SEQ ID NO: 2 in Sequence Listing.
【請求項9】 請求項6記載のマウス抗体由来のアミノ
酸配列とヒト抗体由来のアミノ酸配列からなる遺伝子組
換え抗体H鎖であって、可変領域の相補性決定基(CDR1
〜CDR3)のアミノ酸配列が請求項5記載の配列であるこ
とを特徴とし、HIVに対する中和活性を有する組換え
抗HIV抗体H鎖。
9. A genetically engineered antibody H chain comprising the mouse antibody-derived amino acid sequence and the human antibody-derived amino acid sequence according to claim 6, which is a complementarity determinant (CDR1) of the variable region.
~ CDR3) is the sequence according to claim 5, wherein the recombinant anti-HIV antibody H chain has a neutralizing activity against HIV.
【請求項10】 請求項8記載のマウス抗体由来のアミ
ノ酸配列とヒト抗体由来のアミノ酸配列からなる遺伝子
組換え抗体L鎖であって、可変領域の相補性決定基(CD
R1〜CDR3)のアミノ酸配列が請求項7記載の配列である
ことを特徴とし、HIVに対する中和活性を有する組換
え抗HIV抗体L鎖。
10. A gene recombinant antibody L chain comprising the mouse antibody-derived amino acid sequence and the human antibody-derived amino acid sequence according to claim 8, wherein the variable region complementarity determinant (CD
A recombinant anti-HIV antibody L chain having HIV-neutralizing activity, characterized in that the amino acid sequence of R1 to CDR3) is the sequence according to claim 7.
【請求項11】 請求項9及び10記載の組換え抗HI
V抗体H鎖及び組換え抗HIV抗体L鎖からなる組換え
抗HIV抗体。
11. Recombinant anti-HI according to claims 9 and 10.
A recombinant anti-HIV antibody consisting of a V antibody H chain and a recombinant anti-HIV antibody L chain.
【請求項12】 請求項11記載の組換え抗HIV抗体
を発現可能な発現ベクターを構築し、これを動物細胞内
で発現させ、該抗体を回収することを特徴とする組換え
抗HIV抗体の調製方法。
12. A recombinant anti-HIV antibody comprising constructing an expression vector capable of expressing the recombinant anti-HIV antibody according to claim 11, expressing this in an animal cell, and recovering the antibody. Preparation method.
JP32247692A 1992-11-05 1992-11-05 Monoclonal antibody Withdrawn JPH06141885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32247692A JPH06141885A (en) 1992-11-05 1992-11-05 Monoclonal antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32247692A JPH06141885A (en) 1992-11-05 1992-11-05 Monoclonal antibody

Publications (1)

Publication Number Publication Date
JPH06141885A true JPH06141885A (en) 1994-05-24

Family

ID=18144066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32247692A Withdrawn JPH06141885A (en) 1992-11-05 1992-11-05 Monoclonal antibody

Country Status (1)

Country Link
JP (1) JPH06141885A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007400A1 (en) * 1995-08-21 1997-02-27 Teikoku Seiyaku Kabushiki Kaisha Reagent for examining agglutination of virus and kit for virus examination
EP0800536A2 (en) * 1994-12-23 1997-10-15 Smithkline Beecham Corporation Recombinant il-5 antagonists useful in treatment of il-5 mediated disorders
US6193982B1 (en) 1995-04-27 2001-02-27 The United States Of America As Represented By The Department Of Health & Human Services Anti-cyanovirin antibody with an internal image of gp120, a method of use thereof, and a method of using a cyanovirin to induce an immune response to gp120
US6420336B1 (en) 1995-04-27 2002-07-16 The United States Of America As Represented By The Department Of Health And Human Services Methods of using cyanovirins topically to inhibit viral infection
US6428790B1 (en) 1995-04-27 2002-08-06 The United States Of America As Represented By The Secretary Department Of Health And Human Services Cyanovirin conjugates and matrix-anchored cyanovirin and related compositions and methods of use
US6780847B2 (en) 1995-04-27 2004-08-24 The United States Of America As Represented By The Department Of Health And Human Services Glycosylation-resistant cyanovirins and related conjugates, compositions, nucleic acids, vectors, host cells, methods of production and methods of using nonglycosylated cyanovirins
US6946130B2 (en) 1994-12-23 2005-09-20 Smithkline Beecham Corporation Recombinant IL-5 antagonists useful in treatment of IL-5 mediated disorders
US7048935B2 (en) 1995-04-27 2006-05-23 The United States Of America As Represented By The Department Of Health And Human Services Cyanovirin conjugates and matrix-anchored cyanovirin and related compositions and methods of use
US7339037B2 (en) 2001-03-22 2008-03-04 The United States Of America As Represented By The Department Of Health And Human Services Glycosylation-resistant cyanovirins and related conjugates, compositions, nucleic acids, vectors, host cells, methods of production and methods of using nonglycosylated cyanovirins
US7754420B2 (en) 1995-04-27 2010-07-13 The United States Of America As Represented By The Department Of Health And Human Services Methods of using cyanovirins to inhibit viral infection
US7982005B2 (en) 1994-12-23 2011-07-19 Glaxosmithkline Llc Recombinant IL-5 antagonists useful in treatment of IL-5 mediated disorders
US9834600B2 (en) 2008-03-28 2017-12-05 Glaxosmithkline Llc Methods of treatment of eosinophilic bronchitis with an anti-IL-5 antibody
US11390671B2 (en) 2017-06-06 2022-07-19 Glaxosmithkline Llc Biopharmaceutical compositions and methods for pediatric patients

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800536A4 (en) * 1994-12-23 2004-12-01 Smithkline Beecham Corp Recombinant il-5 antagonists useful in treatment of il-5 mediated disorders
EP0800536A2 (en) * 1994-12-23 1997-10-15 Smithkline Beecham Corporation Recombinant il-5 antagonists useful in treatment of il-5 mediated disorders
US7982005B2 (en) 1994-12-23 2011-07-19 Glaxosmithkline Llc Recombinant IL-5 antagonists useful in treatment of IL-5 mediated disorders
JP2010077133A (en) * 1994-12-23 2010-04-08 Glaxosmithkline Llc Recombinant il-5 antagonist useful in treatment of il-5 mediated disorder
EP1749840A3 (en) * 1994-12-23 2008-10-15 SmithKline Beecham Corporation Recombinant il-5 antagonists useful in treatment of il-5 mediated disorders
EP1749840A2 (en) * 1994-12-23 2007-02-07 SmithKline Beecham Corporation Recombinant il-5 antagonists useful in treatment of il-5 mediated disorders
US6946130B2 (en) 1994-12-23 2005-09-20 Smithkline Beecham Corporation Recombinant IL-5 antagonists useful in treatment of IL-5 mediated disorders
US7105169B2 (en) 1995-04-27 2006-09-12 The United States Of America As Represented By The Department Of Health And Human Services Cyanovirin conjugates and matrix-anchored cyanovirin and related compositions and methods of use
US6780847B2 (en) 1995-04-27 2004-08-24 The United States Of America As Represented By The Department Of Health And Human Services Glycosylation-resistant cyanovirins and related conjugates, compositions, nucleic acids, vectors, host cells, methods of production and methods of using nonglycosylated cyanovirins
US7048935B2 (en) 1995-04-27 2006-05-23 The United States Of America As Represented By The Department Of Health And Human Services Cyanovirin conjugates and matrix-anchored cyanovirin and related compositions and methods of use
US6743577B2 (en) 1995-04-27 2004-06-01 The United States Of America As Represented By The Department Of Health And Human Services Methods of using cyanovirins to inhibit viral infection
US6428790B1 (en) 1995-04-27 2002-08-06 The United States Of America As Represented By The Secretary Department Of Health And Human Services Cyanovirin conjugates and matrix-anchored cyanovirin and related compositions and methods of use
US6420336B1 (en) 1995-04-27 2002-07-16 The United States Of America As Represented By The Department Of Health And Human Services Methods of using cyanovirins topically to inhibit viral infection
US7754420B2 (en) 1995-04-27 2010-07-13 The United States Of America As Represented By The Department Of Health And Human Services Methods of using cyanovirins to inhibit viral infection
US6193982B1 (en) 1995-04-27 2001-02-27 The United States Of America As Represented By The Department Of Health & Human Services Anti-cyanovirin antibody with an internal image of gp120, a method of use thereof, and a method of using a cyanovirin to induce an immune response to gp120
WO1997007400A1 (en) * 1995-08-21 1997-02-27 Teikoku Seiyaku Kabushiki Kaisha Reagent for examining agglutination of virus and kit for virus examination
US7339037B2 (en) 2001-03-22 2008-03-04 The United States Of America As Represented By The Department Of Health And Human Services Glycosylation-resistant cyanovirins and related conjugates, compositions, nucleic acids, vectors, host cells, methods of production and methods of using nonglycosylated cyanovirins
US9834600B2 (en) 2008-03-28 2017-12-05 Glaxosmithkline Llc Methods of treatment of eosinophilic bronchitis with an anti-IL-5 antibody
US11325972B2 (en) 2008-03-28 2022-05-10 Glaxosmithkline Llc Methods of treatment of eosinophilic bronchitis with an anti-IL-5 antibody
US11390671B2 (en) 2017-06-06 2022-07-19 Glaxosmithkline Llc Biopharmaceutical compositions and methods for pediatric patients

Similar Documents

Publication Publication Date Title
JP3855071B2 (en) Anti-HIV monoclonal antibody
JP2520464B2 (en) Monoclonal antibody that neutralizes HIV-1
US5665569A (en) HIV immunotherapeutics
KR100304333B1 (en) Recombinant humanized anti-human immunodeficiency virus antibody
CN116063464A (en) Antibodies or antigen binding fragments thereof to coronaviruses
BG65034B1 (en) Fap alpha-specific antibody with improved pruducibility
EP0678523B1 (en) Recombinant anti-hiv antibody and preparation thereof
JPH06141885A (en) Monoclonal antibody
EP0465979B1 (en) Anti HTLV-III (strain MN) monoclonal antibody
AU613699B2 (en) Gene fragments coding for anti-hiv antibody variable region, anti-hiv chimeric antibody expressed using the same, and process for preparation thereof
JPH06503970A (en) HIV immunotherapy
Okamoto et al. In SCID-hu mice, passive transfer of a humanized antibody prevents infection and atrophic change of medulla in human thymic implant due to intravenous inoculation of primary HIV-1 isolate
EP0516135B1 (en) Human immunodeficiency virus-related immune preparation
US5712373A (en) HIV monoclonal antibody specific for the HTLV-IIImn gp120 envelope glycoprotein
JPH06125783A (en) Recombinant anti-hiv antibody and its preparation
CA2157874C (en) Anti-hiv monoclonal antibody
KR100266554B1 (en) Recombinant anti-hiv antibody and preparation thereof
CA2046016C (en) Hiv monoclonal antibody
AU674539B2 (en) HIV immunotherapeutics
KR100282576B1 (en) Human Immunodeficiency Virus Immunotherapy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201