JPH06140218A - Shock-resistant rare-earth cobalt magnet and manufacture thereof - Google Patents

Shock-resistant rare-earth cobalt magnet and manufacture thereof

Info

Publication number
JPH06140218A
JPH06140218A JP4290974A JP29097492A JPH06140218A JP H06140218 A JPH06140218 A JP H06140218A JP 4290974 A JP4290974 A JP 4290974A JP 29097492 A JP29097492 A JP 29097492A JP H06140218 A JPH06140218 A JP H06140218A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
layer
earth cobalt
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4290974A
Other languages
Japanese (ja)
Inventor
Jiro Shimizu
二郎 清水
Masaru Itoyama
勝 糸山
Yoshitoshi Satou
孔俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4290974A priority Critical patent/JPH06140218A/en
Publication of JPH06140218A publication Critical patent/JPH06140218A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a shock-resistant rare-earth cobalt magnet, whose shock resistance and mechanical strength are improved without reducing its magnetic characteristics, and a method of manufacturing the cobalt magnet. CONSTITUTION:A single-layer metal-plated layer 2 having a thickness, which exceeds 2mum and is 7mum or thinner, is formed on the surface of a magnet main body 1 consisting of a rare-earth cobalt sintered material, which is shown by the composition formula=R1Co5 or R2Co17 (where R is at least one of a metal of rare-earth metals of Sm, Pr, La, etc.).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐衝撃性希土類コバルト
磁石およびその製造方法に係り、特に磁気特性を損うこ
となく耐衝撃性および機械的強度を高めた耐衝撃性希土
類コバルト磁石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impact-resistant rare earth cobalt magnet and a method for producing the same, and more particularly to an impact-resistant rare earth cobalt magnet having improved impact resistance and mechanical strength without deteriorating magnetic properties and its production. Regarding the method.

【0002】[0002]

【従来の技術】従来からRCo5 あるいはR2 Co
17(但しRはSm,Y,Ce,La,Prなどの希土類
金属の少なくとも1種)で表わされる金属間化合物から
成る焼結体磁石として、SmCo5 ,Sm2 Co17等の
焼結体磁石が、発電機、電動機、精密計測器、家電製
品、複写機、医療機器、自動車部品、玩具等の広い分野
で実用化されている。
2. Description of the Related Art Conventionally, RCo 5 or R 2 Co
Sintered magnets such as SmCo 5 , Sm 2 Co 17 and the like as sintered body magnets made of an intermetallic compound represented by 17 (where R is at least one kind of rare earth metal such as Sm, Y, Ce, La and Pr). However, it has been put to practical use in a wide range of fields such as generators, electric motors, precision measuring instruments, home appliances, copying machines, medical devices, automobile parts, toys, and the like.

【0003】これらの磁石は、通常下記のような工程を
経て製造されている。例えばSmCo5 を例に採れば、
Sm原料とCo原料とを溶解鋳造後、得られた鋳塊を焼
鈍した後に非酸化性雰囲気中でボールミル等の粉砕機を
使用して微粉末化し、得られた原料微粉末を磁界中で圧
粉成形を行ない、得られた成形体を不活性ガス雰囲気中
で焼結して製造されている。
These magnets are usually manufactured through the following steps. For example, taking SmCo 5 as an example,
After melting and casting the Sm raw material and the Co raw material, the obtained ingot is annealed, and then finely pulverized using a pulverizer such as a ball mill in a non-oxidizing atmosphere, and the obtained fine raw material powder is pressed in a magnetic field. It is manufactured by performing powder molding and sintering the obtained molded body in an inert gas atmosphere.

【0004】ところで、上記希土類コバルト磁石を構成
するSm,Pr,Laなどの希土類金属は、空気中にお
いて自然酸化されて、より安定な酸化物に移行し、磁気
特性が経時的に劣化する問題点を有していた。
By the way, the rare earth metals such as Sm, Pr and La which compose the above rare earth cobalt magnet are naturally oxidized in the air to be converted into more stable oxides, and the magnetic characteristics are deteriorated with time. Had.

【0005】上記対策として、例えば特公昭57−21
842号公報には、厚さ0.1〜0.5μmのNi等の
金属めっき層をSmCo5 焼結体磁石の表面に形成する
技術が開示されており、この金属めっき層による酸素の
遮断効果により、酸化による磁気特性の劣化が防止され
ている。一方、特開昭56−81908号公報では、上
記酸化防止と共に、焼結体磁石の強度向上を目的とし
て、厚さ10〜50μmの樹脂被覆あるいは厚さ1μm
の無電解Niめっき層の表面にさらに厚さ2μmのAu
めっき層を複層構造にして形成する旨の構成が記載され
ている。
As a measure against the above, for example, Japanese Patent Publication No. 57-21
Japanese Patent No. 842 discloses a technique of forming a metal plating layer of Ni or the like having a thickness of 0.1 to 0.5 μm on the surface of a SmCo 5 sintered body magnet, and the effect of blocking oxygen by this metal plating layer. As a result, deterioration of magnetic characteristics due to oxidation is prevented. On the other hand, in Japanese Unexamined Patent Publication No. 56-81908, a resin coating having a thickness of 10 to 50 μm or a thickness of 1 μm is provided for the purpose of preventing the above-mentioned oxidation and improving the strength of the sintered magnet.
2 μm thick Au on the surface of the electroless Ni plating layer of
A configuration for forming the plating layer in a multi-layer structure is described.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特公昭
57−21842号公報に記載されたSmCo5 磁石で
は、0.1〜0.5μmの金属めっき層が形成されてい
るため、酸化による磁気特性の防止効果は優れているも
のの、耐衝撃性等の改善効果はほとんどなく、使用時に
割れや欠けが発生し易い欠点があった。また、特開昭5
6−81908号公報に開示されているように厚さ1μ
mの無電解めっき層上にさらに2μmのAuめっき層を複
層構造となるように形成した希土類磁石でも耐衝撃性等
の改善効果は少なく、さらにめっき工程が2回になると
共に1度目のめっき後、洗浄、乾燥工程を加えなければ
ならず製造工程が増加・複雑化して製造コストも大幅に
上昇するという問題点を有していた。また、Niめっき
層とAuめっき層との接合部において剥離が生じる場合
もあり、耐衝撃性が不充分となる問題点もあった。さら
に金属めっき層を複層構造で形成した場合には隣接する
各金属めっき層の界面部に磁気的ギャップが形成され易
く、残留磁束密度などの磁気特性が低下し易くなる問題
点もあった。
However, in the SmCo 5 magnet described in Japanese Patent Publication No. 57-21842, a metal plating layer having a thickness of 0.1 to 0.5 μm is formed. Although it has an excellent prevention effect, it has almost no effect of improving impact resistance and the like, and has a drawback that cracks and chips are likely to occur during use. In addition, JP-A-5
As disclosed in JP-A-6-81908, the thickness is 1 μm.
Even with a rare earth magnet in which a 2 μm Au plating layer is formed on the m electroless plating layer so as to have a multi-layer structure, the effect of improving impact resistance is small, and the plating process is performed twice and the first plating is performed. After that, it is necessary to add washing and drying steps, which increases the number of manufacturing steps and complicates them, resulting in a significant increase in manufacturing costs. In addition, peeling may occur at the joint between the Ni-plated layer and the Au-plated layer, resulting in insufficient impact resistance. Further, when the metal plating layer is formed in a multi-layer structure, a magnetic gap is likely to be formed at the interface between adjacent metal plating layers, and the magnetic characteristics such as the residual magnetic flux density are likely to deteriorate.

【0007】近年、産業用機器、家電製品、自動車部品
等に使用される各種モータ、センサ、精密計測器、時計
部品などのように、希土類コバルト磁石を使用する機器
や部品自体の小型化および高機能化に伴い、その磁気特
性と共に希土類コバルト磁石自体に要求される耐衝撃性
および機械的強度特性も高くなり、従来の磁石では、満
足できる耐衝撃性、機械的強度特性を得ることは困難で
あった。
In recent years, devices such as various motors, sensors, precision measuring instruments, and watch parts used in industrial equipment, home electric appliances, automobile parts, etc., which use rare earth cobalt magnets, and miniaturization and heightening of parts themselves. Along with the functionalization, the magnetic properties as well as the impact resistance and mechanical strength properties required for the rare earth cobalt magnet itself have increased, and it is difficult to obtain satisfactory impact resistance and mechanical strength properties with conventional magnets. there were.

【0008】本発明は上記問題点を解決するためになさ
れたものであり、磁石本来の磁気特性を損うことなく耐
衝撃性および機械的強度を高めた耐衝撃性希土類コバル
ト磁石およびその製造方法を提供することを目的とす
る。
The present invention has been made in order to solve the above problems, and is an impact resistant rare earth cobalt magnet having improved impact resistance and mechanical strength without deteriorating the original magnetic characteristics of the magnet and a method for producing the same. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明に係る耐衝撃性希土類コバルト磁石は、組成式R
1 Co5 またはR2 Co17(但しRはSm,Pr,La
などの希土類金属の少なくとも1種)で表わされる希土
類コバルト焼結体から成る磁石本体の表面に厚さ2μm
を超え7μm以下の単層金属めっき層を形成したことを
特徴とする。
In order to achieve the above object, the impact resistant rare earth cobalt magnet according to the present invention has a composition formula R
1 Co 5 or R 2 Co 17 (where R is Sm, Pr, La
2 μm on the surface of the magnet body composed of a rare earth cobalt sintered body represented by at least one kind of rare earth metal such as
And a single-layer metal plating layer having a thickness of 7 μm or less is formed.

【0010】また磁石本体の表面粗さが最大高さ(Rma
x )基準で2〜10μmに設定することが好ましい。
In addition, the surface roughness of the magnet body has a maximum height (Rma
x) It is preferable to set 2 to 10 μm as a standard.

【0011】さらに本発明に係る耐衝撃性希土類コバル
ト磁石の第1の製造方法は、組成式R1 Co5 またはR
2 Co17(但しRはSm,Pr,Laなどの希土類金属
の少なくとも1種)で表わされる希土類コバルト焼結体
から成る磁石本体の表面を研摩加工することにより、表
面粗さを最大高さ(Rmax )基準で2〜10μmとした
後に、磁石本体表面に厚さが2μmを超え7μm以下の
単層金属めっき層を形成することを特徴とする。
Further, the first method of manufacturing the impact resistant rare earth cobalt magnet according to the present invention is the composition formula R 1 Co 5 or R
2 Co 17 (where R is at least one of rare earth metals such as Sm, Pr, La, etc.) is used to polish the surface of the magnet body made of a rare earth cobalt sintered body to obtain the maximum surface roughness ( Rmax) is set to 2 to 10 μm, and then a single-layer metal plating layer having a thickness of more than 2 μm and 7 μm or less is formed on the surface of the magnet body.

【0012】また本発明に係る耐衝撃性希土類コバルト
磁石の第2の製造方法は、組成式R1 Co5 またはR2
Co17(但しRはSm,Pr,Laなどの希土類金属の
少なくとも1種)で表わされる希土類コバルト焼結体か
ら成る磁石本体の表面を研摩加工することにより、表面
粗さを最大高さ(Rmax )基準で10μm超とした後
に、磁石本体表面に厚さが2μmを超え7μm以下の単
層金属めっき層を形成することを特徴とする。
A second method of manufacturing the impact resistant rare earth cobalt magnet according to the present invention is the composition formula R 1 Co 5 or R 2
By polishing the surface of the magnet body made of a rare earth cobalt sintered body represented by Co 17 (where R is at least one kind of rare earth metal such as Sm, Pr, La), the surface roughness is maximized (Rmax ) It is characterized by forming a single-layer metal plating layer having a thickness of more than 2 μm and not more than 7 μm on the surface of the magnet body after the standard exceeds 10 μm.

【0013】また本発明に係る耐衝撃性希土類コバルト
磁石の第3の製造方法は、組成式R1 Co5 またはR2
Co17(但しRはSm,Pr,Laなどの希土類金属の
少なくとも1種)で表わされる希土類コバルト焼結体か
ら成る磁石本体の表面に研摩加工等の表面粗さ調整処理
を行なうことなく厚さが2μmを超え7μm以下の単層
金属めっき層を直接形成することを特徴とする。
A third method of manufacturing the impact resistant rare earth cobalt magnet according to the present invention is the composition formula R 1 Co 5 or R 2
The thickness of the magnet body made of a rare earth cobalt sintered body represented by Co 17 (where R is at least one of rare earth metals such as Sm, Pr, and La) is not subjected to surface roughness adjustment treatment such as polishing. Is directly formed with a single-layer metal plating layer of 2 μm or more and 7 μm or less.

【0014】ここで上記単層金属めっき層は希土類磁石
の耐衝撃性および機械的強度を改善するために形成され
る。単層金属めっき層を構成する金属としては、Ni,
Ni−P,Ni−S,Cu,Ni−Co合金、Al,C
r,Sn,Ag,Zn,亜鉛クロメート,Auなどの金
属単体または合金が使用されるが、特に耐衝撃性、機械
的強度向上にはN,Ni−Pが好ましい。
The single-layer metal plating layer is formed to improve the impact resistance and mechanical strength of the rare earth magnet. As the metal constituting the single-layer metal plating layer, Ni,
Ni-P, Ni-S, Cu, Ni-Co alloy, Al, C
A simple metal or alloy such as r, Sn, Ag, Zn, zinc chromate, Au is used, and N, Ni-P is particularly preferable for improving impact resistance and mechanical strength.

【0015】単層金属めっき層の形成方法として、磁石
本体をめっき槽内で回転力を付与しながら無電解めっき
を実施したり、イオンめっき法や電解めっき法を使用す
ることもできる。ここで無電解めっき法の場合、希土類
コバルト磁石へのめっき施工においてもピンホールが少
なく磁石本体の表面各部に均一な厚さのめっき層を形成
することができる。また電解めっき法の場合は無電解め
っき法の場合に比べ膜厚の均一性は劣るものの比較的短
時間で所定厚さのめっき層を形成することができる。
As a method for forming the single-layer metal plating layer, electroless plating may be carried out while applying a rotational force to the magnet body in the plating tank, or an ion plating method or an electrolytic plating method may be used. In the case of the electroless plating method, the number of pinholes is small even when the rare earth cobalt magnet is plated, and a plating layer having a uniform thickness can be formed on each part of the surface of the magnet body. Further, in the case of the electrolytic plating method, the uniformity of the film thickness is inferior to that in the case of the electroless plating method, but the plating layer having a predetermined thickness can be formed in a relatively short time.

【0016】なお、一般に、焼結体への金属層の被覆手
段としてはめっき法の他、溶射法等の各種の被覆方法が
あるが、耐衝撃性、機械的強度に優れ密着強度の高い希
土類コバルト磁石を工業的に安価に生産する場合には、
めっき法が優れており、したがって本発明の被覆手段は
めっき法のみに限定される。
Generally, there are various coating methods such as a thermal spraying method as well as a plating method as a means for coating a metal layer on a sintered body. However, rare earths having excellent impact resistance, mechanical strength and high adhesion strength are available. If you want to produce a cobalt magnet industrially cheaply,
The plating method is excellent and therefore the coating means of the present invention is limited to the plating method only.

【0017】上記単層金属めっき層の厚さは磁石の耐衝
撃性および機械的強度に大きな影響を与えるものであ
り、本発明では2μmを超え7μm以下に設定される。
単層金属めっき層の厚さが2μm以下と過小である場合
には耐衝撃性および強度の改善効果が少ない一方、厚さ
が7μmを超えるように過大となると、磁気特性が低下
するとともにめっき処理時間が急激に増加し、磁石の製
造コストも急増してしまうからである。したがって単層
金属めっき層の厚さは2μmを超え7μm以下に設定さ
れるが、さらに3μmを超え5μm以下に設定すること
が望ましい。すなわち希土類コバルト磁石の適用する用
途により要求される耐衝撃性、機械的強度も多少異なる
が、一般に、モータ、センサ、計測器等に適用される比
較的小型の希土類コバルト磁石の場合には、めっき工程
の所要時間を短縮する観点から厚さ3μmを超え5μm
未満にすることがさらに好ましい。
The thickness of the single-layer metal plating layer has a great influence on the impact resistance and mechanical strength of the magnet, and is set to more than 2 μm and 7 μm or less in the present invention.
When the thickness of the single-layer metal plating layer is 2 μm or less, the effect of improving impact resistance and strength is small. On the other hand, when the thickness exceeds 7 μm, the magnetic characteristics are deteriorated and the plating treatment is performed. This is because the time increases rapidly and the manufacturing cost of the magnet also increases rapidly. Therefore, the thickness of the single-layer metal plating layer is set to more than 2 μm and 7 μm or less, and more preferably set to more than 3 μm and 5 μm or less. That is, the impact resistance and mechanical strength required depending on the application of the rare earth cobalt magnet are slightly different, but in the case of a relatively small rare earth cobalt magnet that is generally applied to motors, sensors, measuring instruments, etc. From the viewpoint of shortening the time required for the process, the thickness exceeds 3 μm and 5 μm
It is more preferable that the amount is less than 1.

【0018】また上記単層金属めっき層を形成する前の
磁石本体の表面粗さの大小は、磁石自体の耐衝撃性およ
び単層金属めっき層の密着強度に大きな影響を及ぼす要
因であり、特に表面粗さが大きいと密着強度は増大する
傾向にあるが、割れの起点となる欠陥部が形成され易く
なり耐衝撃性を低下させる原因となる。本発明では最大
高さ(Rmax )基準で2〜10μmに設定することが耐
衝撃性、密着強度の両特性を同時に満たす上で望まし
い。また表面粗さを2μmRmax 未満までに平滑に仕上
げる場合には、ポリッシングやラッピング等の高精度の
研摩加工が必要になり、加工時間および加工コストも急
増する問題もある。他方、表面粗さが10μmRmax を
超える場合には割れの発生となる凹部が形成されて、磁
石の耐衝撃性および機械的強度が低下する場合がある。
上記2〜10μmRmax の範囲に表面粗さを調整するた
めには、汎用のレジンボンド砥石による研削加工で充分
であり、加工コストも低い。
The magnitude of the surface roughness of the magnet body before the formation of the single-layer metal plating layer is a factor that greatly affects the impact resistance of the magnet itself and the adhesion strength of the single-layer metal plating layer. If the surface roughness is large, the adhesion strength tends to increase, but a defective portion that becomes a starting point of cracking is likely to be formed, which causes a decrease in impact resistance. In the present invention, it is desirable to set the maximum height (Rmax) to 2 to 10 μm in order to satisfy both properties of impact resistance and adhesion strength at the same time. Further, when the surface roughness is finished to be less than 2 μmRmax, highly accurate polishing such as polishing and lapping is required, and there is a problem that the processing time and the processing cost increase sharply. On the other hand, when the surface roughness exceeds 10 μmRmax, a recess that causes cracking may be formed, and the impact resistance and mechanical strength of the magnet may decrease.
Grinding with a general-purpose resin bond grindstone is sufficient to adjust the surface roughness within the range of 2 to 10 μmRmax, and the processing cost is low.

【0019】また、表面粗さが10μmRmax を超える
研摩加工を行なった後、厚さ2μmを超え7μm以下の
単層金属めっき層を形成することも可能である。通常、
焼結したままの磁石本体表面は表面粗さ(Rmax )が1
0μm程度と測定されても測定部分により著しく異な
り、部分により数十μm〜100μm程度の大きな溝
(凹部)が存在する。表面粗さが10μmRmax を超え
る研摩加工でもこれらの大きな溝(凹部)を除去するこ
とができるため耐衝撃性および機械的強度も研摩加工を
施さない場合に較べ向上する。この研摩加工としてはラ
ップ加工あるいは砥粒粒度が粗いレジンボンド砥石を用
いた研摩加工が挙げられる。
It is also possible to form a single-layer metal plating layer having a thickness of more than 2 μm and not more than 7 μm after performing polishing processing having a surface roughness of more than 10 μm Rmax. Normal,
The surface roughness (Rmax) of the as-sintered magnet body surface is 1
Even if it is measured to be about 0 μm, it varies remarkably depending on the measurement portion, and a large groove (recess) of about several tens μm to 100 μm exists depending on the portion. Even when the polishing process has a surface roughness of more than 10 μmRmax, these large grooves (recesses) can be removed, so that the impact resistance and the mechanical strength are improved as compared with the case where the polishing process is not performed. Examples of this polishing process include lapping and polishing using a resin bond grindstone having a coarse abrasive grain size.

【0020】しかしながら、上記研摩加工を実施せず
に、焼結したままの磁石本体表面に直接厚さ2μmを超
え7μm以下の単層金属めっき層を形成することも可能
である。この場合においても厚さ2μm以下の単層金属
めっきに較べ耐衝撃性および機械的強度は向上し、また
製造工程が減少するという利点を有する。この場合、焼
結したままの磁石本体に発生したバリ、あるいは磁石本
体に付着している粉体等をバレル処理、ブラスト処理等
で除去することが望ましい。
However, it is also possible to directly form a single-layer metal plating layer having a thickness of more than 2 μm and not more than 7 μm on the surface of the as-sintered magnet body without performing the above-mentioned polishing process. Also in this case, the impact resistance and the mechanical strength are improved and the number of manufacturing steps is reduced as compared with the single-layer metal plating having a thickness of 2 μm or less. In this case, it is desirable to remove burrs generated in the as-sintered magnet body or powder adhered to the magnet body by barrel treatment, blast treatment or the like.

【0021】[0021]

【作用】上記構成に係る耐衝撃性希土類コバルト磁石お
よび製造方法によれば、硬くて脆い磁石本体表面に厚さ
2μmを超え7μm以下の単層金属めっき層を形成して
いるため、磁気特性を損うことなく磁石の耐衝撃性およ
び機械的強度を大幅に改善することができ、希土類コバ
ルト磁石を使用する機器の耐久性および動作信頼性を大
幅に向上させることができる。
According to the impact resistant rare earth cobalt magnet and the manufacturing method having the above-described structure, since the single-layer metal plating layer having a thickness of more than 2 μm and not more than 7 μm is formed on the surface of the hard and brittle magnet body, the magnetic characteristics are improved. The impact resistance and mechanical strength of the magnet can be significantly improved without damaging it, and the durability and operation reliability of the device using the rare earth cobalt magnet can be significantly improved.

【0022】さらに金属めっき層を単層で形成している
ため、従来の複層構造の金属めっき層と比較して、めっ
き工程が1回と簡素になり、製造コストが大幅に低減さ
れ、さらに複層構造の場合に発生し易い各めっき層の剥
離がない。さらに各めっき層間に磁気的ギャップが形成
されないため、磁気特性が低下するおそれも少ない。
Further, since the metal plating layer is formed as a single layer, the plating process is simplified once as compared with the conventional metal plating layer having a multilayer structure, and the manufacturing cost is significantly reduced. There is no peeling of each plating layer, which tends to occur in the case of a multi-layer structure. Furthermore, since no magnetic gap is formed between the plating layers, there is little risk that the magnetic characteristics will deteriorate.

【0023】さらに単層金属めっき層を形成する前の磁
石本体の表面粗さを研摩加工により2〜10μmRmax
にあるいは10μmRmax 以上にすることにより、磁石
本体と単層金属めっき層との密着強度が高まるととも
に、割れの発生起点となる欠陥が減少するため、磁石の
耐衝撃性および機械的強度をさらに向上させることがで
きる。
Further, the surface roughness of the magnet body before the formation of the single-layer metal plating layer is polished to 2 to 10 μmRmax.
Or 10 μmRmax or more, the adhesion strength between the magnet body and the single-layer metal plating layer is increased, and the defects that cause the occurrence of cracks are reduced, so that the impact resistance and mechanical strength of the magnet are further improved. be able to.

【0024】また、研摩加工を施さない場合には製造工
程数を減少させることができ、簡単に上記目的の希土類
コバルト磁石を製造することができる。
When the polishing process is not performed, the number of manufacturing steps can be reduced, and the rare earth cobalt magnet for the above purpose can be easily manufactured.

【0025】[0025]

【実施例】次に本発明の一実施例について添付図面を参
照してより具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described more specifically with reference to the accompanying drawings.

【0026】実施例1〜7 Sm2 Co17となるようにSmが重量比で23.1重量
%と残部Coから成る原料混合体を高周波溶解炉で溶解
してインゴットを調製し、このインゴットをArガス雰
囲気の加熱炉で温度1050℃で5時間焼鈍し、ハンマ
クラッシャで粗粉砕を行なった後に、さらに得られた粗
粉末をアルミナ質セラミックポット中で約20時間粉砕
混合して平均粒径3〜5μmの粉末に調整した。次に得
られたSm2 Co17粉末を成形圧力2t/cm2 、印加磁
界12000エルステッドで磁場成形し、得られた成形
体をアルゴンガス雰囲気で温度1100℃〜1200℃
で60分焼結した後、溶体化処理、時効処理を施し、直
径9.5mmで厚さ1.5mmのSm2 Co17磁石本体を多
数製造した。
Examples 1 to 7 A raw material mixture consisting of 23.1% by weight of Sm and the balance Co so as to be Sm 2 Co 17 was melted in a high frequency melting furnace to prepare an ingot. After annealing for 5 hours at a temperature of 1050 ° C. in a heating furnace in an Ar gas atmosphere and coarse crushing with a hammer crusher, the coarse powder obtained is further crushed and mixed in an alumina ceramic pot for about 20 hours to obtain an average particle size of 3 Adjusted to ˜5 μm powder. Next, the obtained Sm 2 Co 17 powder was subjected to magnetic field molding under a molding pressure of 2 t / cm 2 and an applied magnetic field of 12000 Oersted, and the obtained molded body was heated at a temperature of 1100 ° C. to 1200 ° C. in an argon gas atmosphere.
After 60 minutes of sintering, solution treatment and aging treatment were performed to produce a large number of Sm 2 Co 17 magnet main bodies having a diameter of 9.5 mm and a thickness of 1.5 mm.

【0027】次に得られたSm2 Co17磁石本体の表面
をレジンボンド砥石を使用して研削加工し、表1に示す
ように、それぞれ表面粗さが4〜10μmRmax (実施
例1〜6用)となるように調整した。また研削加工を実
施しない試料として実施例7用の磁石本体を用意した。
Next, the surface of the obtained Sm 2 Co 17 magnet main body was ground using a resin bond grindstone, and as shown in Table 1, the surface roughness was 4 to 10 μm Rmax (for Examples 1 to 6). ) Was adjusted. A magnet main body for Example 7 was prepared as a sample that was not subjected to grinding.

【0028】次に上記研削加工を実施した各試料(実施
例1〜6用)および研削加工を実施しない試料(実施例
7用)に対して無電解めっき法により表1に示すように
厚さ2.5〜7μmの単層Niめっき層を形成し、図1
に示すようなSm2 Co17磁石本体1の全表面に均一な
単層Niめっき層2を形成した実施例1〜7に係るSm
2 Co17磁石3を製造した。
Next, as shown in Table 1, the thickness of each sample subjected to the above-mentioned grinding (for Examples 1 to 6) and the sample not subjected to grinding (for Example 7) was measured by electroless plating. A single-layer Ni plating layer having a thickness of 2.5 to 7 μm is formed, and FIG.
Sm according to Examples 1 to 7 in which a uniform single-layer Ni plating layer 2 is formed on the entire surface of the Sm 2 Co 17 magnet body 1 as shown in FIG.
2 Co 17 magnet 3 was manufactured.

【0029】比較例1 実施例7において調製した磁石本体1に研削加工を実施
せず、またNiめっきを実施せずにそのまま比較例1に
係るSm2 Co17磁石とした。
[0029] without performing grinding to the magnet body 1 prepared in Comparative Example 1 Example 7, also was Sm 2 Co 17 magnet as in Comparative Example 1 without performing Ni plating.

【0030】比較例2 実施例7において調製した磁石本体1に研削加工を実施
せずに直接厚さ1.5μmの単層Niめっき層を無電解
めっき法により形成し、比較例2に係るSm2 Co17
石を調製した。
COMPARATIVE EXAMPLE 2 A single-layer Ni plating layer having a thickness of 1.5 μm was directly formed on the magnet body 1 prepared in Example 7 without grinding by electroless plating, and Sm according to Comparative Example 2 was used. A 2 Co 17 magnet was prepared.

【0031】比較例3 実施例7において調製した磁石本体の表面を研削加工し
てその表面粗さを4μmRmax とし、Niめっき層を形
成せずに比較例3に係るSm2 Co17磁石とした。
Comparative Example 3 The surface of the magnet body prepared in Example 7 was ground to have a surface roughness of 4 μmRmax, and an Sm 2 Co 17 magnet according to Comparative Example 3 was formed without forming a Ni plating layer.

【0032】比較例4 実施例7において調製した磁石本体1の表面を研摩加工
せずに、表面に無電解めっき法にて厚さ1μmのNiめ
っき層を直接形成し、さらにNiめっき層表面に厚さ2
μmの金(Au)めっき層を形成して複層構造を有する
比較例4に係るSm2 Co17磁石を調製した。
Comparative Example 4 A 1 μm-thick Ni plating layer was directly formed on the surface of the magnet body 1 prepared in Example 7 by an electroless plating method without polishing the surface, and further on the Ni plating layer surface. Thickness 2
A Sm 2 Co 17 magnet according to Comparative Example 4 having a multi-layer structure was prepared by forming a gold (Au) plating layer having a thickness of μm.

【0033】こうして調製した実施例1〜7および比較
例1〜4に係る各Sm2 Co17磁石の耐衝撃性を評価す
るため、衝撃試験を実施した。
An impact test was carried out in order to evaluate the impact resistance of the Sm 2 Co 17 magnets of Examples 1 to 7 and Comparative Examples 1 to 4 thus prepared.

【0034】なお衝撃試験は図2に示すような衝撃試験
装置4を使用して実施した。すなわち衝撃試験装置4
は、厚さ30mmの鋼製基台5と、この鋼製基台5上に立
設された支柱6と、この支柱6に摺動自在に装着され、
重さ5.47gの鋼球7を着脱自在に保持する保持金具
8とから成る。そして衝撃試験では、鋼製基台5上に各
試料(Sm2 Co17磁石)3を1個ずつ載置し、この1
個の試料3に対して所定の落下高さ(H)から鋼球7を
一回自然落下させて試料3に衝撃を加え、割れや欠けを
生じた試料数の全試料数に対する割合を破損発生率とし
て算出し、各試料の種類毎の耐衝撃性を評価した。
The impact test was carried out using an impact test device 4 as shown in FIG. That is, the impact test device 4
Is a steel base 5 having a thickness of 30 mm, a pillar 6 standing on the steel base 5, and slidably mounted on the pillar 6.
And a holding metal fitting 8 for detachably holding a steel ball 7 weighing 5.47 g. Then, in the impact test, one sample (Sm 2 Co 17 magnet) 3 was placed on the steel base 5 and the 1
The steel ball 7 is naturally dropped once from a predetermined drop height (H) with respect to each sample 3 and a shock is applied to the sample 3, and the ratio of the number of samples with cracks or chips to the total number of samples is damaged. The impact resistance for each type of each sample was evaluated.

【0035】測定結果を下記表1に示す。The measurement results are shown in Table 1 below.

【0036】[0036]

【表1】 [Table 1]

【0037】表1に示す結果から明らかなように、磁石
本体表面に厚さ2.5〜7μmの単層Niめっき層を形
成した実施例1〜7に係るSm2 Co17磁石では、落下
高さ(H)が150mmまではほとんど割れや欠けが発生
せず、優れた耐衝撃性が発揮されることが確認された。
特に単層Niめっき層を形成するに先立って磁石本体表
面の粗さを4〜5μmRmax に研削加工した実施例1〜
4,6に係るSm2 Co17磁石においては、単層Niめ
っき層と磁石本体との密着強度が高まり、また割れの発
生起点となる微小欠陥が低減されるため、破損発生率は
落下高さが300mmの範囲まで極めて少なく優れた耐衝
撃性を有することが実証された。また研削加工を実施せ
ずに粗面(15μmRmax )に直接単層Niめっき層を
形成した実施例7に係る磁石では上記実施例と比較する
と相対的には耐衝撃性が低下しているが、比較例に較べ
れば高い値を示した。
As is clear from the results shown in Table 1, in the Sm 2 Co 17 magnets according to Examples 1 to 7 in which the single-layer Ni plating layer having a thickness of 2.5 to 7 μm was formed on the surface of the magnet body, the drop height was increased. It was confirmed that when the thickness (H) was up to 150 mm, almost no cracking or chipping occurred and excellent impact resistance was exhibited.
In particular, Example 1 in which the roughness of the surface of the magnet main body was ground to 4 to 5 μm Rmax prior to forming the single-layer Ni plating layer
In the Sm 2 Co 17 magnets according to Nos. 4 and 6, the adhesion strength between the single-layer Ni plating layer and the magnet body is increased, and the microdefects that cause the occurrence of cracks are reduced. It has been proved that it has extremely low impact resistance up to the range of 300 mm and has excellent impact resistance. Further, in the magnet according to Example 7 in which the single-layer Ni plating layer was directly formed on the rough surface (15 μm Rmax) without performing the grinding process, the impact resistance was relatively decreased as compared with the above Example, The value was higher than that of the comparative example.

【0038】一方、研削加工を実施せず、またNiめっ
き層も形成しない比較例1に係る磁石では、落下高さ
(H)が50mmで70%が破損し実用に耐えないことが
判明した。また他の比較例も同様な値を示した。
On the other hand, it was found that the magnet according to Comparative Example 1 in which the grinding process was not carried out and the Ni plating layer was not formed was 70% broken at a drop height (H) of 50 mm and was not practical. The other comparative examples also showed similar values.

【0039】[0039]

【発明の効果】以上説明の通り本発明に係る耐衝撃性希
土類コバルト磁石およびその製造方法は、硬くて脆い磁
石本体表面に厚さ2μmを超え7μm以下の単層金属め
っき層を形成しているため、磁気特性を損うことなく磁
石の耐衝撃性および機械的強度を大幅に改善することが
でき、希土類コバルト磁石を使用する機器の耐久性およ
び動作信頼性を大幅に向上させることができる。
As described above, in the impact resistant rare earth cobalt magnet and the method for producing the same according to the present invention, a single metal plating layer having a thickness of more than 2 μm and not more than 7 μm is formed on the surface of a hard and brittle magnet body. Therefore, the impact resistance and mechanical strength of the magnet can be significantly improved without impairing the magnetic characteristics, and the durability and operation reliability of the device using the rare earth cobalt magnet can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る希土類コバルト磁石の一実施例を
示す断面図。
FIG. 1 is a cross-sectional view showing an example of a rare earth cobalt magnet according to the present invention.

【図2】衝撃試験装置の構成を示す正面図、FIG. 2 is a front view showing the configuration of an impact test device,

【符号の説明】[Explanation of symbols]

1 磁石本体 2 単層Niめっき層(単層金属めっき層) 3 Sm2 Co17磁石(希土類コバルト磁石) 4 衝撃試験装置 5 鋼製基台 6 支柱 7 鋼球 8 保持金具1 Magnet Main Body 2 Single Layer Ni Plating Layer (Single Layer Metal Plating Layer) 3 Sm 2 Co 17 Magnet (Rare Earth Cobalt Magnet) 4 Impact Test Equipment 5 Steel Base 6 Support 7 Steel Ball 8 Holding Metal

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 組成式R1 Co5 またはR2 Co17(但
しRはSm,Pr,Laなどの希土類金属の少なくとも
1種)で表わされる希土類コバルト焼結体から成る磁石
本体の表面に厚さ2μmを超え7μm以下の単層金属め
っき層を形成したことを特徴とする耐衝撃性希土類コバ
ルト磁石。
1. A surface of a magnet body made of a rare earth cobalt sintered body represented by a composition formula R 1 Co 5 or R 2 Co 17 (where R is at least one kind of rare earth metal such as Sm, Pr, La) A shock-resistant rare earth cobalt magnet having a single-layer metal plating layer having a thickness of more than 2 μm and not more than 7 μm.
【請求項2】 単層金属めっき層がニッケル(Ni)か
ら成ることを特徴とする請求項1記載の耐衝撃性希土類
コバルト磁石。
2. The impact resistant rare earth cobalt magnet according to claim 1, wherein the single metal plating layer is made of nickel (Ni).
【請求項3】 磁石本体の表面粗さが最大高さ(Rmax
)基準で2〜10μmであることを特徴とする請求項
1記載の耐衝撃性希土類コバルト磁石。
3. The surface roughness of the magnet body has a maximum height (Rmax).
2) The impact resistant rare earth cobalt magnet according to claim 1, wherein the standard is 2 to 10 μm.
【請求項4】 単層金属めっき層の厚さが3μmを超え
5μm以下であることを特徴とする請求項1記載の耐衝
撃性希土類コバルト磁石。
4. The impact resistant rare earth cobalt magnet according to claim 1, wherein the thickness of the single-layer metal plating layer is more than 3 μm and 5 μm or less.
【請求項5】 組成式R1 Co5 またはR2 Co17(但
しRはSm,Pr,Laなどの希土類金属の少なくとも
1種)で表わされる希土類コバルト焼結体から成る磁石
本体の表面を研摩加工することにより、表面粗さを最大
高さ(Rmax)基準で2〜10μmとした後に、磁石本
体表面に厚さが2μmを超え7μm以下の単層金属めっ
き層を形成することを特徴とする耐衝撃性希土類コバル
ト磁石の製造方法。
5. The surface of a magnet body made of a rare earth cobalt sintered body represented by a composition formula R 1 Co 5 or R 2 Co 17 (where R is at least one kind of rare earth metal such as Sm, Pr, La) is polished. By processing, the surface roughness is set to 2 to 10 μm based on the maximum height (Rmax), and then a single-layer metal plating layer having a thickness of more than 2 μm and 7 μm or less is formed on the surface of the magnet body. Method for manufacturing impact resistant rare earth cobalt magnet.
【請求項6】 組成式R1 Co5 またはR2 Co17(但
しRはSm,Pr,Laなどの希土類金属の少なくとも
1種)で表わされる希土類コバルト焼結体から成る磁石
本体の表面を研摩加工し、表面粗さを最大高さ(Rmax
)基準で10μm超とした後に、磁石本体表面に厚さ
が2μmを超え7μm以下の単層金属めっき層を形成す
ることを特徴とする耐衝撃性希土類コバルト磁石の製造
方法。
6. A surface of a magnet body made of a rare earth cobalt sintered body represented by a composition formula R 1 Co 5 or R 2 Co 17 (where R is at least one kind of rare earth metal such as Sm, Pr, La) is polished. The surface roughness is processed to the maximum height (Rmax
) A method for producing an impact resistant rare earth cobalt magnet, which comprises forming a single-layer metal plating layer having a thickness of more than 2 μm and not more than 7 μm on the surface of the magnet body after the standard exceeds 10 μm.
【請求項7】 組成式R1 Co5 またはR2 Co17(但
しRはSm,Pr,Laなどの希土類金属の少なくとも
1種)で表わされる希土類コバルト焼結体から成る磁石
本体の表面を研摩加工等の表面粗さ調整処理を行なうこ
となく厚さが2μmを超え7μm以下の単層金属めっき
層を直接形成することを特徴とする耐衝撃性希土類コバ
ルト磁石の製造方法。
7. A surface of a magnet body made of a rare earth cobalt sintered body represented by a composition formula R 1 Co 5 or R 2 Co 17 (where R is at least one kind of rare earth metal such as Sm, Pr, La) is polished. A method for producing an impact resistant rare earth cobalt magnet, which comprises directly forming a single-layer metal plating layer having a thickness of more than 2 μm and not more than 7 μm without performing a surface roughness adjusting treatment such as working.
JP4290974A 1992-10-29 1992-10-29 Shock-resistant rare-earth cobalt magnet and manufacture thereof Pending JPH06140218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290974A JPH06140218A (en) 1992-10-29 1992-10-29 Shock-resistant rare-earth cobalt magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290974A JPH06140218A (en) 1992-10-29 1992-10-29 Shock-resistant rare-earth cobalt magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06140218A true JPH06140218A (en) 1994-05-20

Family

ID=17762843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290974A Pending JPH06140218A (en) 1992-10-29 1992-10-29 Shock-resistant rare-earth cobalt magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06140218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058648A1 (en) * 2001-12-28 2003-07-17 Shin-Etsu Chemical Co., Ltd. Rare earth element sintered magnet and method for producing rare earth element sintered magnet
JP2007273863A (en) * 2006-03-31 2007-10-18 Tdk Corp Magnet member
WO2010058555A1 (en) * 2008-11-19 2010-05-27 株式会社 東芝 Permanent magnet and method for manufacturing same, and motor and generator employing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058648A1 (en) * 2001-12-28 2003-07-17 Shin-Etsu Chemical Co., Ltd. Rare earth element sintered magnet and method for producing rare earth element sintered magnet
KR100746897B1 (en) * 2001-12-28 2007-08-07 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth element sintered magnet and method for producing rare earth element sintered magnet
KR100788330B1 (en) * 2001-12-28 2007-12-27 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth element sintered magnet and method for producing rare earth element sintered magnet
US7438768B2 (en) 2001-12-28 2008-10-21 Shin-Etsu Chemical Co., Ltd. Rare earth element sintered magnet and method for producing rare earth element sintered magnet
JP2007273863A (en) * 2006-03-31 2007-10-18 Tdk Corp Magnet member
WO2010058555A1 (en) * 2008-11-19 2010-05-27 株式会社 東芝 Permanent magnet and method for manufacturing same, and motor and generator employing same
US9087631B2 (en) 2008-11-19 2015-07-21 Kabushiki Kaisha Toshiba Permanent magnet and method of manufacturing the same, and motor and power generator using the same

Similar Documents

Publication Publication Date Title
EP1467385B1 (en) Rare earth element sintered magnet and method for producing rare earth element sintered magnet
EP1970924B1 (en) Rare earth permanent magnets and their preparation
JP5256851B2 (en) Magnet manufacturing method
EP2647470B1 (en) Cemented carbide base outer-diameter blade cutting wheel and manufacturing method thereof
EP2508279A1 (en) Powder for magnet
KR102219024B1 (en) Preparation of rare earth permanent magnet
JP2019012796A (en) Method of producing rare earth magnet
CN108701517A (en) The manufacturing method of R-T-B based sintered magnets
JP5428995B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
KR100712081B1 (en) R-t-b based permanent magnet
JPH06140218A (en) Shock-resistant rare-earth cobalt magnet and manufacture thereof
JP2003257768A (en) Manufacturing method for rare earth sintered magnet
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH06140217A (en) Shock-resistant rare-earth cobalt magnet and manufacture thereof
JP3991660B2 (en) Iron-based permanent magnet and method for producing the same
JPH0613211A (en) Permanent magnet having excellent corrosion resistance and manufacture thereof
JP3234448B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JP2007196307A (en) Grinder, grinding method and method of manufacturing rare earth sintered magnet
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH07201545A (en) Sintered magnet and its manufacture thereof
JPH0666173B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JPS5922782B2 (en) High permeability alloy for iron-based magnetic head and magnetic recording/reproducing head
JPH08325677A (en) Corrosion resistant sintered magnetic alloy
JP4539288B2 (en) Rare earth sintered magnet
JP2001205568A (en) Grinding wheel blade for cutting rare-earth magnet