JPH06139611A - Optical head - Google Patents
Optical headInfo
- Publication number
- JPH06139611A JPH06139611A JP4284181A JP28418192A JPH06139611A JP H06139611 A JPH06139611 A JP H06139611A JP 4284181 A JP4284181 A JP 4284181A JP 28418192 A JP28418192 A JP 28418192A JP H06139611 A JPH06139611 A JP H06139611A
- Authority
- JP
- Japan
- Prior art keywords
- prism
- light
- polarized light
- polarization
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Head (AREA)
- Optical Elements Other Than Lenses (AREA)
- Polarising Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光ディスク装置や光カー
ド装置や光テープ装置などの光情報処理装置などに用い
る光ヘッドに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head used in optical information processing devices such as optical disk devices, optical card devices, optical tape devices and the like.
【0002】[0002]
【従来の技術】従来、光ヘッドの小型化のために半導体
レーザと光検出器をほぼ同一面上またはその近傍に配置
する場合、半導体レーザの出射ビームと情報媒体面から
の反射ビームを分離するために、分離素子として回折格
子またはホログラム素子を用いている。2. Description of the Related Art Conventionally, when a semiconductor laser and a photodetector are arranged on the same plane or in the vicinity thereof in order to miniaturize an optical head, the emitted beam of the semiconductor laser and the reflected beam from the information medium surface are separated. Therefore, a diffraction grating or a hologram element is used as the separation element.
【0003】例えば、特開昭62−137736号公報に記載の
光ヘッドでは、光軸と交わる境界線を境に互いに異なる
格子方向を有する回折格子を用いて、情報媒体面への入
射ビームはこの回折格子の0次光を利用し、また、信号
の検出には情報媒体面からの反射ビームの+1次,−1
次の回折光を利用して、半導体レーザに隣接した2組ま
たは4組の2分割光検出器に導いている。For example, in the optical head described in Japanese Patent Laid-Open No. 62-137736, an incident beam on an information medium surface is formed by using a diffraction grating having different grating directions with a boundary line crossing the optical axis as a boundary. The 0th order light of the diffraction grating is used, and the + 1st and -1st order of the reflected beam from the information medium surface is used for signal detection.
The next diffracted light is utilized and guided to two or four sets of two-division photodetectors adjacent to the semiconductor laser.
【0004】また、特開平2−172033 号公報に記載の光
ヘッドでは、ホログラム素子を光軸に対して傾けてお
り、情報媒体中への入射ビームはやはり0次光を利用し
ているが、信号の検出には、ホログラム素子を光軸から
傾けることにより共役な回折光の発生を防ぎ、情報媒体
面からの反射ビームの+1次回折光だけを利用し、光検
出器に導いている。Further, in the optical head described in Japanese Patent Application Laid-Open No. 2-172033, the hologram element is tilted with respect to the optical axis, and the incident beam into the information medium also uses 0th order light. For signal detection, the hologram element is tilted from the optical axis to prevent the generation of conjugate diffracted light, and only the + 1st order diffracted light of the reflected beam from the information medium surface is used for guiding to the photodetector.
【0005】[0005]
【発明が解決しようとする課題】光ヘッドの小型化のた
め、半導体レーザと光検出器を近接した位置に配置させ
るために従来のように回折格子またはホログラム素子を
用いる場合、次のような問題がある。In order to reduce the size of the optical head, when a diffraction grating or a hologram element is used as in the prior art in order to place a semiconductor laser and a photodetector in a close position, the following problems occur. There is.
【0006】第1に、回折格子またはホログラム素子は
反射ビームだけではなく半導体レーザから情報媒体面へ
の出射ビームに対しても回折作用があるために光の利用
効率が低くなる。First, since the diffraction grating or the hologram element has a diffractive action not only on the reflected beam but also on the beam emitted from the semiconductor laser to the information medium surface, the light utilization efficiency is lowered.
【0007】第2に、反射ビームの0次光が半導体レー
ザに戻るためレーザノイズが生じる原因となる。Second, the 0th order light of the reflected beam returns to the semiconductor laser, which causes laser noise.
【0008】第3に、回折格子またはホログラム素子は
共役な回折光を生じるので、複数組の光検出器が必要と
なり、部品点数が増える。回折格子によっては特開昭62
−137736号公報に開示されている実施例のように4組の
光検出器が必要となる場合もある。部品点数の低減のた
めに、これらの検出器を単に減らすと、新たに迷光が発
生する。また、特開平2−172033 号公報に開示されてい
る実施例によれば、ホログラム面の法線を光軸から傾
け、共役な回折光の発生を無くすことによって上述の問
題点については解決しているが、この場合、共役な回折
光が生じなかったことにより、半導体レーザに戻る0次
光の光量が増え、レーザノイズ増加の原因となる。Thirdly, since the diffraction grating or hologram element produces conjugate diffracted light, a plurality of sets of photodetectors are required, and the number of parts is increased. Depending on the diffraction grating, JP-A-62
In some cases, four sets of photodetectors are required as in the embodiment disclosed in Japanese Patent Publication No. 137736. If these detectors are simply reduced in order to reduce the number of parts, new stray light is generated. Further, according to the example disclosed in Japanese Patent Laid-Open No. 2-172033, the above-mentioned problems are solved by inclining the normal line of the hologram surface from the optical axis to eliminate the generation of conjugate diffracted light. However, in this case, since no conjugate diffracted light is generated, the amount of 0th-order light returning to the semiconductor laser increases, which causes an increase in laser noise.
【0009】第4に、回折格子またはホログラム素子の
回折角、すなわち、分離角は光の波長依存性が大きいの
で、半導体レーザなどの光源の波長が変動すると、それ
につれ、出射ビームと反射ビームの分離角も変動する。Fourth, since the diffraction angle of the diffraction grating or the hologram element, that is, the separation angle has a large wavelength dependency of light, when the wavelength of the light source such as a semiconductor laser fluctuates, the emitted beam and the reflected beam are correspondingly changed. The separation angle also varies.
【0010】本発明の目的は、光源からの出射ビームと
情報媒体面からの反射ビームを完全に分離でき、しかも
迷光の発生がなく、光利用効率も高く,部品点数の低減
が可能であり、光の波長の変動に強い小型の光ヘッドを
提供することにある。The object of the present invention is to completely separate the beam emitted from the light source and the reflected beam from the surface of the information medium, without the generation of stray light, high light utilization efficiency, and reduction in the number of parts. An object is to provide a small-sized optical head that is resistant to fluctuations in the wavelength of light.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
に、第1の発明では、光源と、前記光源からの出射ビー
ムを情報媒体面上に絞り込む結像光学系と、前記光源と
ほぼ同一平面上またはその近傍に配置された光検出器
と、前記情報媒体面からの反射ビームを光検出器上に導
くための偏光プリズムを含むビーム分離光学系を構成し
た。To achieve the above object, in the first invention, a light source, an imaging optical system for narrowing an outgoing beam from the light source onto the information medium surface, and the light source are substantially the same. A beam separating optical system including a photodetector arranged on a plane or in the vicinity thereof and a polarizing prism for guiding a reflected beam from the information medium surface onto the photodetector is configured.
【0012】第2の発明では、第1の発明で、前記ビー
ム分離光学系に含まれる偏光プリズムは、円偏光が前記
偏光プリズムに入射した場合、前記円偏光を直線変更に
変換し、前記直線偏光の偏光方向によって、前記偏光プ
リズムからの出射を直進または屈折・分離させる作用を
持つ。According to a second aspect of the present invention, in the first aspect of the invention, the polarizing prism included in the beam splitting optical system converts the circularly polarized light into linearly changed light when the circularly polarized light is incident on the polarizing prism. Depending on the polarization direction of the polarized light, it has a function of advancing or refracting / separating the light emitted from the polarizing prism.
【0013】第3の発明では、第1または第2の発明
で、前記光源として半導体レーザを用い、前記偏光プリ
ズムが前記円偏光をS偏光に変換した場合、前記S偏光
の光線は直進させ、また、前記円偏光をP偏光に変換し
た場合、前記P偏光の光線は屈折・分離させる作用を持
つ。According to a third invention, in the first or second invention, when a semiconductor laser is used as the light source and the polarizing prism converts the circularly polarized light into S-polarized light, the S-polarized light beam goes straight, Further, when the circularly polarized light is converted into P-polarized light, the P-polarized light has a function of refracting / separating.
【0014】第4の発明では、第1または第2の発明
で、前記光源として半導体レーザを用い、前記偏光プリ
ズムが前記円偏光をP偏光に変換した場合、前記P偏光
の光線は直進させ、また、前記円偏光をS偏光に変換し
た場合、前記S偏光の光線は屈折・分離させる作用を持
ち、前記半導体レーザと前記偏光プリズムの間に2分の
1波長板を配置した。In a fourth invention, in the first or second invention, when a semiconductor laser is used as the light source, and the polarization prism converts the circularly polarized light into P-polarized light, the P-polarized light beam goes straight, When the circularly polarized light is converted into S-polarized light, the S-polarized light beam has a function of refracting and separating, and a half-wave plate is arranged between the semiconductor laser and the polarizing prism.
【0015】[0015]
【作用】第1の発明では、光源と、前記光源からの出射
ビームを情報媒体面上に結像させる結像光学系と、前記
情報媒体面から戻った反射ビームを受光する光検出器
が、前記光源とほぼ同一面上、または、その近傍に配置
されている光ヘッドにおいて、前記光源と結像光学系の
間に偏光プリズムを有することにより、前記出射ビーム
の光路と前記反射ビームの光路をある一方向にのみ、あ
る角度でずらすことができ、前記反射ビームを前記光検
出器に導くことができる。これにより、回折格子または
ホログラム素子を用いる場合に比較し、迷光を発生させ
ること無く、部品点数を低減できる。また、前記偏光プ
リズムに波長分散の小さい材質のものを使用すれば、光
源の波長の変動に対して、偏光プリズムの分離角はほと
んど影響を受けない。According to the first aspect of the invention, the light source, the imaging optical system for forming an image of the beam emitted from the light source on the information medium surface, and the photodetector for receiving the reflected beam returned from the information medium surface, In an optical head arranged on the same plane as the light source or in the vicinity thereof, by providing a polarizing prism between the light source and the imaging optical system, the optical path of the outgoing beam and the optical path of the reflected beam are separated from each other. It can be displaced only in one direction and at an angle, and the reflected beam can be guided to the photodetector. As a result, the number of components can be reduced without generating stray light, as compared with the case where a diffraction grating or a hologram element is used. If the polarizing prism made of a material having a small wavelength dispersion is used, the separation angle of the polarizing prism is hardly affected by the fluctuation of the wavelength of the light source.
【0016】第2の発明では、第1の発明において、前
記偏光プリズムが直線偏光を円偏光に変換し、また、円
偏光を直線偏光に変換する作用を有し、前記直線偏光の
偏光方向によって、前記偏光プリズムからの出射を直進
または屈折・分離させる作用を持つことにより、前記半
導体レーザと前記偏光プリズムと前記結像光学系の配置
の一軸化が可能となり、光ヘッドの設計,組立が容易で
ある。According to a second invention, in the first invention, the polarizing prism has a function of converting linearly polarized light into circularly polarized light and converting circularly polarized light into linearly polarized light, depending on a polarization direction of the linearly polarized light. By having the function of advancing or refracting / separating the light emitted from the polarization prism, the arrangement of the semiconductor laser, the polarization prism, and the imaging optical system can be uniaxial, and the design and assembly of the optical head are easy. Is.
【0017】第3の発明では、第1または第2の発明に
おいて、前記光源に半導体レーザを用い、前記偏光プリ
ズムに前記直線偏光がS偏光の場合は直進させ、前記直
線偏光がP偏光の場合は屈折・分離させる作用のある偏
光プリズムを用いると、図7に示すように前記半導体レ
ーザ601からの出射ビーム603の偏光方向604は
活性層602に対して平行であるので、図4に示すよう
に、前記半導体レーザ101と前記光検出器201の配
置を近接させることができ、これによりS偏光401と
P偏光402の分離角が小さくてよく、前記偏光プリズ
ム301のS偏光401とP偏光402に対する屈折率
の差が小さいものが使用できる。また、通常、半導体レ
ーザや光検出器はサブマウントと基板の上に接合されて
使用されるが、例えば、図4の中では半導体レーザ10
1はサブマウント102と基板103の上に固定され、
光検出器201はサブマウント202と基板203の上
に固定されている。図4の場合、光検出器201は半導
体レーザ101の上方に配置されるので、S偏光401
とP偏光402の分離角はサブマウント102や基板1
03の大きさに左右されることが無く、設計の自由度が
大きい。In a third aspect based on the first or second aspect, a semiconductor laser is used as the light source, and when the linearly polarized light is S-polarized light, the linearly polarized light is made to go straight to the polarizing prism, and when the linearly polarized light is P-polarized light. When a polarizing prism having a refracting / separating action is used, the polarization direction 604 of the emitted beam 603 from the semiconductor laser 601 is parallel to the active layer 602 as shown in FIG. In addition, since the semiconductor laser 101 and the photodetector 201 can be arranged close to each other, the separation angle of the S-polarized light 401 and the P-polarized light 402 can be small, and the S-polarized light 401 and the P-polarized light 402 of the polarization prism 301 can be small. A material having a small difference in refractive index with respect to can be used. Further, usually, the semiconductor laser and the photodetector are used by being bonded on the submount and the substrate. For example, in FIG.
1 is fixed on the submount 102 and the substrate 103,
The photodetector 201 is fixed on the submount 202 and the substrate 203. In the case of FIG. 4, since the photodetector 201 is arranged above the semiconductor laser 101, the S-polarized light 401
The separation angle between the P polarized light 402 and the P polarized light 402 is the submount 102 or the substrate 1.
It is not affected by the size of 03 and has a high degree of freedom in design.
【0018】これに対し、図5は偏光プリズムにP偏光
403の光線は直進させ、S偏光404の光線は屈折・
分離させる作用のある偏光プリズム302を用いた場合
の半導体レーザ101と光検出器201の配置を示して
おり、P偏光403とS偏光404の分離角をなるべく
小さくするには、サブマウント102と基板103の大
きさを小さくするか、半導体レーザ101とサブマウン
ト102を基板103の端に寄せるなどの必要が生じ、設
計の制約が多くなる。On the other hand, in FIG. 5, the light beam of P-polarized light 403 is made to go straight to the polarizing prism, and the light beam of S-polarized light 404 is refracted.
The arrangement of the semiconductor laser 101 and the photodetector 201 is shown when the polarization prism 302 having a function of separating is used. To reduce the separation angle of the P-polarized light 403 and the S-polarized light 404 as much as possible, the submount 102 and the substrate are shown. It is necessary to reduce the size of 103 or to bring the semiconductor laser 101 and the submount 102 closer to the edge of the substrate 103, which increases design restrictions.
【0019】第4の発明では、第1または第2の発明
で、光源に半導体レーザを用い、偏光プリズムに、P偏
光の光線は直進させ、S偏光の光線は屈折・分離させる
作用のある偏光プリズムを用いた場合でも、図6に示す
ように、半導体レーザ101と偏光プリズム302の間
に2分の1波長板501を配置し、S偏光405をP偏
光407に変換することにより、半導体レーザ101の
上方に光検出器201を近接して配置することができ、
P偏光407とS偏光408の間の分離角、またはS偏
光405とP偏光406の間の分離角を小さくすること
ができ、設計の自由度も増す。According to a fourth aspect of the present invention, in the first or second aspect of the present invention, a semiconductor laser is used as a light source, and a P-polarized light beam is made to go straight on and a S-polarized light beam is refracted / separated by a polarizing prism. Even in the case of using a prism, as shown in FIG. 6, a half-wave plate 501 is arranged between the semiconductor laser 101 and the polarization prism 302, and the S-polarized light 405 is converted into the P-polarized light 407. The photodetector 201 can be arranged in the vicinity above 101,
The separation angle between the P-polarized light 407 and the S-polarized light 408, or the separation angle between the S-polarized light 405 and the P-polarized light 406 can be reduced, and the degree of freedom in design is increased.
【0020】[0020]
【実施例】以下、本発明の一実施例についてに図面を参
照して説明する。図1は本発明による光ヘッドの説明図
である。図1中の偏光プリズム31は、正または負の一
軸複屈折性結晶からなる二つの複屈折性プリズム32,
33と、やはり正または負の一軸複屈折性結晶からな
り、常光と異常光の位相を4分の1波長ずらす作用を持
つ複屈折性の板34を組み合わせたプリズムであり、複
屈折性プリズム32,33の光学軸35,36は互いに
垂直になるように、また、複屈折性プリズムの光学軸方
向35と複屈折性の板34の光学軸方向37は、入射面
から見て45°の傾きを持つように接合されている。た
だし、偏光プリズム31を構成する複屈折性プリズム3
2,33と複屈折性の板34の接合面は正の一軸複屈折
性結晶と負の一軸複屈折性結晶を用いた場合で、接合面
の向きは異なる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram of an optical head according to the present invention. The polarizing prism 31 in FIG. 1 is composed of two birefringent prisms 32 made of a positive or negative uniaxial birefringent crystal,
33 and a birefringent plate 34 which also consists of positive or negative uniaxial birefringent crystal and has a function of shifting the phase of ordinary light and extraordinary light by a quarter wavelength. , 33 so that the optical axes 35 and 36 thereof are perpendicular to each other, and the optical axis direction 35 of the birefringent prism and the optical axis direction 37 of the birefringent plate 34 are inclined by 45 ° when viewed from the incident surface. Are joined to have. However, the birefringent prism 3 that constitutes the polarization prism 31
The joint surfaces of the birefringent plates 2 and 33 and the birefringent plate 34 are different when the positive uniaxial birefringent crystal and the negative uniaxial birefringent crystal are used.
【0021】半導体レーザ1からの出射ビーム5の偏光
方向21は複屈折性プリズム32の光学軸方向35に対
し垂直であるので、出射ビーム5は複屈折性プリズム3
5の中を常光として進む。出射ビーム5が複屈折性の板
34を通過する際、出射ビームの偏光方向21に対し複
屈折性の板34の光学軸方向37が入射面から見て45
°傾いており、かつ、常光と異常光の位相を4分の1波
長ずらす作用を持つので、出射ビーム5は複屈折性の板
34を通過すると円偏光ビーム7となる。円偏光ビーム
7の進行方向と複屈折プリズム33の光学軸方向36は
平行なので、円偏光のまま複屈折プリズム33を直進す
る。結局、出射ビーム5は偏光プリズム31を通過する
と、円偏光ビーム7に変わり、対物レンズ3により情報
媒体面4上に集光される。Since the polarization direction 21 of the outgoing beam 5 from the semiconductor laser 1 is perpendicular to the optical axis direction 35 of the birefringent prism 32, the outgoing beam 5 is directed to the birefringent prism 3.
Go into 5 as the usual light. When the outgoing beam 5 passes through the birefringent plate 34, the optical axis direction 37 of the birefringent plate 34 with respect to the polarization direction 21 of the outgoing beam is 45 when viewed from the incident surface.
The output beam 5 becomes a circularly polarized beam 7 when it passes through the birefringent plate 34 because it is inclined and has a function of shifting the phases of ordinary light and extraordinary light by a quarter wavelength. Since the traveling direction of the circularly polarized beam 7 and the optical axis direction 36 of the birefringent prism 33 are parallel, the birefringent prism 33 travels straight in the circularly polarized light state. After all, when the outgoing beam 5 passes through the polarizing prism 31, it changes to a circularly polarized beam 7 and is condensed on the information medium surface 4 by the objective lens 3.
【0022】情報媒体面4から反射した円偏光ビーム7
は再び偏光プリズム31を構成する複屈折性プリズム3
3に入射するが、光学軸方向36と円偏光ビーム7の進
行方向は平行なので、円偏光ビーム7はそのまま複屈折
性プリズム33を直進する。次に、円偏光ビーム7が複
屈折性の板34を通過すると、常光と異常光の位相差が
更に4分の1波長ずれるので、円偏光ビーム7は直線偏
光である反射ビーム6に変わる。ただし、反射ビーム6
の偏光方向22は出射ビーム5の偏光方向21に対して
垂直である。反射ビーム6が複屈折性プリズム32を通
過する際、反射ビーム6の偏光方向22と複屈折性プリ
ズム32の光学軸方向35は平行であるので、反射ビー
ム6は複屈折性プリズム32の中を異常光として伝搬す
る。この時、複屈折性プリズム32の接合面が斜めにな
っているので、反射ビーム6は出射ビーム5とは別の方
向に伝搬し、反射ビーム6は半導体レーザ1に隣接した
光検出器2に導かれる。Circularly polarized beam 7 reflected from the information medium surface 4
Is the birefringent prism 3 which again constitutes the polarizing prism 31.
Although it is incident on the circularly polarized light beam 3, the optical axis direction 36 and the traveling direction of the circularly polarized light beam 7 are parallel, so that the circularly polarized light beam 7 goes straight through the birefringent prism 33. Next, when the circularly polarized beam 7 passes through the birefringent plate 34, the phase difference between the ordinary ray and the extraordinary ray is further shifted by a quarter wavelength, so that the circularly polarized beam 7 is changed to the reflected beam 6 which is linearly polarized light. However, the reflected beam 6
The polarization direction 22 of is perpendicular to the polarization direction 21 of the outgoing beam 5. When the reflected beam 6 passes through the birefringent prism 32, the polarization direction 22 of the reflected beam 6 and the optical axis direction 35 of the birefringent prism 32 are parallel to each other, so that the reflected beam 6 passes through the birefringent prism 32. Propagate as extraordinary light. At this time, since the cemented surface of the birefringent prism 32 is inclined, the reflected beam 6 propagates in a direction different from that of the outgoing beam 5, and the reflected beam 6 reaches the photodetector 2 adjacent to the semiconductor laser 1. Be guided.
【0023】図2は本発明の第二の実施例の説明図であ
る。図2中の偏光プリズム71は、正または負の一軸複
屈折性結晶からなる二つの複屈折性プリズム72,73
と、やはり正または負の一軸複屈折性結晶からなり、常
光と異常光の位相を4分の1波長ずらす作用を持つ複屈
折性の板74を組み合わせたプリズムであり、複屈折性
プリズム72,73の光学軸75,76は互いに垂直に
なるように、また、複屈折性プリズムの光学軸方向75
と複屈折性の板74の光学軸方向77は、入射面から見
て45°の傾きを持つように接合されている。ただし、
偏光プリズム71を構成する複屈折性プリズム72,7
3と複屈折性の板74の接合面は正の一軸複屈折性結晶
と負の一軸性結晶を用いた場合で、接合面の向きは異な
る。FIG. 2 is an explanatory view of the second embodiment of the present invention. The polarization prism 71 in FIG. 2 is composed of two birefringent prisms 72, 73 made of a positive or negative uniaxial birefringent crystal.
And a birefringent plate 74, which is also made of positive or negative uniaxial birefringent crystal and has a function of shifting the phase of ordinary light and extraordinary light by a quarter wavelength, the birefringent prism 72, 73 so that the optical axes 75 and 76 are perpendicular to each other, and the optical axis direction 75 of the birefringent prism is
And the optical axis direction 77 of the birefringent plate 74 are joined so as to have an inclination of 45 ° when viewed from the incident surface. However,
Birefringent prisms 72 and 7 that constitute the polarization prism 71
3 and the birefringent plate 74 are joined together by using a positive uniaxial birefringent crystal and a negative uniaxial crystal, the orientations of which differ.
【0024】半導体レーザ1からの出射ビーム5の偏光
方向61は、出射ビーム5が2分の1波長板81を通過
することにより偏光方向91に変わる。偏光方向91は
複屈折性プリズム72の光学軸方向75に対し垂直であ
るので、出射ビーム5は複屈折性プリズム75の中を常
光として進む。出射ビーム5が複屈折性の板74を通過
する際、出射ビームの偏光方向91に対し複屈折性の板
74の光学軸方向77が、入射面から見て45°傾いて
おり、かつ、常光と異常光の位相を4分の1波長ずらす
作用を持つので、出射ビーム5は複屈折性の板74を通
過すると円偏光ビーム7となる。円偏光ビーム7の進行
方向と複屈折プリズム73の光学軸方向76は平行なの
で、円偏光のまま複屈折プリズム73を直進する。結
局、出射ビーム5は偏光プリズム71を通過すると、円
偏光ビーム7に変わり、対物レンズ3により情報媒体面
4上に集光される。The polarization direction 61 of the emitted beam 5 from the semiconductor laser 1 changes to the polarization direction 91 as the emitted beam 5 passes through the half-wave plate 81. Since the polarization direction 91 is perpendicular to the optical axis direction 75 of the birefringent prism 72, the outgoing beam 5 travels through the birefringent prism 75 as ordinary light. When the outgoing beam 5 passes through the birefringent plate 74, the optical axis direction 77 of the birefringent plate 74 is inclined by 45 ° from the incident surface with respect to the polarization direction 91 of the outgoing beam, and the ordinary light Since it has a function of shifting the phase of the extraordinary light by a quarter wavelength, the outgoing beam 5 becomes a circularly polarized beam 7 when passing through the birefringent plate 74. Since the traveling direction of the circularly polarized beam 7 and the optical axis direction 76 of the birefringent prism 73 are parallel, the birefringent prism 73 goes straight on as circularly polarized light. After all, when the outgoing beam 5 passes through the polarizing prism 71, it changes to a circularly polarized beam 7 and is condensed on the information medium surface 4 by the objective lens 3.
【0025】情報媒体面4から反射した円偏光ビーム7
は再び偏光プリズム71を構成する複屈折性プリズム7
3に入射するが、光学軸方向76と円偏光ビーム7の進
行方向は平行なので、円偏光ビーム7はそのまま複屈折
性プリズム73を直進する。次に、円偏光ビーム7が複
屈折性の板74を通過すると、常光と異常光の位相差が
更に4分の1波長ずれるので、円偏光ビーム7は直線偏
光である反射ビーム6に変わる。ただし、反射ビーム6
の偏光方向92は出射ビーム5の偏光方向91に対して
垂直である。反射ビーム6が複屈折性プリズム72を通
過する際、反射ビーム6の偏光方向92と複屈折性プリ
ズム72の光学軸方向75は平行であるので、反射ビー
ム6は複屈折性プリズム72の中を異常光として伝搬す
る。この時、複屈折性プリズム72の接合面が斜めにな
っているので、反射ビーム6は出射ビーム5とは別の方
向に伝搬し、反射ビーム6は半導体レーザ1に隣接した
光検出器2に導かれる。なお、反射ビーム6の偏光方向
92は、反射ビーム6が光検出器2に導かれる前に、2
分の1波長板81により偏光方向62に変わる。Circularly polarized beam 7 reflected from the information medium surface 4
Is a birefringent prism 7 that constitutes the polarizing prism 71 again.
Although it is incident on the circularly polarized light beam 3, the optical axis direction 76 and the traveling direction of the circularly polarized light beam 7 are parallel, so that the circularly polarized light beam 7 goes straight through the birefringent prism 73. Next, when the circularly polarized beam 7 passes through the birefringent plate 74, the phase difference between the ordinary ray and the extraordinary ray is further shifted by a quarter wavelength, so that the circularly polarized beam 7 is changed to the reflected beam 6 which is linearly polarized light. However, the reflected beam 6
The polarization direction 92 is perpendicular to the polarization direction 91 of the outgoing beam 5. When the reflected beam 6 passes through the birefringent prism 72, since the polarization direction 92 of the reflected beam 6 and the optical axis direction 75 of the birefringent prism 72 are parallel to each other, the reflected beam 6 passes through the birefringent prism 72. Propagate as extraordinary light. At this time, since the cemented surface of the birefringent prism 72 is inclined, the reflected beam 6 propagates in a direction different from that of the outgoing beam 5, and the reflected beam 6 reaches the photodetector 2 adjacent to the semiconductor laser 1. Be guided. The polarization direction 92 of the reflected beam 6 is 2 before the reflected beam 6 is guided to the photodetector 2.
The polarization direction 62 is changed by the half-wave plate 81.
【0026】図3は本発明の第三の実施例の説明図であ
る。コリメータレンズ8を用いて、光学系を無限系にし
た場合である。FIG. 3 is an explanatory view of the third embodiment of the present invention. This is a case where the optical system is made infinite by using the collimator lens 8.
【0027】実施例では、従来の回折格子やホログラム
素子を用いた場合と比較して、反射ビーム6が半導体レ
ーザ1に戻ることが無く、また、迷光の発生も無い上、
反射ビーム6の屈折・分離される方向が一方向のみであ
るので光検出器の数が少なくて済むという点で改善され
ている。また、偏光プリズム31,71を構成する複屈
折性プリズム32,33,72,73及び複屈折性の板
34,74に、例えば、ルチルのような光の波長分散が
小さい結晶を用いれば、半導体レーザ1の波長変動に対
し、偏光プリズム31,71の出射ビーム5と反射ビー
ム6の分離角はほとんど影響を受けないという点で従来
より優れている。In the embodiment, the reflected beam 6 does not return to the semiconductor laser 1 and no stray light is generated, as compared with the case where a conventional diffraction grating or hologram element is used.
Since the reflected beam 6 is refracted / separated in only one direction, the number of photodetectors is reduced, which is an improvement. In addition, if a crystal having a small wavelength dispersion of light such as rutile is used for the birefringent prisms 32, 33, 72, 73 and the birefringent plates 34, 74 constituting the polarizing prisms 31, 71, semiconductors can be obtained. The separation angle of the outgoing beam 5 and the reflected beam 6 of the polarization prisms 31 and 71 is hardly affected by the wavelength variation of the laser 1, which is superior to the conventional technique.
【0028】[0028]
【発明の効果】本発明によれば、結像光学系の光路と検
出光学系の光路を共有でき、また半導体レーザの出射ビ
ームと情報媒体面からの反射ビームを完全に分離でき、
しかも迷光の発生がなく、光利用効率も高く、部品点数
の低減が可能であり、光源の波長の変動にも強い小型の
光ヘッドが実現できる。According to the present invention, the optical path of the imaging optical system and the optical path of the detection optical system can be shared, and the emitted beam of the semiconductor laser and the reflected beam from the information medium surface can be completely separated.
Moreover, stray light is not generated, light utilization efficiency is high, the number of parts can be reduced, and a small optical head that is resistant to fluctuations in the wavelength of the light source can be realized.
【図1】本発明の一実施例を示す説明図。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
【図2】本発明の第二の実施例を示す説明図。FIG. 2 is an explanatory diagram showing a second embodiment of the present invention.
【図3】本発明の第三の実施例を示す説明図。FIG. 3 is an explanatory diagram showing a third embodiment of the present invention.
【図4】半導体レーザと光検出器の配置を示す斜視図。FIG. 4 is a perspective view showing the arrangement of a semiconductor laser and a photodetector.
【図5】半導体レーザと光検出器の配置を示す斜視図。FIG. 5 is a perspective view showing the arrangement of a semiconductor laser and a photodetector.
【図6】半導体レーザと光検出器の配置を示す斜視図。FIG. 6 is a perspective view showing the arrangement of a semiconductor laser and a photodetector.
【図7】半導体レーザの出射ビームの偏光方向を示す説
明図。FIG. 7 is an explanatory view showing the polarization direction of the emitted beam of the semiconductor laser.
1…半導体レーザ、2…光検出器、3…対物レンズ、4
…情報媒体面、5…出射ビーム、6…反射ビーム、7…
円偏光ビーム、21…出射ビームの偏光方向、22…反
射ビームの偏光方向、31…偏光プリズム、32,33
…複屈折性プリズム、34…複屈折性の板、35,36
…複屈折性プリズムの光学軸方向、37…複屈折性の板
の光学軸方向。1 ... Semiconductor laser, 2 ... Photodetector, 3 ... Objective lens, 4
... information medium surface, 5 ... outgoing beam, 6 ... reflected beam, 7 ...
Circularly polarized beam, 21 ... Polarization direction of outgoing beam, 22 ... Polarization direction of reflected beam, 31 ... Polarizing prism, 32, 33
... Birefringent prism, 34 ... Birefringent plate, 35, 36
... optical axis direction of birefringent prism, 37 ... optical axis direction of birefringent plate.
Claims (4)
媒体面上に結像させる結像光学系と、前記情報媒体面か
ら戻った反射ビームと前記出射ビームを分離するビーム
分離手段と、前記ビーム分離手段で分離した前記反射ビ
ームを受光する光検出器を含む光ヘッドにおいて、前記
ビーム分離手段が偏光プリズムによる偏光分離手段であ
り、前記光源と前記光検出器が、ほぼ同一面上、また
は、その近傍に配置されていることを特徴とする光ヘッ
ド。1. A light source, an image forming optical system for forming an image of an outgoing beam from the light source on an information medium surface, and a beam separating means for separating the reflected beam returning from the information medium surface and the outgoing beam. In an optical head including a photodetector that receives the reflected beam separated by the beam separation means, the beam separation means is a polarization separation means by a polarization prism, and the light source and the photodetector are on substantially the same plane, Alternatively, the optical head is arranged in the vicinity thereof.
線偏光を円偏光に変換し、また、円偏光を前記直線偏光
に変換する作用を有し、前記直線偏光の偏光方向によっ
て、前記偏光プリズムからの出射を直進または屈折・分
離させる作用を持つプリズムである光ヘッド。2. The polarizing prism according to claim 1, wherein the polarizing prism has a function of converting linearly polarized light into circularly polarized light and converting circularly polarized light into the linearly polarized light. An optical head that is a prism that has a function of straightening or refracting / separating the light emitted from.
導体レーザであり、前記偏光プリズムは、前記直線偏光
がS偏光の場合は直進させ、前記直線偏光がP偏光の場
合は屈折・分離させる作用を持つ偏光プリズムである光
ヘッド。3. The light source according to claim 1 or 2, wherein the light source is a semiconductor laser, and the polarization prism advances straight when the linearly polarized light is S-polarized light and refracts / separates when the linearly polarized light is P-polarized light. An optical head that is a polarizing prism that acts.
導体レーザであり、前記偏光プリズムは、前記直線偏光
がP偏光の場合は直進させ、前記直線偏光がS偏光の場
合は屈折・分離させる作用を持つ偏光プリズムであり、
前記半導体レーザと前記偏光プリズムの間に2分の1波
長板を有する光ヘッド。4. The light source according to claim 1, wherein the light source is a semiconductor laser, and the polarization prism advances straight when the linearly polarized light is P-polarized light, and refracts / separates when the linearly polarized light is S-polarized light. It is a polarizing prism with action,
An optical head having a half-wave plate between the semiconductor laser and the polarizing prism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4284181A JPH06139611A (en) | 1992-10-22 | 1992-10-22 | Optical head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4284181A JPH06139611A (en) | 1992-10-22 | 1992-10-22 | Optical head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06139611A true JPH06139611A (en) | 1994-05-20 |
Family
ID=17675229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4284181A Pending JPH06139611A (en) | 1992-10-22 | 1992-10-22 | Optical head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06139611A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011028807A (en) * | 2009-07-24 | 2011-02-10 | Sanyo Electric Co Ltd | Optical pickup device |
-
1992
- 1992-10-22 JP JP4284181A patent/JPH06139611A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011028807A (en) * | 2009-07-24 | 2011-02-10 | Sanyo Electric Co Ltd | Optical pickup device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5883741A (en) | Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein | |
US4885734A (en) | Diffraction grating using birefringence and optical head in which a linearly polarized beam is directed to a diffraction grating | |
US6947213B2 (en) | Diffractive optical element that polarizes light and an optical pickup using the same | |
US5272685A (en) | Optical system for an information processing apparatus | |
US5726962A (en) | Compact optical pickup device with beam splitter | |
JPH07176095A (en) | Magneto-optical head device | |
US6556532B2 (en) | Optical pickup device | |
JP2000298868A (en) | Small-sized optical pickup head | |
JPH06139611A (en) | Optical head | |
JPH02259702A (en) | Polarization diffraction element | |
JPH03225636A (en) | Optical head device | |
JPH0845102A (en) | Optical head | |
JPH06243487A (en) | Polarizing hologram element and optical head device | |
JPH05334713A (en) | Optical head | |
JPS61230634A (en) | Optical head | |
JP3607836B2 (en) | Optical pickup device | |
JP2658818B2 (en) | Birefringent diffraction grating polarizer and optical head device | |
JP3213650B2 (en) | Optical pickup | |
JP2869318B2 (en) | Optical pickup device | |
JPH05250751A (en) | Optical integrated circuit, optical pickup, and optical information processor | |
JPH06162596A (en) | Optical head and optical information processor using the same | |
JP2646782B2 (en) | Optical head device | |
JPH06274927A (en) | Optical device, optical head and magneto-optical storage device | |
JPH04298837A (en) | Polarizing beam splitter and magneto-optical head device | |
JPH10134396A (en) | Optical head |