JPH06141499A - Insulating method for winding of random winding insulated motor, and insulated winding - Google Patents

Insulating method for winding of random winding insulated motor, and insulated winding

Info

Publication number
JPH06141499A
JPH06141499A JP28427092A JP28427092A JPH06141499A JP H06141499 A JPH06141499 A JP H06141499A JP 28427092 A JP28427092 A JP 28427092A JP 28427092 A JP28427092 A JP 28427092A JP H06141499 A JPH06141499 A JP H06141499A
Authority
JP
Japan
Prior art keywords
winding
motor
insulated
insulation
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28427092A
Other languages
Japanese (ja)
Inventor
Hideo Akahori
秀夫 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28427092A priority Critical patent/JPH06141499A/en
Publication of JPH06141499A publication Critical patent/JPH06141499A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a random winding insulated motor which has extremely high reliability by preventing the deterioration of insulation without being accompanied by the increase of the number of components increase in size. CONSTITUTION:In the method of insulating the winding of a random winding insulated motor being driven by an inverter, it is insulated so that the partial discharge start voltage (CVD) between the turns of the insulated cable of the winding 1 of a motor may be higher than the surge voltage generated at combined operation of the inverter and the motor. Moreover, as the insulated cable of the winding 1 of the random winding insulated motor, an insulated cable being provided, outside of an enamel layer, with an insulating layer of glass or high polymer material excellent in radiation resistance is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は乱巻絶縁電動機の絶縁構
成に係り特に、インバータにより駆動され、原子力用途
等の極めて高い信頼性を要求される乱巻絶縁電動機の巻
線絶縁方法及び絶縁巻線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulation structure of a random winding insulation motor, and more particularly to a winding insulation method and an insulation winding of a random winding insulation motor which is driven by an inverter and which requires extremely high reliability for nuclear power applications. Regarding the line.

【0002】[0002]

【従来の技術】インバータにより駆動される電動機は、
インバータのスイッチング時に生じるサージ電圧が印加
されるので、サージ電圧による絶縁劣個を防止する必要
がある。特に、インバータと電動機間の電源ケーブル線
の敷設条件によっては、電動機端子部に立ち上がり速度
が1マイクロ秒以下の急峻サージが発生する。この場
合、インバータの電源電圧の約2倍のサージ電圧が発生
する場合がある。
2. Description of the Related Art An electric motor driven by an inverter is
Since the surge voltage generated at the time of switching the inverter is applied, it is necessary to prevent insulation failure due to the surge voltage. In particular, depending on the laying conditions of the power cable between the inverter and the electric motor, a steep surge having a rising speed of 1 microsecond or less occurs at the electric motor terminal. In this case, a surge voltage about twice the power supply voltage of the inverter may be generated.

【0003】サージ電圧による絶縁劣化は、本出願人の
研究(昭和62年電気学会全国大会、文献 270)によれば
放電劣化がおもな原因であると考えられる。つまり、サ
ージ電圧が電動機巻線に侵入した場合、巻線内部で電位
分布の不平衡を生じるため、部分放電が発生し、絶縁劣
化が進行して最終的には絶縁破壊を引き起こすことにな
る。従って、絶縁の信頼性を確保する方法としては、
(1)サージ電圧波高値を低減するために、電動機端子
部にフィルターを取り付ける、(2)巻線の絶縁信頼性
を高めるために、絶縁を厚くし、型巻絶縁を用いる、
(3)マイカなどの耐部分放電性に優れた材料を絶縁電
線の被覆材料として用いることが考えられているが、
(1)の方法では各相にフィルターを取り付ける必要が
あるため、部品点数が増加し、信頼性が低下する可能性
があり、原子力用途などには適当ではない。(2)の場
合は、型巻絶縁の採用によりコイルの第一ターンと最終
ターンが接触する可能性がなくなるが、コイルが大きく
なるため、用途が限定されると言う問題がある。(3)
の方法はまだ実用的に使用できる乱巻絶縁用の電線が開
発されていない。なお、対地に対する絶縁補強として乱
巻絶縁ではスロットライナーが用いられる。このため、
ターン間絶縁の信頼性に問題なければ、対地絶縁の評価
試験は不要である。
According to a study conducted by the applicant of the present invention (1987 National Conference of the Institute of Electrical Engineers of Japan, reference 270), insulation deterioration due to surge voltage is considered to be mainly caused by discharge deterioration. That is, when the surge voltage enters the motor winding, an imbalance of the potential distribution occurs inside the winding, so that partial discharge occurs, insulation deterioration progresses, and eventually dielectric breakdown occurs. Therefore, as a method to ensure the reliability of insulation,
(1) A filter is attached to the motor terminal to reduce the surge voltage peak value, (2) Insulation is thickened, and mold winding insulation is used to increase the insulation reliability of the winding.
(3) It is considered to use a material having excellent partial discharge resistance such as mica as a coating material for the insulated wire.
In the method (1), since it is necessary to attach a filter to each phase, the number of parts may increase and reliability may decrease, which is not suitable for nuclear applications. In the case of (2), the possibility of contact between the first turn and the final turn of the coil is eliminated by adopting die winding insulation, but there is a problem that the application is limited because the coil becomes large. (3)
In this method, an electric wire for random winding insulation that can be practically used has not been developed yet. A slot liner is used in random winding insulation as an insulation reinforcement against the ground. For this reason,
If there is no problem in the reliability of the inter-turn insulation, the evaluation test of the ground insulation is unnecessary.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述問題に
鑑みてなされたもので、その目的とするところは、部品
点数の増加による信頼性の低下や電動機の大形化を伴わ
ずに、絶縁劣化を防止し、極めて高い信頼性を有するイ
ンバータ駆動の乱巻絶縁電動機の巻線絶縁方法及び絶縁
巻線を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to reduce the reliability and increase the size of an electric motor due to an increase in the number of parts. An object of the present invention is to provide a winding insulation method and an insulated winding for an inverter-driven random winding insulation motor that prevents insulation deterioration and has extremely high reliability.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、インバータにより駆動される乱巻絶縁電
動機の巻線絶縁方法において、該電動機の巻線の絶縁電
線ターン間の部分放電開始電圧(CSV)が、インバー
タと電動機の組み合わせ運転時に生じるサージ電圧より
高い電圧になるように絶縁する。また、乱巻絶縁電動機
の巻線の絶縁電線としてエナメル層の外側にガラスある
いは耐放射線に優れた高分子材料の絶縁層を設けた絶縁
電線を用いる。
In order to achieve the above-mentioned object, the present invention provides a winding insulation method for a random winding insulation motor driven by an inverter, wherein a partial discharge between insulated wire turns of the winding of the motor. Insulation is performed so that the starting voltage (CSV) is higher than the surge voltage generated during the combined operation of the inverter and the electric motor. As the insulated wire for the winding of the random winding insulation motor, an insulated wire in which an insulating layer made of glass or a polymer material excellent in radiation resistance is provided outside the enamel layer is used.

【0006】[0006]

【作用】上記構成により、インバータで駆動される場合
においても部分放電の発生を抑制することができ、極め
て高い絶縁信頼性を有する乱巻絶縁電動機が得られる。
また、耐放射線にも優れ原子力用途の乱巻絶縁電動機が
得られる。
With the above structure, the occurrence of partial discharge can be suppressed even when driven by an inverter, and a random winding insulation motor having extremely high insulation reliability can be obtained.
Further, it is excellent in radiation resistance, and a wound winding insulation motor for nuclear power application can be obtained.

【0007】[0007]

【実施例】乱巻絶縁電動機の乱巻絶縁コイルでは第一タ
ーンと最終ターンが接触する可能性があるため、最悪の
条件を考慮すると、コイルが分担する全電圧がターン間
に印加されることになる。サージ電圧が巻線に侵入した
場合に、各コイルが分担する電圧は巻線でのコイル位置
により異なり、一般には第1コイルの分担率が大きく、
侵入サージ電圧の60%〜70%となると考えられている。
従って、ターン間の最大電圧として侵入サージ電圧を考
慮すれば、最悪の条件において30%〜40%の裕度がある
ので、ターン間の部分放電開始電圧がインバータの運転
で生じるサージ電圧以上であれば、ターン間での部分放
電は発生しないと考えて良い。しかし、乱巻絶縁に用い
られるエナメル線は絶縁被覆厚さが薄いため、侵入サー
ジ電圧が高い場合はCSVがこの値を下回ることが多
い。このため、ターン間の電線間隔を広げる必要があ
る。本実施例ではこのために、エナメル線の外側にガラ
ス繊維や耐放射線性に優れた高分子材料などをテーピン
グして絶縁層を設ける。また、乱巻絶縁電動機の乱巻絶
縁コイルと同じモデルコイルを用意する。
[Embodiment] Since the first turn and the last turn may come into contact with the random winding insulation coil of the random winding insulation motor, in consideration of the worst condition, the entire voltage shared by the coil should be applied between the turns. become. When the surge voltage enters the winding, the voltage shared by each coil depends on the coil position in the winding, and generally the first coil has a large share.
It is considered to be 60% to 70% of the inrush surge voltage.
Therefore, considering the intrusion surge voltage as the maximum voltage between turns, there is a margin of 30% to 40% under the worst conditions, so the partial discharge inception voltage between turns must be equal to or higher than the surge voltage generated during inverter operation. Therefore, it can be considered that partial discharge does not occur between turns. However, since the enameled wire used for random winding insulation has a thin insulating coating, the CSV often falls below this value when the intrusion surge voltage is high. Therefore, it is necessary to increase the wire spacing between turns. For this reason, in this embodiment, an insulating layer is provided by taping glass fiber or a polymer material having excellent radiation resistance on the outside of the enamel wire. Also, prepare the same model coil as the random winding insulation coil of the random winding insulation motor.

【0008】図1に示すモデルコイル1は、最も厳しい
条件でターン間の部分放電開始電圧および絶縁破壊電圧
が測定可能な乱巻モデルコイルの例である。このモデル
コイルでは、口出しリード線間2に電圧を印加すること
ができる。
The model coil 1 shown in FIG. 1 is an example of a randomly wound model coil whose partial discharge inception voltage and dielectric breakdown voltage between turns can be measured under the most severe conditions. With this model coil, a voltage can be applied between the lead wires 2 of the leads.

【0009】[0009]

【表1】 [Table 1]

【0010】実験で評価した電線材料は、0.9 mmφエナ
メル線、1.0 mmφ一重ガラス巻エナメル線、および1.2
mmφ二重ガラス巻エナメル線の3種類で、被覆厚はエナ
メル層が40μm、ガラス層が60μm及び110 μm、誘電
率はエナメル層が 3.7、ガラス層が 4.0ある。条件を厳
しくするため、レジン含浸処理前に測定を行った。表1
にターン間の部分放電開始電圧および絶縁破壊電圧の測
定結果を示す。表1の値は試料5本の平均値である。
The electric wire materials evaluated in the experiment were 0.9 mmφ enameled wire, 1.0 mmφ single glass wound enameled wire, and 1.2 mmφ enameled wire.
There are three types of mmφ double glass wound enamel wire. The coating thickness is 40 μm for the enamel layer, 60 μm and 110 μm for the glass layer, and the dielectric constant is 3.7 for the enamel layer and 4.0 for the glass layer. In order to make the conditions strict, the measurement was performed before the resin impregnation treatment. Table 1
Figure 3 shows the measurement results of the partial discharge inception voltage and the breakdown voltage between turns. The values in Table 1 are average values of 5 samples.

【0011】インバータと電動機を組み合わせた状態で
サージ電圧を測定したところ、サージ電圧はVp =565
Vであった。従って、この場合は、表1の結果から電線
材料として、一重ガラス巻エナメル線、または二重ガラ
ス巻エナメル線を選べばインバータで駆動する場合でも
部分放電が発生することはなくなる。
When the surge voltage was measured with the inverter and the motor combined, the surge voltage was Vp = 565.
It was V. Therefore, in this case, if the single glass winding enamel wire or the double glass winding enamel wire is selected as the wire material from the results of Table 1, partial discharge will not occur even when driven by an inverter.

【0013】このように、最も厳しい条件でターン間の
部分放電開始電圧を測定し、インバータと電動機の組み
合わせ状態でのインバータサージ電圧を上回る絶縁構成
を選ぶ事により、極めて信頼性の高い乱巻絶縁電動機が
得られる。
As described above, by measuring the partial discharge inception voltage between turns under the most severe conditions and selecting the insulation configuration that exceeds the inverter surge voltage in the combined state of the inverter and the electric motor, the extremely reliable random winding insulation is achieved. An electric motor is obtained.

【0012】高信頼性を確認するため、表1に示した3
種類の電線でモデルコイルを製作し、900 Vp 、1000H
zで課電寿命試験を実施した。その結果、エナメル線は
241h〜 950hで破壊したが、ガラス巻線のコイルは31
00h経過後も破壊せず、試験終了後に測定した絶縁破壊
電圧は初期値に対して低下していなかった。
In order to confirm high reliability, 3 shown in Table 1
Model coil is made with various kinds of electric wires, 900 Vp, 1000H
A voltage applied life test was performed at z. As a result, the enamel wire
It was destroyed from 241h to 950h, but the glass coil had 31 coils.
No breakdown occurred even after 00 h, and the insulation breakdown voltage measured after the test was not lower than the initial value.

【0013】なお、実施例として、ガラス巻線の場合に
ついて説明したが、ガラスの代りに耐放射線性に優れた
高分子材料を用いることができ、また、ボロンを含まな
いガラス繊維は放射線環境下では好適な材料であり、原
子力用途に適した乱巻絶縁電動機が得られる。また、実
施例では、絶縁電線ターン間の部分放電開始電圧、およ
びインバータと電動機を組み合わせた状態におけるイン
バータサージ電圧を実測により求めたが、シミュレーシ
ョンなどにより推定することができることは云うまでも
ない。
Although the case of the glass winding has been described as an example, a polymer material having excellent radiation resistance can be used instead of glass, and the glass fiber containing no boron can be used in a radiation environment. Is a suitable material, and a random winding insulation motor suitable for nuclear power applications is obtained. Further, in the embodiment, the partial discharge inception voltage between insulated wire turns and the inverter surge voltage in the state where the inverter and the electric motor are combined are obtained by actual measurement, but it goes without saying that they can be estimated by simulation or the like.

【0014】[0014]

【発明の効果】本発明によれば、部品点数の増加による
信頼性の低下や電動機の大形化を伴わずに絶縁劣化を防
止することができ、極めて高い信頼性を有するインバー
タ駆動の乱巻絶縁電動機の巻線絶縁方法及び絶縁巻線を
得ることが可能になる。
According to the present invention, it is possible to prevent insulation deterioration without lowering reliability due to an increase in the number of parts and without enlarging the size of the motor, and it is possible to achieve extremely high reliability in the inverter-driven random winding. It is possible to obtain a winding insulating method for an insulated motor and an insulated winding.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の乱巻絶縁電動機の絶縁巻線のモデルコ
イルの一実施例を示す。
FIG. 1 shows an embodiment of a model coil of an insulated winding of a randomly wound insulation motor according to the present invention.

【符号の説明】[Explanation of symbols]

1…モデルコイル 2…口出しリード線間 1 ... Model coil 2 ... Between lead wires

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 インバータにより駆動される乱巻絶縁電
動機の巻線絶縁方法において、該電動機の巻線の絶縁電
線ターン間の部分放電開始電圧(CSV)が、インバー
タと電動機の組み合わせ運転時に生じるサージ電圧より
高い電圧になるように絶縁することを特徴とする乱巻絶
縁電動機の巻線絶縁方法。
1. A winding insulation method for a randomly wound insulation motor driven by an inverter, wherein a partial discharge inception voltage (CSV) between insulated wire turns of a winding of the motor is a surge generated during combined operation of the inverter and the motor. A winding insulation method for a random winding insulation motor, characterized in that insulation is performed so that the voltage becomes higher than the voltage.
【請求項2】 乱巻絶縁電動機の巻線の絶縁電線として
エナメル層の外側にガラスあるいは耐放射線に優れた高
分子材料の絶縁層を設けた絶縁電線を用いることを特徴
とする乱巻絶縁電動機の絶縁巻線。
2. An irregularly wound insulated electric motor, wherein an insulated electric wire having an insulating layer made of glass or a polymer material excellent in radiation resistance is provided on the outer side of an enamel layer as an insulated electric wire of a winding of the irregularly wound insulated motor. Isolated winding.
JP28427092A 1992-10-22 1992-10-22 Insulating method for winding of random winding insulated motor, and insulated winding Pending JPH06141499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28427092A JPH06141499A (en) 1992-10-22 1992-10-22 Insulating method for winding of random winding insulated motor, and insulated winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28427092A JPH06141499A (en) 1992-10-22 1992-10-22 Insulating method for winding of random winding insulated motor, and insulated winding

Publications (1)

Publication Number Publication Date
JPH06141499A true JPH06141499A (en) 1994-05-20

Family

ID=17676358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28427092A Pending JPH06141499A (en) 1992-10-22 1992-10-22 Insulating method for winding of random winding insulated motor, and insulated winding

Country Status (1)

Country Link
JP (1) JPH06141499A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103721A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Ac generator for vehicle
JP2009288250A (en) * 2009-09-01 2009-12-10 Hitachi Industrial Equipment Systems Co Ltd Insulation design method and method for manufacturing inverter driving motor
US8816694B2 (en) 2004-07-28 2014-08-26 Hitachi Industrial Equipment Systems Co., Ltd. Apparatus and method for detecting partial discharge at turn-to-turn insulation in motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103721A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Ac generator for vehicle
US8816694B2 (en) 2004-07-28 2014-08-26 Hitachi Industrial Equipment Systems Co., Ltd. Apparatus and method for detecting partial discharge at turn-to-turn insulation in motor
JP2009288250A (en) * 2009-09-01 2009-12-10 Hitachi Industrial Equipment Systems Co Ltd Insulation design method and method for manufacturing inverter driving motor

Similar Documents

Publication Publication Date Title
US3670192A (en) Rotating electrical machine with means for preventing discharge from coil ends
Bonnett Analysis of the impact of pulse-width modulated inverter voltage waveforms on AC induction motors
US6828701B1 (en) Synchronous machine with power and voltage control
US5969456A (en) Electromagnetic equipment
JPH06141499A (en) Insulating method for winding of random winding insulated motor, and insulated winding
CN116885658B (en) Uninterrupted ground wire ice melting method and processor for extra-high voltage transmission line
US6927342B1 (en) Insulation for electrical conductors that produces no partial discharges
Allison Understanding the need for anti-corona materials in high voltage rotating machines
US6225564B1 (en) Coil turn insulation system for high voltage machines
US3975653A (en) Creeping discharge and partial discharge prevention means for a coil end of a rotary electric machine
Stranges et al. New specs for ASD motors
Christiansen et al. An experimental study of impulse voltage phenomena in a large AC motor
Ghai Design and application considerations for motors in steep-fronted surge environments
JPS63186540A (en) Rotary electric machine
Doughty et al. Cost-effective motor surge capability
JPH10174330A (en) Three-phase armature winding
Hwang et al. Accessing the insulation characteristics for stator windings of low-voltage induction motors for adjustable-speed drive applications
CN205754076U (en) High-voltage solid-state soft starter device
JPH09298853A (en) Winding of electric machine
Sexton A survey of turn insulation on large ac motors
Stranges et al. IEC 60034-18-41: a new draft technical specification for qualification and acceptance tests of inverter duty motor insulation
JPS62254641A (en) Armature winding
JPS63117641A (en) Insulating method for coil of motor
Rotating Machinery Committee Impulse Voltage Strength of AC Rotating Machines
JPH0199459A (en) Armature winding for charging generator