JPH0614136B2 - Large aperture zoom lens - Google Patents

Large aperture zoom lens

Info

Publication number
JPH0614136B2
JPH0614136B2 JP59041974A JP4197484A JPH0614136B2 JP H0614136 B2 JPH0614136 B2 JP H0614136B2 JP 59041974 A JP59041974 A JP 59041974A JP 4197484 A JP4197484 A JP 4197484A JP H0614136 B2 JPH0614136 B2 JP H0614136B2
Authority
JP
Japan
Prior art keywords
lens
group
object side
relay system
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59041974A
Other languages
Japanese (ja)
Other versions
JPS60186817A (en
Inventor
伸一 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP59041974A priority Critical patent/JPH0614136B2/en
Priority to US06/706,863 priority patent/US4701034A/en
Priority to DE19853507591 priority patent/DE3507591A1/en
Publication of JPS60186817A publication Critical patent/JPS60186817A/en
Publication of JPH0614136B2 publication Critical patent/JPH0614136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、撮影用ズームレンズで特に撮像デバイスとし
て電子撮像管、固体撮像素子を用いた撮影機用に適した
コンパクトな大口径ズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact large-aperture zoom lens suitable for a photographing zoom lens, particularly for a photographing device using an electronic image pickup tube or a solid-state image pickup device as an image pickup device.

従来技術 撮像デバイスとして電子撮像管、固体撮像素子を用いた
撮影機用のレンズとしてはほとんどズームレンズが用い
られる。これらのズームレンズはF/2.0以上の明る
さで、3倍以上の変倍比を有している点では、35mmライ
カサイズフイルム使用のスチールカメラ用レンズに比べ
ると優れているが、コンパクト性やコストの点ではあま
り考慮されていなかつた。しかし最近では普及型の電子
撮像デバイスを用いた撮影機が出現しはじめ、その光学
系についてもコンパクト性やコスト性等が問われはじめ
ている。したがつて前方のレンズ群の径が小さく全長が
短く、構成枚数もこの種のものとしては少ないズームレ
ンズの必要性が高まつている。
2. Description of the Related Art An electronic image pickup tube is used as an image pickup device, and a zoom lens is almost used as a lens for a photographing device using a solid-state image pickup element. These zoom lenses are brighter than F / 2.0 and have a zoom ratio of 3x or more, which is superior to steel camera lenses that use a 35mm Leica size film, but is compact. It was never considered in terms of gender and cost. However, recently, a photographing device using a popular electronic image pickup device has begun to appear, and its optical system is also required to be compact and cost effective. Therefore, there is a growing need for a zoom lens in which the diameter of the front lens group is small and the total length is short, and the number of constituent lenses is small for this type.

この種のレンズ系は、システムの一つのエレメントとし
ての性格が強いので、バツクフオーカス長の規制や、消
費電力の少ないオートフオーカスやパワーズームを行な
うための重力規制があるために、通常の第1群によるフ
オーカスに代えてリアーフオーカスを用いたり、ズーム
時に動かすレンズ群の数を少なくしたり、バツクフオー
カスを長くしたりするリレー系を用いるのが好ましい。
Since this type of lens system has a strong character as one element of the system, there are restrictions on the back focus length, gravity restrictions for autofocus and power zoom with low power consumption, and the normal first lens system. It is preferable to use a rear focus instead of the group focus, a relay system that reduces the number of lens groups to be moved during zooming, and lengthens the back focus.

F/2.0以上の明るさを有し、3倍以上の変倍比を持
つ撮影用ズームレンズは、多数存在するが、コンパクト
性(全長が短く前玉径が小)、コスト性(特にレンズ構
成枚数)やバツクフオーカスを長くする点のすべてを満
足し、しかも将来撮像素子類の画素数増大に十分対応し
得る高性能なズームレンズはまだ知られていない。特に
バツクフオーカスをズームレンズの最短焦点距離fWと最
長焦点距離fTとの相乗平均fSの0.9倍以上とりながら
の高性能化は試みられていない。
There are many zoom lenses for photography that have a brightness of F / 2.0 or more and a zoom ratio of 3 or more, but they are compact (the overall length is short and the front lens diameter is small) and cost-effective (especially No high-performance zoom lens has yet been known that satisfies all of the requirements for the number of lens components) and the length of the back focus, and can sufficiently cope with an increase in the number of pixels of image pickup devices in the future. In particular, no attempt has been made to improve the performance while keeping the back focus at 0.9 times or more the geometric mean f S of the shortest focal length f W and the longest focal length f T of the zoom lens.

バツクフオーカスの長いレンズの必要性はレンズ後端か
ら撮像面の間に諸々の光学部材を挿入する必要性から生
ずるものであるが、画面サイズが小さくなりレンズ系の
焦点距離が短くなるにつれてバツクフオーカスfBとfS
の比を大きくする必要性が増大する。特公昭55−40
852号、特公昭48−32387号等構成枚数が少な
いズームレンズは知られているがこれら従来例はバツク
フオーカスが短く又それを長くする考慮も特になされて
いない。
The need for a lens with a long back focus arises from the need to insert various optical members between the rear end of the lens and the imaging surface, but as the screen size becomes smaller and the focal length of the lens system becomes shorter, the back focus f B The need to increase the ratio of f S to f S increases. Japanese Patent Sho 55-40
No. 852, Japanese Patent Publication No. 48-32387, and other zoom lenses having a small number of constituents are known, but these prior art examples do not take into consideration a short back focus or a long length.

又従来例においては、オートフオーカス時も、径が大き
くて重い前方のレンズ群を駆動しながら合焦していた。
これを径が小さくて軽いレンズ群を駆動させて合焦する
リアーフオーカスを採用することによつて消費電力の少
ないオートフオーカスが可能になる。この方式を用いた
ズームレンズとして特開昭57−78513号公報に記
載されたものが知られている。しかしこの方式のオート
フオーカスは、前述のようなメリツトを有するものであ
るが、実施例1が近距離合焦時の収差変動特に非点収差
の変動が大きく性能上好ましくなく、又実施例2はF/
5.6で暗いレンズである。このようにこの従来例は前
述のようなF/2.0以上でバツクフオーカスがfS
0.9倍以上であるという要件を満足していてしかも近
距離合焦時の収差変動特に球面収差,コマ収差の変動を
小さくするための一定の条件を満たしていない。
Further, in the conventional example, even during autofocus, focusing is performed while driving the front lens group having a large diameter and heavy weight.
By adopting a rear focus that drives a lens group having a small diameter and a light weight to focus on this, an auto focus with low power consumption becomes possible. As a zoom lens using this method, the one described in JP-A-57-78513 is known. However, although the autofocus of this system has the above-described merits, Example 1 is not preferable in terms of performance because the variation of aberrations at the time of focusing at a short distance, especially the variation of astigmatism is large. Is F /
It is a dark lens at 5.6. As described above, this conventional example satisfies the requirement that the back focus is 0.9 times or more of f S at F / 2.0 or more as described above, and further, the aberration variation at the time of focusing at a short distance, especially the spherical aberration, It does not meet certain conditions for reducing the fluctuation of coma.

概 要 本発明のズームレンズは、全画角15゜〜45゜の変倍
比3以上でF/2より明るくバックフォーカスが十分確
保でき構成枚数を少なくするために次のようなレンズ構
成にした。つまり物体側から順に、正の焦点距離を有す
る第1群と、負の焦点距離を持つバリエーターと負の焦
点距離を持つコンペンセーターとから成る変倍系と、リ
レー系とから構成され、前記リレー系が前群と後群とか
ら成っていて、該前群が物体側から順に、正レンズと物
体側に強い凸面を向けた正レンズと物体側に強い凹面を
向けた負レンズの3枚から構成され、前記後群が負レン
ズと少なくとも2枚の正レンズとを含み、前記第1群は
固定し前記リレー系の後群を光軸に沿って物体側へ繰り
出すことにより近距離物体へのフォーカシングを行な
い、以下の条件(1)乃至条件(3)を満足するレンズ
系である。
Outline The zoom lens of the present invention has the following lens structure in order to secure a brighter back focus than F / 2 at a zoom ratio of 3 or more in a total angle of view of 15 ° to 45 ° and to reduce the number of constituent lenses. . That is, in order from the object side, the first group having a positive focal length, a variable power system including a variator having a negative focal length and a compensator having a negative focal length, and a relay system are provided. The system consists of a front lens group and a rear lens group, and the front lens group is composed of, in order from the object side, a positive lens, a positive lens with a strong convex surface facing the object side, and a negative lens with a strong concave surface facing the object side. The rear lens group includes a negative lens and at least two positive lenses, the first lens group is fixed, and the rear lens group of the relay system is extended toward the object side along the optical axis to move to a near object. It is a lens system that performs focusing and satisfies the following conditions (1) to (3).

(1) −0.3<fW/fA<0.2 (2) 0.14fIV<D<0.5fIV (3) 1.5fIV<l<2.2fIV ただし、fWは全系の最短焦点距離、fAは第1群からリレ
ー系の前群までの合成焦点距離、fIVはリレー系の焦点
距離、Dはリレー系の前群と後群の空気間隔、lはリレ
ー系の前群の負レンズの物体側の面から像側の面までの
距離である。
(1) −0.3 <f W / f A <0.2 (2) 0.14f IV <D <0.5f IV (3) 1.5f IV <l <2.2f IV where f W is The shortest focal length of the entire system, f A is the composite focal length from the first group to the front group of the relay system, f IV is the focal length of the relay system, D is the air distance between the front group and the rear group of the relay system, and l is It is the distance from the object side surface of the negative lens in the front lens group of the relay system to the image side surface.

本発明のズームレンズは、近距離物点への合焦を第1群
Iを物体側へ繰り出すことによって行なうことが出来
る。しかしこの合焦方式ではより近距離の物点へ合焦し
ていくにつれて口径食が大きくなりやすく、これを防ぐ
ためには第1群Iの径をより大きくしなければならな
い。このような径が大きく重くなった第1群Iを用いて
オートフォーカスを行なうと駆動モーターのトルクが大
になり消費電力が大になる欠点が生ずる。
The zoom lens of the present invention can perform focusing on a short-distance object point by moving the first group I toward the object side. However, in this focusing method, vignetting tends to increase as the object point at a closer distance is focused, and in order to prevent this, the diameter of the first group I must be increased. When autofocusing is performed using the first group I having such a large diameter and heavy weight, the torque of the drive motor becomes large and the power consumption becomes large.

本発明のズームレンズは、リレー系(第4群)IVの前群
IVaと後群IVbの間の空気間隔を用い後群IVbを光軸に沿
って物体側へ繰り出すことによって合焦を行なう方式を
採用することも可能である。しかしこの合焦方式は、近
距離物点に合焦した時に収差変動が大きくなる傾向があ
り、特に本発明のズームレンズのようにF/2.0より
も明るいズームレンズには適用しにくい。
The zoom lens of the present invention is a front lens group of the relay system (fourth lens group) IV.
It is also possible to employ a method of performing focusing by feeding the group IV b after using an air space between the IV a and the rear group IV b to the object side along the optical axis. However, this focusing method tends to have large aberration fluctuations when focusing on a short-distance object point, and is particularly difficult to apply to a zoom lens that is brighter than F / 2.0, such as the zoom lens of the present invention.

本発明においては、第1群Iからリレー系の前群IVa
でをほぼアフォーカルに形成して前記の後群繰り出しに
よる合焦方式を収差変動なく適用可能にした。更にバッ
クフォーカスを0.9fs以上にすることも考え合わせる
と第1群Iからリレー系の前群IVaまでの合成焦点距離f
Aは前記の条件(1)を満足する必要がある。
In the present invention, and the focusing method according to the group feeding after said up front group IV a is formed substantially afocal relay system from the first group I to be applicable without aberration fluctuations. Furthermore the combined focal length f of the match also contemplated that the back focus than 0.9F s from the first group I to the front group IV a relay system
A must satisfy the above condition (1).

この条件(1)で下限を越えると近距離物点における球
面収差が補正過剰になりやすく、又上限を越えると球面
収差が補正不足になりやすいと同時にバックフォーカス
を0.9fs以上にすることが困難になる。
If the lower limit of this condition (1) is exceeded, spherical aberration at the near object point will be overcorrected, and if the upper limit is exceeded, spherical aberration will be undercorrected and the back focus will be 0.9 fs or more. Becomes difficult.

又本発明のズームレンズは、リレー系(第4群)を6枚
又は7枚の少ない構成枚数にすることによって低いコス
トで軽量になし得たものである。又このように構成する
ことによってレンズ後端から像面までの間に諸々の光学
部材を挿入する場合に十分なバックフォーカスの確保が
容易になる。しかもこのような少ない枚数でバックフォ
ーカスを長くしても収差特に球面収差,コマ収差を良好
に補正し得る。つまりリレー系の前群IVaの最も像側に
負レンズを配置し、ここで光束に発散作用を与えてバツ
クフォーカスを長くしている。この負レンズは同時に球
面収差の補正にも寄与するが、この負レンズの前の正レ
ンズが像側の面の曲率が強いレンズであると、強い正の
屈折力の面と強い負の屈折力の面とが接近して並ぶこと
になるため光束が短い間に相反する作用を続けて受ける
ことになり球面収差の補正がむずかしくなる。そのため
に前記正レンズは物体側に強い凸面を受けた形状とする
ことが望ましい。
Further, the zoom lens of the present invention can be made lightweight at low cost by making the relay system (fourth group) a small number of elements such as 6 or 7. Further, with this configuration, it becomes easy to secure a sufficient back focus when various optical members are inserted between the rear end of the lens and the image plane. Moreover, aberrations, particularly spherical aberration and coma, can be corrected well even if the back focus is lengthened with such a small number of lenses. In other words, the negative lens is arranged on the most image side of the front group IV a of the relay system, and the divergent action is given to the light beam to lengthen the back focus. This negative lens also contributes to the correction of spherical aberration at the same time, but if the positive lens in front of this negative lens has a strong curvature on the image side, it has a strong positive refractive power and a strong negative refractive power. Since the light beams are closely aligned with each other, the light beams continue to receive the contradictory actions in a short time, which makes it difficult to correct the spherical aberration. Therefore, it is desirable that the positive lens has a shape having a strong convex surface on the object side.

またリレー系の前群IVaと後群IVbの間の空気間隔Dを上
記条件(2)の範囲内に設定することによってバックフ
ォーカスを長くすることが可能である。
Also it is possible to lengthen the back focus by setting the air distance D between the front lens group IV a and the rear group IV b of the relay system in the range of the condition (2).

この条件(2)の下限を越えて間隔Dが0.14fIV
下になるとバックフォーカスを長くするためには、リレ
ー系IVの前群,後群のパワーを強くしなければならず、
収差が悪化するので好ましくない。又間隔Dが0.15
fIV以上になるとレンズ系の全長が長くなりやすい。
When the distance D becomes 0.14f IV or less beyond the lower limit of this condition (2), in order to lengthen the back focus, the power of the front group and the rear group of the relay system IV must be increased.
Aberration is aggravated, which is not preferable. In addition, the interval D is 0.15
If it is f IV or more, the total length of the lens system tends to be long.

前述のようにリレー系の前群IVaの負レンズの物体側の
面に強い発散性をもたせることによってバックフォーカ
スを長くしているが、この発散性があまり強くなると球
面収差,コマ収差の補正が困難になってくる。そのため
に本発明ズームレンズでは前記の負レンズの物体側の面
の位置からレンズ系の後側焦点位置までの距離を前記
の条件(3)を満足するようにしてある。
Although long back focus by to have a strong divergence on the object-side surface of the negative lens of the front group IV a relay system as described above, the spherical aberration when the divergence is too strong, the correction of coma Becomes difficult. Therefore, in the zoom lens of the present invention, the distance from the position of the object-side surface of the negative lens to the rear focal point of the lens system satisfies the above condition (3).

この条件(3)の下限を越えると負レンズの物体側の面
の発散性が強くなりすぎ収差補正が困難になり、上限を
越えるとレンズ系の全長が長くなる。
If the lower limit of this condition (3) is exceeded, the divergence of the object-side surface of the negative lens will become too strong, making it difficult to correct aberrations. If the upper limit is exceeded, the overall length of the lens system will become long.

さらに本発明ズームレンズにおいては、近距離における
非点収差の変動を小さくするためには第4群の後群IVb
の最も物体側の正レンズ成分を瞳に対してコンセントリ
ックにすることが望ましいので、このレンズの像側の面
は強い曲率の凸面にしてある。このことはF/2より明
るい大口径ズームレンズの球面収差補正にとっても有利
である。また最も像側の正レンズ成分の物体側の面を像
側の面よりも明らかに強い曲率の凸面にすることも球面
収差の補正にとって有利である。
Further, in the zoom lens according to the present invention, in order to reduce the fluctuation of the astigmatism at a short distance, the rear group IV b of the fourth group
Since it is desirable that the positive lens component on the most object side of the lens be concentric with respect to the pupil, the image side surface of this lens is a convex surface having a strong curvature. This is also advantageous for spherical aberration correction of a large aperture zoom lens that is brighter than F / 2. It is also advantageous for correction of spherical aberration that the object-side surface of the positive lens component closest to the image side is a convex surface having a significantly stronger curvature than the image-side surface.

本発明は、将来を見込んで現状の電子撮像素子にとつて
余りある程度の高性能なズームレンズを提供することも
目的としている。この要求を満たすために次のようにし
た。
It is another object of the present invention to provide a high-performance zoom lens which has a certain level of performance for the current electronic image pickup device in view of the future. To meet this requirement, we did the following:

まず第4群IVのリレー系を次の条件(4),(5)を満足する
ようにした。
First, the relay system of the fourth group IV was made to satisfy the following conditions (4) and (5).

(4) nIVn>1.78 (5) νIVap<νIVbp ただしnIVnは、第4群IVの負レンズの屈折率の平均、ν
IVapは第4群の前群IVaの正レンズのアツベ数の平均、
νIVbpは第4群の後群IVbのアツベ数の平均である。
(4) n IVn > 1.78 (5) ν IVapIVbp where n IVn is the average refractive index of the negative lenses of the fourth lens group IV, ν
IVap average of Abbe's numbers of the positive lens of the front group IV a of the fourth group,
ν IVbp is the average of the Atsube numbers of the rear group IV b of the fourth group.

球面収差やコマ収差の高次収差発生の最大の要因は、リ
レー系の負レンズの曲率半径が全般に小さいことであ
る。そのためこれら負レンズの屈折率は高くした方がよ
い。この条件(4)より外れると負レンズの曲率半径が小
さくなりすぎて前記高次収差が発生する。
The largest factor in the occurrence of high-order aberrations such as spherical aberration and coma is that the radius of curvature of the negative lens of the relay system is generally small. Therefore, it is better to increase the refractive index of these negative lenses. If the condition (4) is not satisfied, the radius of curvature of the negative lens becomes too small and the high-order aberration is generated.

条件(5)は、倍率の色収差の補正のためのものである。
この条件を満足しないと軸上の色収差は補正出来ても倍
率の色収差は補正不足になる。
The condition (5) is for correcting lateral chromatic aberration.
If this condition is not satisfied, axial chromatic aberration can be corrected, but lateral chromatic aberration is insufficiently corrected.

次に第1群Iから第3群IIIまでのズーム部を物体側よ
り順に以下の構成にした。つまり第1群Iは負のメニス
カスレンズと両凸レンズの接合からなる正レンズ成分と
単レンズの正メニスカスレンズ成分の2群3枚、第2群
IIは単レンズからなる負レンズ成分と両凹レンズと正レ
ンズとの接合からなる負レンズ成分の2群3枚、第3群
IIIは負レンズ成分一つを含むものである。そして下記
の条件(6)乃至条件(11)を満足することが望ましい。
Next, the zoom units from the first group I to the third group III are arranged in the following order from the object side. In other words, the first group I is composed of a positive lens component formed by cementing a negative meniscus lens and a biconvex lens, and a positive meniscus lens component of a single lens.
II is a negative lens component consisting of a single lens, and a negative lens component consisting of a cemented biconcave lens and a positive lens.
III includes one negative lens component. It is desirable that the following conditions (6) to (11) are satisfied.

(6) 2.5fW<f<3.5fW (7) −1.2fW<fII<−0.8fW (8) 1.7<n4 (9) 0.05<n6−n5 (10) 1.6<n5 (11) 13<ν5−ν6 ただしfI,fIIは夫々第1群I,第2群IIの焦点距離、n
4は第2群IIの負レンズ成分の屈折率、n5,n6は夫々第
2群IIの接合の負レンズ成分の両凹レンズと正レンズの
屈折率、ν5,ν6は夫々前記負レンズ成分の両凹レンズ
と正レンズのアツベ数である。
(6) 2.5f W <f I <3.5f W (7) −1.2f W <f II <−0.8f W (8) 1.7 <n 4 (9) 0.05 <n 6 − n 5 (10) 1.6 <n 5 (11) 13 <ν 5 −ν 6 where f I and f II are the focal lengths of the first lens group I and the second lens group II, respectively.
4 is the refractive index of the negative lens component of the second group II, n 5 and n 6 are the refractive indices of the biconcave lens and the positive lens of the negative lens component of the second group II cemented together, and ν 5 and ν 6 are the negative values It is the Abbe number of the biconcave lens and the positive lens of the lens component.

上記条件のうち条件(6)は第1群Iの焦点距離を規定す
るもので、この条件の上限を越えるとズーム部の全長が
長くなりやすく、また下限を越えると各面の曲率半径が
小になり必要とする光束を確保するためにはレンズの肉
厚を大にしなければならず好ましくない。また収差補正
特に球面収差,コマ収差の補正が困難になる。
Condition (6) of the above conditions defines the focal length of the first lens group I. If the upper limit of this condition is exceeded, the total length of the zoom portion will tend to be long, and if the lower limit is exceeded, the radius of curvature of each surface will be small. In order to secure the required luminous flux, the lens thickness must be increased, which is not preferable. In addition, it becomes difficult to correct aberrations, especially spherical aberration and coma.

条件(7)は第2群IIの焦点距離を規定するもので、上限
を越えるとズーム部の全長を短くするためには望ましい
がズーム時の収差変動が大きくなりすぎる傾向となり、
下限を越えるとズーム部の全長が長くなる。
The condition (7) defines the focal length of the second lens group II. If the upper limit is exceeded, it is desirable to shorten the total length of the zoom section, but the aberration fluctuation during zooming tends to be too large.
If the value goes below the lower limit, the total length of the zoom section becomes long.

条件(8)乃至条件(10)を満足しないといずれもズーム時
の収差変動が大になる。
If the conditions (8) to (10) are not satisfied, the aberration variation during zooming becomes large.

これら条件のうち条件(8),(10)はいずれも第2群の負
のレンズの屈折率を大にし、これらレンズの曲率半径を
大にして主として球面収差の発生を少なくし、ズーム時
に第2群IIが移動しても収差変動がないようにした。し
たがつてこれら条件より外れるといずれも収差変動が大
になる。
Of these conditions, conditions (8) and (10) both increase the refractive index of the negative lens in the second lens group, increase the radius of curvature of these lenses, and mainly reduce the occurrence of spherical aberration. Even if the second lens group II moves, the aberration does not change. Therefore, if these conditions are not satisfied, the aberration variation will be large.

条件(9)は第2群I中の接合された負レンズ成分の接合
面に収差補正作用をもたせるために設けたものである。
この負レンズ成分の両レンズの屈折率の差が小さく条件
(9)を外れるとこのレンズ成分の補正作用が弱くなり、
他のレンズで補正しなければならない。
The condition (9) is provided so that the cemented surface of the cemented negative lens component in the second lens group I has an aberration correcting action.
If the difference in the refractive index of both lenses of this negative lens component is small,
When it goes out of (9), the correction effect of this lens component becomes weak,
It must be corrected with another lens.

条件(11)は色収差に関係するもので、この条件の下限を
越えるとズーム時の色収差の変動が大きくなりやすくな
る。つまりワイドからテレに変化するにつれて軸上の色
収差が短い波長の方で補正不足になり又倍率の色収差が
補正過剰に動く。
The condition (11) relates to chromatic aberration, and if the lower limit of this condition is exceeded, the variation of chromatic aberration during zooming tends to be large. That is, as the wavelength changes from wide to tele, axial chromatic aberration is undercorrected at shorter wavelengths, and lateral chromatic aberration is overcorrected.

実施例 以上説明した本発明の各実施例を次に示す。Embodiments Embodiments of the present invention described above will be described below.

実施例1 f=14〜24.25〜42 r1=73.7446 d1=1.1600 n1=1.80518 ν1=25.43 r2=29.0371 d2=7.3000 n2=1.62280 ν2=57.06 r3=-142.5789 d3=0.1700 r4=29.7376 d4=5.6000 n3=1.62012 ν3=49.66 r5=187.5263 d5=0.6000〜8.158〜13.563 r6=761.2471 d6=1.0400 n4=1.73400 ν4=51.49 r7=12.6032 d7=3.9500 r8=-19.9311 d8=1.0400 n5=1.69350 ν5=53.23 r9=14.4310 d9=3.1000 n6=1.84666 ν6=23.88 r10=-537.6964 d10=14.1628〜4.601〜3.099 r11=-23.9031 d11=1.0000 n7=1.69680 ν7=55.52 r12=-49.2275 d12=2.7690〜4.810〜0.854 r13=83.5278 d13=2.6697 n8=1.73400 ν8=51.49 r14=-26.0628 d14=0.6362 r15=∞(絞り) d15=2.0000 r16=22.6910 d16=3.1050 n9=1.69680 ν9=55.52 r17=205.0173 d17=1.2990 r18=-23.8698 d18=1.0000 n10=1.84666 ν10=23.88 r19=-199.2548 d19=8.6005 r20=152.2247 d20=1.0000 n11=1.80518 ν11=25.43 r21=26.2448 d21=1.9319 r22=120.3715 d22=4.7975 n12=1.56873 ν12=63.16 r23=-19.9767 d23=0.1342 r24=23.9392 d24=4.6311 n13=1.48749 ν13=70.15 r25=-72.0532 l/fIV=1.826,D/fIV=0.346,fW/fA=0.057 nIVn=1.82592,νIVap−νIVbp=-13.15 fI/fW=2.717,fII/f=-0.851, n=1.73400,n6−n5=0.15316, n5=1.69350 ν5−ν6=29.35,f=0.95fS 実施例2 f=14〜24.25〜42 r1=73.4599 d1=1.1600 n1=1.80518 ν1=25.43 r2=29.7582 d2=7.3000 n2=1.62280 ν2=57.06 r3=-143.3946 d3=0.1700 r4=29.8304 d4=5.6000 n3=1.62012 ν3=49.66 r5=193.5783 d5=0.6000〜8.068〜13.415 r6=-249.6054 d6=1.0400 n4=1.73400 ν4=51.49 r7=13.4290 d7=3.9500 r8=-22.3190 d8=1.0400 n5=1.69350 ν5=53.23 r9=13.6545 d9=3.1000 n6=1.84666 ν6=23.88 r10=395.1326 d10=13.8889〜4.363〜3.225 r11=-29.6120 d11=1.0000 n7=1.69680 ν7=55.52 r12=-74.5434 d12=3.0371〜5.106〜0.854 r13=103.8661 d13=2.6656 n8=1.72916 ν8=54.68 r14=-26.8147 d14=0.5983 r15=∞(絞り) d15=2.0000 r16=24.1544 d16=3.7803 n9=1.69680 ν9=55.52 r17=586.5944 d17=1.2984 r18=-21.4118 d18=1.0000 n10=1.84666 ν10=23.88 r19=-175.5530 d19=6.6556 r20=78.7259 d20=1.0000 n11=1.80518 ν11=25.43 r21=33.7443 d21=1.9815 r22=-76.7912 d22=3.8000 n12=1.48749 ν12=70.15 r23=-17.6494 d23=0.1342 r24=51.5682 d24=3.0000 n13=1.48749 ν13=70.15 r25=-54.5234 d25=0.1500 r26=33.6811 d26=3.7439 n14=1.48749 ν14=70.15 r27=306.4734 l/fIV=1.907,D/fIV=0.284,fW/fA=-0.078 nIVn=1.82592,νIVap−νIVbp=-15.05 fI/fW=2.696,fII/fW=-0.844,n4=1.73400 n6−n5=0.15316,n5=1.69350, ν5−ν6=29.35,f=0.95fS 実施例3 f=14〜24.25〜42 r1=73.1407 d1=1.1600 n1=1.80518 ν1=25.43 r2=29.2813 d2=7.3000 n2=1.62280 ν2=57.06 r3=-142.5699 d3=0.1700 r4=29.4855 d4=5.6000 n3=1.62012 ν3=49.66 r5=188.5203 d5=0.6000〜8.038〜13.370 r6=-2148.9531 d6=1.0400 n4=1.73400 ν4=51.49 r7=12.7344 d7=3.9500 r8=-19.2458 d8=1.0400 n5=1.69350 ν5=53.23 r9=14.4976 d9=3.1000 n6=1.84666 ν6=23.88 r10=-336.4032 d10=14.0324〜5.201〜2.643 r11=-21.0833 d11=1.0000 n7=1.69680 ν7=55.52 r12=-51.2968 d12=2.3119〜3.735〜0.854 r13=103.8053 d13=2.6678 n8=1.72916 ν8=54.68 r14=-34.5149 d14=0.6169 r15=∞(絞り) d15=2.0000 r16=52.1018 d16=3.3386 n9=1.69680 ν9=55.52 r17=-58.1766 d17=0.1500 r18=30.8549 d18=3.0000 n10=1.69680 ν10=55.52 r19=90.7813 d19=1.3000 r20=-24.0593 d20=1.0000 n11=1.84666 ν11=23.88 r21=-184.3586 d21=5.8297 r22=136.6332 d22=1.0000 n12=1.80518 ν12=25.43 r23=27.4732 d23=1.9396 r24=178.2704 d24=4.7972 n13=1.56873 ν13=63.16 r25=-19.8353 d25=0.1342 r26=27.9084 d26=4.6096 n14=1.48949 ν14=70.15 r27=-64.6149 l/fIV=1.860,D/fIV0.255,f/f=0.110 nIVn=1.82592,νIVap−νIVbb=-11.415 fI/fW=2.685,fII/fW=-0.840,n4=1.73400 n6−n5=0.15316,n5=1.69350, ν5−ν6=29.35,f=0.95fS ただしr1,r2,…はレンズ各面の曲率半径、d1,d2,…
は各レンズの肉厚および空気間隔、n1,n2,…は各レン
ズの屈折率、ν1,ν2,…は各レンズのアツベ数、fB
バツクフオーカスである。
Example 1 f = 14~24.25~42 r 1 = 73.7446 d 1 = 1.1600 n 1 = 1.80518 ν 1 = 25.43 r 2 = 29.0371 d 2 = 7.3000 n 2 = 1.62280 ν 2 = 57.06 r 3 = -142.5789 d 3 = 0.1700 r 4 = 29.7376 d 4 = 5.6000 n 3 = 1.62012 ν 3 = 49.66 r 5 = 187.5263 d 5 = 0.6000~8.158~13.563 r 6 = 761.2471 d 6 = 1.0400 n 4 = 1.73400 ν 4 = 51.49 r 7 = 12.6032 d 7 = 3.9500 r 8 = -19.9311 d 8 = 1.0400 n 5 = 1.69350 ν 5 = 53.23 r 9 = 14.4310 d 9 = 3.1000 n 6 = 1.84666 ν 6 = 23.88 r 10 = -537.6964 d 10 = 14.1628~4.601~3.099 r 11 = -23.9031 d 11 = 1.0000 n 7 = 1.69680 ν 7 = 55.52 r 12 = -49.2275 d 12 = 2.7690~4.810~0.854 r 13 = 83.5278 d 13 = 2.6697 n 8 = 1.73400 ν 8 = 51.49 r 14 = -26.0628 d 14 = 0.6362 r 15 = ∞ (aperture) d 15 = 2.0000 r 16 = 22.6910 d 16 = 3.1050 n 9 = 1.69680 ν 9 = 55.52 r 17 = 205.0173 d 17 = 1.2990 r 18 = -23.8698 d 18 = 1.0000 n 10 = 1.84666 ν 10 = 23.88 r 19 = -199.2548 d 19 = 8.6005 r 20 = 152.2247 d 20 = 1.0000 n 11 = 1.80518 ν 11 = 25.43 r 21 = 26.2448 d 21 1.9319 r 22 = 120.3715 d 22 = 4.7975 n 12 = 1.56873 ν 12 = 63.16 r 23 = -19.9767 d 23 = 0.1342 r 24 = 23.9392 d 24 = 4.6311 n 13 = 1.48749 ν 13 = 70.15 r 25 = -72.0532 l / f IV = 1.826, D / f IV = 0.346, f W / f A = 0.057 n IVn = 1.82592, ν IVap −ν IVbp = -13.15 f I / f W = 2.717, f II / f W = -0.851, n 4 = 1.73400, n 6 −n 5 = 0.15316, n 5 = 1.69350 ν 5 −ν 6 = 29.35, f B = 0.95f S Example 2 f = 14 to 24.25 to 42 r 1 = 73.4599 d 1 = 1.1600 n 1 = 1.80518 ν 1 = 25.43 r 2 = 29.7582 d 2 = 7.3000 n 2 = 1.62280 ν 2 = 57.06 r 3 = -143.3946 d 3 = 0.1700 r 4 = 29.8304 d 4 = 5.6000 n 3 = 1.62012 ν 3 = 49.66 r 5 = 193.5783 d 5 = 0.6000〜8.068〜13.415 r 6 = -249.6054 d 6 = 1.0400 n 4 1.73400 ν 4 = 51.49 r 7 = 13.4290 d 7 = 3.9500 r 8 = -22.3190 d 8 = 1.0400 n 5 = 1.69350 ν 5 = 53.23 r 9 = 13.6545 d 9 = 3.1000 n 6 = 1.84666 ν 6 = 23.88 r 10 = 395.1326 d 10 = 13.8889~4.363~3.225 r 11 = -29.6120 d 11 = 1.0000 n 7 = 1.69680 ν 7 = 55.52 r 12 = -74.5434 d 12 = 3.0371~5.106~0.854 r 13 = 103.8661 d 13 = 2.6656 n 8 = 1.72916 ν 8 = 54.68 r 14 = -26.8147 d 14 = 0.5983 r 15 = ∞ (diaphragm) d 15 = 2.0000 r 16 = 24.1544 d 16 = 3.7803 n 9 = 1.69680 ν 9 = 55.52 r 17 = 586.5944 d 17 = 1.2984 r 18 = -21.4118 d 18 = 1.0000 n 10 = 1.84666 ν 10 = 23.88 r 19 = -175.5530 d 19 = 6.6556 r 20 = 78.7259 d 20 = 1.0000 n 11 = 1.80518 ν 11 = 25.43 r 21 = 33.7443 d 21 = 1.9815 r 22 = -76.7912 d 22 = 3.8000 n 12 = 1.48749 ν 12 = 70.15 r 23 = -17.6494 d 23 = 0.1342 r 24 = 51.5682 d 24 = 3.0000 n 13 = 1.48749 ν 13 = 70.15 r 25 = -54 .5234 d 25 = 0.1500 r 26 = 33.6811 d 26 = 3.7439 n 14 = 1.48749 ν 14 = 70.15 r 27 = 306.4734 l / f IV = 1.907, D / f IV = 0.284, f W / f A = -0.078 n IVn = 1.82592, ν IVap −ν IVbp = -15.05 f I / f W = 2.696, f II / f W = -0.844, n 4 = 1.73400 n 6 −n 5 = 0.15316, n 5 = 1.69350, ν 5 −ν 6 = 29.35, f B = 0.95f S example 3 f = 14~24.25~42 r 1 = 73.1407 d 1 = 1.1600 n 1 = 1.80518 ν 1 = 25.43 r 2 = 29.2813 d 2 = 7.3000 n 2 = 1.62280 ν 2 = 57.06 r 3 = -142.5699 d 3 = 0.1700 r 4 = 29.4855 d 4 = 5.6000 n 3 = 1.62012 v 3 = 49.66 r 5 = 188.5203 d 5 = 0.6000 to 8.038 to 13.370 r 6 = -2148.9531 d 6 = 1.0400 n 4 = 1.73400 ν 4 = 51.49 r 7 = 12.7344 d 7 = 3.9500 r 8 = -19.2458 d 8 = 1.0400 n 5 = 1.69350 ν 5 = 53.23 r 9 = 1.4976 d 9 = 3.1000 n 6 = 1.84666 ν 6 = 23.88 r 10 =- 336.4032 d 10 = 14.0324~5.201~2.643 r 11 = -21. 0833 d 11 = 1.0000 n 7 = 1.9680 ν 7 = 55.52 r 12 = -51.2968 d 12 = 2.3119 to 3.735 to 0.854 r 13 = 103.8053 d 13 = 2.6678 n 8 = 1.72916 ν 8 = 54.68 r 14 = -34.5149 d 14 = 0.6169 r 15 = ∞ (aperture) d 15 = 2.0000 r 16 = 52.1018 d 16 = 3.3386 n 9 = 1.69680 ν 9 = 55.52 r 17 = -58.1766 d 17 = 0.1500 r 18 = 30.8549 d 18 = 3.0000 n 10 = 1.9680 ν 10 = 55.52 r 19 = 90.7813 d 19 = 1.3000 r 20 = -24.0593 d 20 = 1.0000 n 11 = 1.84666 ν 11 = 23.88 r 21 = -184.3586 d 21 = 5.8297 r 22 = 136.6332 d 22 = 1.0000 n 12 = 1.80518 ν 12 = 25.43 r 23 = 27.4732 d 23 = 1.9396 r 24 = 178.2704 d 24 = 4.7972 n 13 = 1.56873 ν 13 = 63.16 r 25 = -19.8353 d 25 = 0.1342 r 26 = 27.9084 d 26 = 4.6096 n 14 = 1.48949 ν 14 = 70.15 r 27 = -64.6149 l / f IV = 1.860, D / f IV 0.255, f W / f A = 0.110 n IVn = 1.82592, ν IVap -ν IVbb = -11.415 f I / f W = 2.685 f II / f W = -0.840, n 4 = 1.73400 n 6 -n 5 = 0.15316, n 5 = 1.69350, ν 5 -ν 6 = 29.35, f B = 0.95f S provided that r 1, r 2, ... lens Radius of curvature of each surface, d 1 , d 2 , ...
Is the wall thickness and air gap of each lens, n 1 , n 2 , ... Is the refractive index of each lens, ν 1 , ν 2 , ... Is the Abbe number of each lens, and f B is the back focus focus.

上記実施例のうち実施例1は第1図に示すレンズ構成の
ものである。つまり第4群IVのうち前群IVaは物体側よ
り順に正レンズと物体側に強い凸面を向けた正レンズと
物体側に強い凹面を向けた負レンズとにて又後群IVb
負レンズと正レンズと正レンズとにて構成されている。
この実施例のワイド,スタンダード,テレにおける収差
状況は夫々第4図,第5図,第6図に示す通りである。
Example 1 of the above examples has the lens configuration shown in FIG. That is also the rear group IV b in the front group IV a is a negative lens having a strong concave surface on the positive lens and the object side having a strong convex surface facing the positive lens and the object side in order from the object side in the fourth lens group IV Negative It is composed of a lens, a positive lens, and a positive lens.
The aberrations in the wide, standard and tele states of this embodiment are as shown in FIGS. 4, 5 and 6, respectively.

又実施例2は第2図に示すレンズ構成のものである。こ
の実施例の第4群IVは、正レンズと物体側に強い凸面を
向けた正レンズと物体側に強い凹面を向けた負レンズよ
りなる前群IVaと、負レンズと正レンズと正レンズと正
レンズよりなる後群IVbとにて構成されている。この実
施例のワイド,スタンダード,テレにおける収差状況は
夫々第7図、第8図、第9図に示す通りである。
Example 2 has a lens configuration shown in FIG. The fourth group IV of this embodiment, a front group IV a of a negative lens having a strong concave surface on the positive lens and the object side having a strong convex surface facing the positive lens and the object side, a negative lens and a positive lens element and a positive lens It is composed of a group IV b after consisting positive lens. The aberration conditions in the wide, standard and tele states of this embodiment are as shown in FIGS. 7, 8 and 9, respectively.

更に実施例3は第3図に示すレンズ構成のものである。
この実施例の第4群IVは、正レンズと正レンズと物体側
に強い凸面を向けた正レンズと物体側に強い凹面を向け
た負レンズよりなる前群IVaと負レンズと正レンズと正
レンズとよりなる後群IVbとにて構成されている。この
実施例のワイド,スタンダード,テレにおける収差状況
は、夫々第10図,第11図,第12図に示す通りである。
Further, Example 3 has a lens configuration shown in FIG.
The fourth lens group IV of this embodiment is composed of a positive lens, a positive lens, a positive lens having a strong convex surface facing the object side, and a negative lens having a strong concave surface facing the object side, a negative lens and a positive lens. It is composed of a group IV b after the more positive lens. The aberrations in the wide, standard and tele states of this embodiment are as shown in FIGS. 10, 11 and 12, respectively.

以上の各実施例は、いずれも第4群の後群IVbを物体側
に繰り出すことによつてフオーカシングを行なうことが
可能である。この方法にて近距離の物点にフオーカシン
グを行なつた時の後群IVbの繰り出し量は下記の通りで
ある。
Each of the above embodiments are both possible to perform Yotsute Fuokashingu to feed the group IV b after the fourth group to the object side. Feed amount of the group IV b after time the Fuokashingu was rows summer on a nearby object point at this method is as follows.

またその時の各実施例の収差状況は夫々第13図、乃至第
15図、第16図乃至第18図、第19図乃至第21図の通りであ
る。
The aberrations of the respective examples at that time are shown in FIGS.
This is as shown in FIGS. 15, 16 to 18 and 19 to 21.

発明の効果 本発明のズームレンズは、構成枚数が少なく,全長が短
く,更に0.9fS以上である十分に長いバツクフオーカ
スを確保しながらも画角15゜〜45゜の変倍比3,F/2.
0であつてしかも高性能であつて高い画素数の撮像素子
にも十分対応出来るものである。またF/2.0であり
ながら収差変動の極めて少ない軽量であるリアフオーカ
スも可能である。
EFFECTS OF THE INVENTION The zoom lens of the present invention has a small number of components, a short overall length, and a zoom ratio of 3, F with an angle of view of 15 ° to 45 ° while securing a sufficiently long back focus of 0.9 f S or more. / 2.
It is 0, has high performance, and is sufficiently compatible with an image pickup device having a large number of pixels. Also, a rear focus that is F / 2.0 and is light in weight with very little variation in aberration is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第3図は夫々本発明の実施例1乃至実施例3
の断面図、第4図乃至第6図は実施例1の無限遠物点の
収差曲線図、第7図乃至第9図は実施例2の無限遠物点
の収差曲線図、第10図乃至第12図は実施例3の無限遠物
点の収差曲線図、第13図乃至第15図は実施例1の近距離
物点の収差曲線図、第16図乃至第18図は実施例2の近距
離物点の収差曲線図、第19図乃至第21図は実施例3の近
距離物点の収差曲線図である。
1 to 3 show Embodiments 1 to 3 of the present invention, respectively.
4 to 6 are aberration curve diagrams of the object point at infinity of Example 1, FIGS. 7 to 9 are aberration curve diagrams of the object point at infinity of Example 2, and FIG. FIG. 12 is an aberration curve diagram of an object point at infinity of Example 3, FIGS. 13 to 15 are aberration curve diagrams of an object point of close range of Example 1, and FIGS. 16 to 18 are diagrams of Example 2. FIGS. 19 to 21 are aberration curve diagrams of a short-distance object point, and FIGS.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に、正の焦点距離を有する第
1群と、負の焦点距離を持つバリエーターと負の焦点距
離を持つコンペンセーターとから成る変倍系と、リレー
系とから構成され、前記リレー系が前群と後群とから成
っていて、該前群が物体側から順に、正レンズと物体側
に強い凸面を向けた正レンズと物体側に強い凹面を向け
た負レンズの3枚から構成され、前記後群が負レンズと
少なくとも2枚の正レンズとを含み、前記第1群は固定
し前記リレー系の後群を光軸に沿って物体側へ繰り出す
ことにより近距離物体へのフォーカシングを行ない、以
下の条件を満足する大口径ズームレンズ。 (1)−0.3<fW/fA<0.2 (2)0.14fIV<D<0.5fIV (3)1.5fIV<l<2.2fIV ただし、fWは全系の最短焦点距離、fAは第1群からリレ
ー系の前群までの合成焦点距離、fIVはリレー系の合成
焦点距離、Dは無限遠物点合焦時におけるリレー系の前
群と後群の間の間隔、lはリレー系の前群の負レンズの
物体側の面からズームレンズの後側焦点位置までの距離
である。
1. A zoom lens system comprising, in order from the object side, a first lens unit having a positive focal length, a variable power system including a variator having a negative focal length and a compensator having a negative focal length, and a relay system. The relay system includes a front lens group and a rear lens group, and the front lens group has, in order from the object side, a positive lens, a positive lens having a strong convex surface facing the object side, and a negative lens having a strong concave surface facing the object side. The rear group includes a negative lens and at least two positive lenses, and the first group is fixed, and the rear group of the relay system is extended toward the object side along the optical axis. A large-aperture zoom lens that focuses on a distance object and satisfies the following conditions. (1) -0.3 <f W / f A <0.2 (2) 0.14f IV <D <0.5f IV (3) 1.5f IV <l <2.2f IV where f W is The shortest focal length of the entire system, f A is the composite focal length from the first group to the front group of the relay system, f IV is the composite focal length of the relay system, and D is the front group of the relay system when focusing on an object point at infinity. The distance between the rear lens group and the rear lens group, l is the distance from the object side surface of the negative lens in the front lens group of the relay system to the rear focal point of the zoom lens.
【請求項2】前記後群の最も物体側の正レンズは像側の
面の方が強い曲率を持つ凸面であり、最も像側の正レン
ズは物体側の面の方が強い曲率を持つ凸面である特許請
求の範囲(1)の大口径ズームレンズ。
2. A positive lens closest to the object in the rear group is a convex surface having a stronger curvature on the image side, and a positive lens closer to the image is a convex surface having a stronger curvature on the object side. A large aperture zoom lens according to claim (1).
JP59041974A 1984-03-02 1984-03-07 Large aperture zoom lens Expired - Fee Related JPH0614136B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59041974A JPH0614136B2 (en) 1984-03-07 1984-03-07 Large aperture zoom lens
US06/706,863 US4701034A (en) 1984-03-02 1985-02-28 Large aperture zoom lens system
DE19853507591 DE3507591A1 (en) 1984-03-02 1985-03-04 VARIO LENS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041974A JPH0614136B2 (en) 1984-03-07 1984-03-07 Large aperture zoom lens

Publications (2)

Publication Number Publication Date
JPS60186817A JPS60186817A (en) 1985-09-24
JPH0614136B2 true JPH0614136B2 (en) 1994-02-23

Family

ID=12623164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041974A Expired - Fee Related JPH0614136B2 (en) 1984-03-02 1984-03-07 Large aperture zoom lens

Country Status (1)

Country Link
JP (1) JPH0614136B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2798090B2 (en) * 1988-02-10 1998-09-17 オリンパス光学工業株式会社 Focusing method of zoom lens
JP4508604B2 (en) * 2003-11-06 2010-07-21 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JPS60186817A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
US7280284B2 (en) Zoom lens
JP3253405B2 (en) Two-group zoom lens
US9291804B2 (en) Zoom lens and image pickup apparatus having the same
US7486448B2 (en) Zoom lens and image pickup apparatus
JP3506691B2 (en) High magnification zoom lens
US6891684B2 (en) Image taking lens system
JPH085913A (en) Rear focus type zoom lens
JPH05188294A (en) Inverse telephoto type large-aperture wide-angle lens
JP2001228397A (en) Zoom lens
JP2001033703A (en) Rear focus type zoom lens
JP2002365548A (en) Zoom lens
JP2001330777A (en) Zoom lens
JPH07107577B2 (en) Zoom lenses
JP3003081B2 (en) Inner focus macro lens
JP4339430B2 (en) Wide-angle lens with long back focus
JP3160846B2 (en) Telephoto zoom lens
JP2000231050A (en) Rear focus type zoom lens
JP2003161877A (en) Macro lens and camera equipped with the same
JPH0812326B2 (en) Reverse telephoto wide-angle lens
JP3445359B2 (en) Zoom lens
JP3369598B2 (en) Zoom lens
JP3821330B2 (en) Zoom lens
JPH0660971B2 (en) Zoom lenses
JP3619153B2 (en) Zoom lens and optical apparatus using the same
JP2003262793A (en) Zoom lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees