JPH03225636A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH03225636A
JPH03225636A JP2019133A JP1913390A JPH03225636A JP H03225636 A JPH03225636 A JP H03225636A JP 2019133 A JP2019133 A JP 2019133A JP 1913390 A JP1913390 A JP 1913390A JP H03225636 A JPH03225636 A JP H03225636A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
hologram element
light source
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019133A
Other languages
Japanese (ja)
Inventor
Akitomo Oba
昭知 大場
Ryuichi Katayama
龍一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2019133A priority Critical patent/JPH03225636A/en
Publication of JPH03225636A publication Critical patent/JPH03225636A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a device small in size and light in weight and to enhance the utilization factor of light by providing a 1/4 wavelength plate between a diffraction grating and a hologram element which are constituted of double refraction diffraction grating type element and a recording medium and receiving diffracted light separated out of an optical axis. CONSTITUTION:The diffraction grating 11 and the hologram element 5 are constituted of the double refraction diffraction grating type element and their crystal optical axes are set in parallel. The hologram element 5 is set so that it may hardly diffract radiated light 2 from a semiconductor laser 1 but mostly diffract returning light from an optical disk 8. Then, the diffraction grating 11 is set so that it may partially dif fract the radiated light 2 but hardly diffract the returning light from the optical disk 8. The radiated light 2 is converted to collimated light by a collimating lens 3, converted to circularly polarized light by a lambda/4 plate 6, and converged on the optical disk 8 by a converging lens 4. The returning light from the optical disk 8 passes through a reverse path and the 1st order diffracted light of the hologram element 5 is made incident on a six-division photodetector 7 to detect an error signal and a recording signal, and it is made incident on a photodetector 12 to detect the record ing signal.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、光ディスクの記録、再生に用いる光へノド装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical recording device used for recording and reproducing optical discs.

〔従来の技術〕[Conventional technology]

従来の光ヘッド装置にはトラック誤差信号やフォーカス
誤差信号検出方式により種々の構成のものがあるが、多
数のレンズやプリズムを用いて構成されている。第2図
にその一例を示す。
Conventional optical head devices have various configurations depending on the tracking error signal and focus error signal detection methods, and are configured using a large number of lenses and prisms. An example is shown in FIG.

この従来の光ヘッド装置ではトラック誤差信号検出には
3ビーム法、焦点誤差信号検出には非点収差法が用いら
れている。光源である半導体レーザ1からの放射光2は
回折格子16により回折され、0次光のメインビームの
他に、+1次光と一1次光のサブビームに分けられる。
In this conventional optical head device, a three-beam method is used to detect a tracking error signal, and an astigmatism method is used to detect a focus error signal. Emitted light 2 from a semiconductor laser 1, which is a light source, is diffracted by a diffraction grating 16, and is divided into a main beam of 0th order light, and sub-beams of +1st order light and 11th order light.

ビームスプリンタ13を透過後、収束レンズ4により第
3図に示されるように光デイスク8面上にメインビーム
スポット26とサブビームスポット27.28が形成さ
れる。
After passing through the beam splinter 13, the converging lens 4 forms a main beam spot 26 and sub-beam spots 27 and 28 on the surface of the optical disk 8, as shown in FIG.

なお第3図において、24はビットを示す。光ディスク
8において反射された光は逆の光路を通り、ビームスプ
リンタ13で反射され、凸レンズ17と円筒レンズ14
により非点収差を持つ光となり6分割光検出器15に入
射する。
Note that in FIG. 3, 24 indicates a bit. The light reflected by the optical disk 8 passes through the opposite optical path, is reflected by the beam splinter 13, and then passes through the convex lens 17 and the cylindrical lens 14.
As a result, the light becomes light with astigmatism and enters the 6-split photodetector 15.

第4図はその6分割光検出器15に入射した光の集光状
態を示す図である。(b)は光デイスク面に光が合焦し
た時、(a)、 (C)は光ディスクが合焦状態から収
束レンズ4に近づいた時と遠ざかった時の集光状態を示
している。これより焦点誤差信号は光検出素子21.2
2.23.24の出力をV(21)、 V(22)。
FIG. 4 is a diagram showing the condensing state of the light incident on the six-divided photodetector 15. (b) shows the condensed state when the light is focused on the surface of the optical disk, and (a) and (C) show the condensed state when the optical disk approaches and moves away from the converging lens 4 from the focused state. From this, the focus error signal is detected by the photodetector element 21.2.
2.23.24 output V(21), V(22).

V(23)、 V(24)とすると、V (21) +
 V (24) −V (22) −V (23)より
検出される。一方、トラック誤差信号検出には光デイス
ク8面上でメインビームスポット26がピット24から
はずれたとき、二つのサブビームスボッ)27.28の
反射光量にアンバランスが生じることを利用している。
Assuming V(23) and V(24), V(21) +
It is detected from V (24) -V (22) -V (23). On the other hand, the tracking error signal is detected by utilizing the fact that when the main beam spot 26 deviates from the pit 24 on the surface of the optical disk 8, an imbalance occurs in the amount of reflected light from the two sub-beam spots 27 and 28.

すなわち、光デイスク8面上のサブビーム27.28は
それぞれ6分割光検出器15上では光検出素子19.2
0に集光するので、それぞれの出力をν(19)、 V
(20)とすると、トラック誤差信号はV (19) 
−V (20)で検出される。また、記録信号はメイン
ビームの全光量すなわちV(21)+ V (22) 
+ V (23) + V (24)より検出される。
That is, each of the sub-beams 27.28 on the 8th surface of the optical disk is detected by the photodetecting element 19.2 on the 6-divided photodetector 15.
Since the light is focused at 0, the respective outputs are ν(19) and V
(20), the tracking error signal is V (19)
−V (20). Also, the recording signal is the total light intensity of the main beam, that is, V (21) + V (22)
+ V (23) + V (24).

[発明が解決しようとする課題] 上述した従来の光ヘッド装置では、光ディスクからの戻
り光を光軸外に出す二輪系の構成のため装置の小型化及
び軽量化が困難であった。
[Problems to be Solved by the Invention] In the conventional optical head device described above, it is difficult to reduce the size and weight of the device because of the two-wheel system configuration that directs the return light from the optical disk off the optical axis.

本発明の目的は、小型・軽量かつ光の利用率の高い光ヘ
ッド装置を提供することにある。
An object of the present invention is to provide an optical head device that is small, lightweight, and has a high light utilization rate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光ヘッド装置は、 光源と、 前記光源からの出射光を実質的に三つのビームに分ける
回折格子と、 前記光源の像を記録媒体上に絞り込む結像レンズ系と、 前記記録媒体からの戻り光を前記結像レンズ系の光軸外
に回折分離するホログラム素子と、前記回折格子及び前
記ホログラム素子と前記記録媒体との間に配置された4
分の1波長板と、前記光軸外に分離された回折光を受光
する光検出器とを有し、 前記回折格子及び前記ホログラム素子は複屈折結晶より
なる複屈折回折格子型素子で、かつそれぞれの結晶光学
軸が互い平行であり、前記ホログラム素子は前記光源か
らの出射光をほとんど回折せず、前記記録媒体からの戻
り光をほとんど回折し、前記回折格子は前記光源からの
出射光を一部回折し、前記記録媒体からの戻り光をほと
んど回折しないことを特徴とする。
The optical head device of the present invention includes: a light source; a diffraction grating that substantially divides the light emitted from the light source into three beams; an imaging lens system that focuses an image of the light source onto a recording medium; a hologram element that diffracts and separates the returned light of the image to off the optical axis of the imaging lens system; a hologram element arranged between the diffraction grating and the hologram element and the recording medium;
a half-wave plate and a photodetector that receives the diffracted light separated off the optical axis, the diffraction grating and the hologram element are birefringent diffraction grating type elements made of birefringent crystal, and The optical axes of the respective crystals are parallel to each other, the hologram element hardly diffracts the light emitted from the light source, and almost diffracts the return light from the recording medium, and the diffraction grating diffracts the light emitted from the light source. It is characterized in that it partially diffracts and hardly diffracts the return light from the recording medium.

また本発明の光ヘッド装置は、 光源と、 表に前記光源からの出射光を実質的に三つのビームに分
ける回折格子と、裏に記録媒体からの戻り光を光軸外に
回折分離する回折格子を有するホログラム素子と、 前記光源の像を前記記録媒体上に絞り込む結像レンズ系
と、 前記ホログラム素子と前記記録媒体との間に配置された
4分の1波長板と、 前記光軸外に分離された回折光を受光する光検出器とを
有し、 前記ホログラム素子は複屈折結晶よりなる複屈折回折格
子型素子で、前記ホログラム素子の裏の回折格子は前記
光源からの出射光をほとんど回折せず、前記記録媒体か
らの戻り光をほとんど回折し、前記ホログラム素子の表
の回折格子は前記光源からの出射光を一部回折し、前記
記録媒体からの戻り光をほとんど回折しないことを特徴
とする。
Further, the optical head device of the present invention includes a light source, a diffraction grating on the front side that substantially divides the light emitted from the light source into three beams, and a diffraction grating on the back side that diffracts and separates the return light from the recording medium off the optical axis. a hologram element having a grating; an imaging lens system that focuses an image of the light source onto the recording medium; a quarter-wave plate disposed between the hologram element and the recording medium; and a photodetector that receives diffracted light separated into two, the hologram element being a birefringent diffraction grating type element made of a birefringent crystal, and a diffraction grating on the back of the hologram element detecting the emitted light from the light source. The diffraction grating on the front side of the hologram element partially diffracts the light emitted from the light source and hardly diffracts the return light from the recording medium. It is characterized by

〔作用〕[Effect]

本発明の作用・原理は次の通りである。本発明では装置
を小型化するために、従来の光ヘッド装置のビームスプ
リッタと焦点誤差信号検出用光学系を一枚のホログラム
素子を用いて光ヘッドの構成を一軸系としている。この
−軸系の構成にした場合、光源から出射した光はホログ
ラム素子とトラック誤差信号検出に用いる3ビ一ム発生
用の回折格子を通るため不要な回折光成分も生じる。そ
こで光の利用率の高い光ヘッドを実現するために、ホロ
グラム素子及び3ビ一ム発生用の回折格子を偏光性を有
する複屈折回折格子型構造としている。
The operation and principle of the present invention are as follows. In the present invention, in order to miniaturize the apparatus, a single hologram element is used for the beam splitter and the focus error signal detection optical system of the conventional optical head apparatus, and the optical head is configured as a uniaxial system. In the case of this -axis system configuration, the light emitted from the light source passes through a hologram element and a three-beam generation diffraction grating used for detecting a tracking error signal, so that unnecessary diffracted light components are also generated. Therefore, in order to realize an optical head with high light utilization efficiency, the hologram element and the diffraction grating for generating three beams are made into a birefringent diffraction grating type structure having polarization properties.

複屈折回折格子を実現する方法として、次に述べる複屈
折結晶を用いる方法がある。第5図に示すように、複屈
折結晶であるニオブ酸リチウム52のX板、あるいはY
板に安息香酸によるプロトン交換を施すと、−例として
光デイスク装置に一般的に用いられる0、83μmの波
長の光に対しては結晶光学軸に平行な偏光の光である異
常光に対する屈折率は約0.11増加し、その光学軸に
垂直な偏光の光である常光に対する屈折率は約0.04
減少する。
As a method for realizing a birefringent diffraction grating, there is a method using a birefringent crystal described below. As shown in Figure 5, the X plate of lithium niobate 52, which is a birefringent crystal, or the Y
When the plate is subjected to proton exchange with benzoic acid, the refractive index for extraordinary light, which is light polarized parallel to the optical axis of the crystal, decreases, for example, for light with a wavelength of 0.83 μm, which is commonly used in optical disk devices. increases by about 0.11, and the refractive index for ordinary light, which is light polarized perpendicular to the optical axis, is about 0.04.
Decrease.

そこでプロトン交換を施した交換領域53と施さない非
交換領域54とを周期的に配置した格子にすると回折格
子として作用する。
Therefore, if a grating is formed in which exchange regions 53 subjected to proton exchange and non-exchange regions 54 not subjected to proton exchange are arranged periodically, it acts as a diffraction grating.

この格子に、交換領域53を通過する常光と非交換領域
54を通過する常光の位相差を相殺するために第5図に
示すように交換領域上に適当な厚さの位相補償膜55を
形成すると、常光に対してはこの格子は回折格子として
は働かず、回折させずに透過させることができる。つま
り、この格子は単なる透明基板に見える。上記の常光に
対する位相差相殺条件を満足させながら交換領域53の
深さを変えることにより、異常光に対する位相差を適当
な値に設定することができ、異常光に対しては任意の回
折効率が得られる。例えば、位相差がπのときは、異常
光は完全に回折される。一方、位相補償膜55の厚さを
さらに厚くすることにより逆に異常光に対しては透明基
板に見え、常光のみを回折させることもできる。例えば
、上記の常光に対しては位相差がO1異常光に対しては
位相差がπの位相分布状態で、さらに位相差がπの位相
補償膜を付加することにより、7常光に対しては位相差
はπ、異常光に対しては2πすなわち位相差Oの位相分
布状態になる。このとき、常光は完全に回折され、異常
光は素通りする。このような複屈折回折格子は偏光子と
して応用が検討されており、セカンドオプトエレクトロ
ニクスコンファレンスのテクニカルダイジェスト第16
7頁から第169頁に掲載の責野、他著rBIREFR
TNGENT GRATING POLARIZERJ
の論文に述べられている。
On this grating, a phase compensation film 55 of an appropriate thickness is formed on the exchange area as shown in FIG. 5 in order to cancel the phase difference between the ordinary light passing through the exchange area 53 and the ordinary light passing through the non-exchange area 54. Then, for ordinary light, this grating does not function as a diffraction grating and can be transmitted without being diffracted. In other words, this grid looks like a simple transparent substrate. By changing the depth of the exchange region 53 while satisfying the above phase difference canceling conditions for ordinary light, the phase difference for extraordinary light can be set to an appropriate value, and any diffraction efficiency can be set for extraordinary light. can get. For example, when the phase difference is π, the extraordinary light is completely diffracted. On the other hand, by increasing the thickness of the phase compensation film 55, it appears as a transparent substrate to extraordinary light and can diffract only ordinary light. For example, by adding a phase compensation film with a phase difference of π, the phase distribution state is such that the phase difference is O1 for the above ordinary light, and π for the extraordinary light, and 7 for the ordinary light. The phase difference is π, and for extraordinary light, the phase distribution state is 2π, that is, the phase difference is O. At this time, the ordinary light is completely diffracted and the extraordinary light passes through. The application of such birefringent diffraction gratings as polarizers is being considered, and is reported in Technical Digest No. 16 of the Second Optoelectronics Conference.
rBIREFR written by Tsune and others published on pages 7 to 169
TNGENT GRATING POLARIZERJ
This is stated in the paper.

上記では回折格子及びホログラム素子の複屈折回折格子
型構造として複屈折結晶材料ニオブ酸リチウムにプロト
ン交換法で格子の回折効率に異方性を持たせる方法を挙
げたが、特願昭筒61−170244号明細書に記載の
格子溝のついた複屈折媒質に、その媒質の常光あるいは
異常光の一方の屈折率と同じ物質をその格子溝に充填す
ることによっても可能である。さらに、特願昭62−9
8854号明細書に記載の格子溝のついた等方性媒質に
、液晶などの複屈折材料を充填した複屈折回折格子型構
造においても実現可能である。
In the above, a method of imparting anisotropy to the diffraction efficiency of the birefringent crystal material lithium niobate using a proton exchange method was mentioned as a birefringent diffraction grating type structure of the diffraction grating and hologram element. This can also be achieved by filling the lattice grooves of a birefringent medium with lattice grooves as described in the specification of No. 170244 with a substance having the same refractive index for either ordinary light or extraordinary light of the medium. Furthermore, the patent application 1986-9
It is also possible to realize a birefringent diffraction grating type structure in which an isotropic medium with grating grooves is filled with a birefringent material such as liquid crystal as described in the 8854 specification.

〔実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の第1の実施例を示す図で、第2図に
示した従来技術と同じものは同じ符号で示している。こ
の光ヘッド装置は、光源である半導体レーザ1と、半導
体レーザからの出射光を実質的に三つのビームに分ける
複屈折回折格子型構造の回折格子11と、光源の像を光
デイスク8上に絞り込む結像レンズ系を構成するコリメ
ートレンズ3及び収束レンズ4と、光ディスク8からの
戻り光を結像レンズ系の光軸外に回折分離する複屈折回
折格子型構造のホログラム素子5と、回折格子11及び
ホログラム素子5と光ディスク8との間に配置された4
分の1波長板(λ/4板)6と、光軸外に分離された回
折光を受光する6分割光検出器7及び光検出器12とか
ら構成されている。
FIG. 1 is a diagram showing a first embodiment of the present invention, in which the same parts as in the prior art shown in FIG. 2 are designated by the same reference numerals. This optical head device includes a semiconductor laser 1 as a light source, a diffraction grating 11 having a birefringent diffraction grating structure that essentially divides light emitted from the semiconductor laser into three beams, and an image of the light source on an optical disk 8. A collimating lens 3 and a converging lens 4 constituting an imaging lens system for narrowing down, a hologram element 5 having a birefringent diffraction grating structure that diffracts and separates the return light from the optical disk 8 to off the optical axis of the imaging lens system, and a diffraction grating. 11 and 4 arranged between the hologram element 5 and the optical disk 8
It is composed of a quarter-wavelength plate (λ/4 plate) 6, and a six-divided photodetector 7 and a photodetector 12 that receive diffracted light separated off the optical axis.

本実施例の光ヘッド装置では、作用のところで述べた複
屈折回折格子型のホログラム素子5と回折格子11を用
いている。ホログラム素子5は常光を素通りさせ、異常
光をほとんど回折させる複屈折回折格子型構造をとって
おり、一方、回折格子11は常光は少し回折させ、異常
光は素通りさせる複屈折回折格子型構造をとっている。
The optical head device of this embodiment uses the birefringent diffraction grating type hologram element 5 and the diffraction grating 11 described in the operation section. The hologram element 5 has a birefringent diffraction grating type structure that allows ordinary light to pass through and most of the extraordinary light is diffracted, while the diffraction grating 11 has a birefringent diffraction grating type structure that allows ordinary light to slightly diffract but allows extraordinary light to pass through. I'm taking it.

さらに、光源である半導体レーザ1からの直線偏光であ
る放射光2の偏光面に対してホログラム素子5と回折格
子11に常光として入射するようにそれぞれの結晶光学
軸を平行に設定している。そのため、放射光2はホログ
ラム素子5では回折されずに透過し、回折格子11のみ
で回折される。回折格子11の常光に対する位相差は、
トラック誤差信号検出に用いるサブビーム用にわずかに
回折するように設定している。サブビームを伴った放射
光2はコリメートレンズ3でコリメート光10に変換さ
れ、λ/4板6によって円偏光に変換される。そして、
収束レンズ4で光デイスク8面上に従来の光ヘッド装置
と同じ(第3図に示されるように収束される。
Furthermore, the optical axes of the respective crystals are set parallel to the polarization plane of the linearly polarized emitted light 2 from the semiconductor laser 1 serving as the light source so that it enters the hologram element 5 and the diffraction grating 11 as ordinary light. Therefore, the emitted light 2 is transmitted through the hologram element 5 without being diffracted, and is diffracted only by the diffraction grating 11. The phase difference of the diffraction grating 11 with respect to ordinary light is
The sub-beam used for tracking error signal detection is set to be slightly diffracted. The emitted light 2 accompanied by the sub-beams is converted into collimated light 10 by a collimating lens 3, and then converted into circularly polarized light by a λ/4 plate 6. and,
The convergent lens 4 converges the light onto the surface of the optical disk 8, as in the conventional optical head device (as shown in FIG. 3).

光ディスク8で反射された戻り光は、収束レンズ4.λ
/4板6.コリメートレンズ3を逆の経路で通る。λ/
4板6では、戻り光の偏光状態は円偏光から放射光2の
偏光面と垂直な直線偏光に変換される。そのため、戻り
光はホログラム素子5及び回折格子11に対しては異常
光として入射して、回折格子11では回折されずに透過
し、ホログラム素子5でほとんど回折される。この回折
光のうち+1次回折光は6分割光検出器7に入射し誤差
信号検出と記録信号検出に用いられ、メインビームの一
1次回折光は光検出器12に入射し記録信号検出に用い
られる。
The return light reflected by the optical disk 8 is passed through the converging lens 4. λ
/4 board 6. It passes through the collimating lens 3 in the opposite direction. λ/
In the four plates 6, the polarization state of the returned light is converted from circularly polarized light to linearly polarized light perpendicular to the polarization plane of the emitted light 2. Therefore, the returned light enters the hologram element 5 and the diffraction grating 11 as extraordinary light, passes through the diffraction grating 11 without being diffracted, and is mostly diffracted by the hologram element 5. Of this diffracted light, the +1st order diffracted light enters the 6-split photodetector 7 and is used for error signal detection and recording signal detection, and the 11st order diffracted light of the main beam enters the photodetector 12 and is used for recording signal detection. .

このホログラム素子5は、第6図に示すようにトラック
方向45に垂直な分割線44で仕切られた回折方向が異
なる2つのAホログラム領域36とBホログラム2置載
37とより形成されており、第7図に示すように光検出
器7及び12上に回折光を集光させる。第7図(b)は
光ディスク8に収束光の焦点が合っている時で、Aホロ
グラム領域36とBホログラム領域37に入射した光デ
ィスクからの戻り光のうちメインビームの回折光は6分
割光検出器7の分割線上の点40及び41に収束する。
As shown in FIG. 6, this hologram element 5 is formed of two A hologram areas 36 and a B hologram 2 placement 37, which have different diffraction directions and are separated by a dividing line 44 perpendicular to the track direction 45. As shown in FIG. 7, the diffracted light is focused onto photodetectors 7 and 12. FIG. 7(b) shows when the convergent light is focused on the optical disc 8, and among the returned light from the optical disc that has entered the A hologram area 36 and the B hologram area 37, the diffracted light of the main beam is detected as a 6-split light beam. It converges at points 40 and 41 on the dividing line of vessel 7.

Aホログラム領域36は、半導体レーザlより出射し発
散する球面波と回折光の収束点40から発散する球面波
との干渉縞に相当するホログラムパターンを持っている
。一方、Bホログラム領域37は、半導体レーザ1から
の発散する球面波と回折光の収束点41から発散する球
面波との干渉縞に相当するホログラムパターンを持って
いる。第7図(a)及び(C)は、光ディスク8が変位
して収束レンズ4から遠ざかった場合と近づいた場合で
ある。
The A hologram area 36 has a hologram pattern corresponding to interference fringes between a spherical wave emitted and diverging from the semiconductor laser l and a spherical wave diverging from the convergence point 40 of the diffracted light. On the other hand, the B hologram area 37 has a hologram pattern corresponding to interference fringes between the spherical wave diverging from the semiconductor laser 1 and the spherical wave diverging from the convergence point 41 of the diffracted light. FIGS. 7(a) and 7(C) show cases where the optical disk 8 is displaced and moved away from the converging lens 4, and when it approaches it.

そこで6分割光検出器7内の4つの光検出素子3L 3
2.33.34の出力をV(31)、 V(32)、 
V(33LV(34)とすると、焦点誤差信号は(V(
31) +V(34))(V (32) + V (3
3) ”)から得られる。一方、トラッキング誤差信号
は、従来の技術と同様に3ビーム法を用いており、光デ
ィスク8からメインビームに伴って戻ってきたサブビー
ムはそれぞれ光検出素子29.30に収束するが、2つ
の光検出素子29゜30(7)出力をV(29)、 V
(30)とすると、V (29) −V (30)より
得られる。また、記録信号はメインビームの戻り光の総
和すなわち6分割光検出器7内の光検出素子31.32
.33.34の出力の総和と光検出器12の出力との和
V(31) +V(32) 十V(33) +V(34
) +V(12)で得られる。
Therefore, the four photodetecting elements 3L 3 in the 6-divided photodetector 7
2.33.34 output as V(31), V(32),
V(33LV(34)), the focus error signal is (V(
31) +V (34)) (V (32) + V (3
3)"). On the other hand, the tracking error signal uses the three-beam method as in the conventional technology, and the sub-beams that have returned from the optical disk 8 along with the main beam are each sent to the photodetector elements 29 and 30. It converges, but the two photodetector elements 29°30(7) outputs are V(29), V
(30), it is obtained from V (29) −V (30). Moreover, the recording signal is the sum of the returned light of the main beam, that is, the photodetecting elements 31 and 32 in the 6-divided photodetector 7.
.. 33. The sum of the outputs of 34 and the output of photodetector 12 V(31) +V(32) 10V(33) +V(34
) +V(12).

以上のように本実施例の光ヘッド装置では、行きの光に
対するホログラム素子の回折及び戻り光に対する回折格
子の回折を発生させないようにして光の利用率を高めて
いる。
As described above, in the optical head device of this embodiment, the efficiency of light utilization is increased by preventing the occurrence of diffraction of the outgoing light by the hologram element and diffraction of the returning light by the diffraction grating.

また、本発明の光ヘッド装置では、常光をほとんど回折
させ異常光を素通りさせるホログラム素子と、常光を素
通りさせ異常光を少し回折させる回折格子でも構成可能
で、この場合は半導体装置ザの光の偏光面をホログラム
素子及び回折格子の結晶光学軸を垂直に設定する。すな
わち、半導体レーザからの出射光を異常光として入射さ
せる。
Furthermore, the optical head device of the present invention can be configured with a hologram element that diffracts most of the ordinary light and allows the extraordinary light to pass through, and a diffraction grating that allows the ordinary light to pass through but slightly diffracts the extraordinary light. The polarization plane is set perpendicular to the crystal optical axis of the hologram element and the diffraction grating. That is, the light emitted from the semiconductor laser is made to enter as extraordinary light.

第8図は本発明の第2の実施例を示すもので、第1の実
施例のコリメートレンズ3と収束レンズ4を一つの結像
レンズ9で置き換えたものである。
FIG. 8 shows a second embodiment of the present invention, in which the collimating lens 3 and converging lens 4 of the first embodiment are replaced with one imaging lens 9.

第9図は本発明の第3の実施例を示すもので、第2の実
施例の平板であるホログラム素子5と回折格子11とλ
/4板6とを、貼り合わせて一枚の素子とした光ヘッド
装置である。
FIG. 9 shows a third embodiment of the present invention, in which a hologram element 5, which is a flat plate of the second embodiment, a diffraction grating 11, and a λ
This is an optical head device in which a /4 plate 6 is bonded together to form a single element.

第10図は本発明の第4の実施例を示すもので、第3の
実施例の6分割光検出器7と光検出器12と半導体レー
ザlとを、一つのパッケージ内に収めた光ヘッド装置で
ある。
FIG. 10 shows a fourth embodiment of the present invention, which is an optical head in which the six-segment photodetector 7, photodetector 12, and semiconductor laser l of the third embodiment are housed in one package. It is a device.

第11図は本発明の第5の実施例を示しており、ホログ
ラム素子60は上記の実施例1から4に示されているホ
ログラム素子5と回折格子11の複屈折回折格子型構造
を複屈折基板の表と裏に有する素子である。この実施例
の光ヘッド装置の動作原理は実施例1から4と同じであ
る。
FIG. 11 shows a fifth embodiment of the present invention, in which a hologram element 60 has a birefringent diffraction grating type structure of the hologram element 5 and the diffraction grating 11 shown in the above embodiments 1 to 4. These are elements on the front and back sides of the substrate. The operating principle of the optical head device of this embodiment is the same as that of the first to fourth embodiments.

〔発明の効果〕〔Effect of the invention〕

本発明の光ヘッド装置では、ホログラム素子を用いてい
るため構成の簡素化ができ、さらに−軸系の構成をとる
ことができ装置の小型・軽量化が可能である。さらに、
ホログラム素子及び回折格子を複屈折回折格子型構造に
することにより、光ディスクの信号を高効率に再生する
ことができる。
In the optical head device of the present invention, since a hologram element is used, the structure can be simplified, and furthermore, a -axis system structure can be adopted, so that the device can be made smaller and lighter. moreover,
By forming the hologram element and the diffraction grating into a birefringent diffraction grating type structure, signals from an optical disc can be reproduced with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す図、第2図は従来
の光ヘッド装置の基本構成図、第3図は従来の光ヘッド
装置の光デイスク面上での集光スポット状態を示す図、 第4図は従来の光ヘッド装置での6分割光検出器への入
射光状態を説明するための図、第5図は本発明に用いる
ホログラム素子と回折格子の構造を説明するための図、 第6図は本発明の光ヘッド装置に用いられているホログ
ラム素子の構成を示す図、 第7図は本発明の光ヘッド装置の光検出器に集光する回
折光の集光状態を説明するための図、第8図は本発明の
第2の実施例を示す図、第9図は本発明の第3の実施例
を示す図、第1O図は本発明の第4の実施例を示す図、
第11図は本発明の第5の実施例を示す図である。 1・・・・・半導体レーザ 2・・・・・放射光 3・・・・・コリメートレンズ 4・・・・・収束レンズ 5.60・・・ホログラム素子 6・ ・ ・ ・ ・ス/4板 7.15・・・6分割光検出器 8・・・・・光ディスク 9・・・・・結像レンズ 10・・・・・コリメート光 1116・・・回折格子 12・・・・・光検出器 13・・・・・ビームスプリンタ 14・・・・・円筒レンズ 17・・・・・凸レンズ 24・・・・・ピット 26・・・・・メインビーム 27、28・・・サブビーム 19、20.21.22.23.24゜29、30.3
1.32.33.34・・・光検出素子36、37・・
・格子領域 40、41・・・収束点 44・・・・・分割線 45・・・・・トラック方向 52・・・・・ニオブ酸リチウム 53・・・・・交換領域 54・・・・・非交換領域 55・・・・・位相補償膜
FIG. 1 is a diagram showing a first embodiment of the present invention, FIG. 2 is a basic configuration diagram of a conventional optical head device, and FIG. 3 is a condensed spot state on an optical disk surface of a conventional optical head device. FIG. 4 is a diagram for explaining the state of incident light on a 6-split photodetector in a conventional optical head device, and FIG. 5 is a diagram for explaining the structure of the hologram element and diffraction grating used in the present invention. FIG. 6 is a diagram showing the configuration of the hologram element used in the optical head device of the present invention, and FIG. 7 is a diagram showing the condensation of diffracted light to be focused on the photodetector of the optical head device of the present invention. 8 is a diagram showing the second embodiment of the present invention, FIG. 9 is a diagram showing the third embodiment of the present invention, and FIG. 1O is a diagram showing the fourth embodiment of the present invention. Diagrams showing examples,
FIG. 11 is a diagram showing a fifth embodiment of the present invention. 1... Semiconductor laser 2... Synchrotron radiation 3... Collimating lens 4... Converging lens 5.60... Hologram element 6... S/4 plate 7.15... Six-segment photodetector 8... Optical disk 9... Imaging lens 10... Collimated light 1116... Diffraction grating 12... Photodetector 13...Beam splinter 14...Cylindrical lens 17...Convex lens 24...Pit 26...Main beam 27, 28...Sub beam 19, 20.21 .22.23.24゜29, 30.3
1.32.33.34...Photodetection elements 36, 37...
- Lattice areas 40, 41... Convergence point 44... Parting line 45... Track direction 52... Lithium niobate 53... Exchange area 54... Non-exchange area 55...Phase compensation film

Claims (2)

【特許請求の範囲】[Claims] (1)光源と、 前記光源からの出射光を実質的に三つのビームに分ける
回折格子と、 前記光源の像を記録媒体上に絞り込む結像レンズ系と、 前記記録媒体からの戻り光を前記結像レンズ系の光軸外
に回折分離するホログラム素子と、前記回折格子及び前
記ホログラム素子と前記記録媒体との間に配置された4
分の1波長板と、前記光軸外に分離された回折光を受光
する光検出器とを有し、 前記回折格子及び前記ホログラム素子は複屈折結晶より
なる複屈折回折格子型素子で、かつそれぞれの結晶光学
軸が互い平行であり、前記ホログラム素子は前記光源か
らの出射光をほとんど回折せず、前記記録媒体からの戻
り光をほとんど回折し、前記回折格子は前記光源からの
出射光を一部回折し、前記記録媒体からの戻り光をほと
んど回折しないことを特徴とする光ヘッド装置。
(1) a light source; a diffraction grating that substantially divides the light emitted from the light source into three beams; an imaging lens system that focuses the image of the light source onto a recording medium; a hologram element for diffraction separation off the optical axis of the imaging lens system; a hologram element arranged between the diffraction grating and the hologram element and the recording medium;
a half-wave plate and a photodetector that receives the diffracted light separated off the optical axis, the diffraction grating and the hologram element are birefringent diffraction grating type elements made of birefringent crystal, and The optical axes of the respective crystals are parallel to each other, the hologram element hardly diffracts the light emitted from the light source, and almost diffracts the return light from the recording medium, and the diffraction grating diffracts the light emitted from the light source. An optical head device characterized in that it partially diffracts and hardly diffracts the returning light from the recording medium.
(2)光源と、 表に前記光源からの出射光を実質的に三つのビームに分
ける回折格子と、裏に記録媒体からの戻り光を光軸外に
回折分離する回折格子を有するホログラム素子と、 前記光源の像を前記記録媒体上に絞り込む結像レンズ系
と、 前記ホログラム素子と前記記録媒体との間に配置された
4分の1波長板と、 前記光軸外に分離された回折光を受光する光検出器とを
有し、 前記ホログラム素子は複屈折結晶よりなる複屈折回折格
子型素子で、前記ホログラム素子の裏の回折格子は前記
光源からの出射光をほとんど回折せず、前記記録媒体か
らの戻り光をほとんど回折し、前記ホログラム素子の表
の回折格子は前記光源からの出射光を一部回折し、前記
記録媒体からの戻り光をほとんど回折しないことを特徴
とする光ヘッド装置。
(2) a hologram element having a light source, a diffraction grating on the front side that substantially divides the light emitted from the light source into three beams, and a diffraction grating on the back side for diffracting and separating the return light from the recording medium off the optical axis; , an imaging lens system that focuses an image of the light source onto the recording medium; a quarter-wave plate disposed between the hologram element and the recording medium; and the diffracted light separated off the optical axis. a photodetector that receives light from the light source; the hologram element is a birefringent diffraction grating type element made of a birefringent crystal; the diffraction grating on the back of the hologram element hardly diffracts the light emitted from the light source; An optical head characterized in that most of the return light from the recording medium is diffracted, the diffraction grating on the front side of the hologram element partially diffracts the emitted light from the light source, and almost no return light from the recording medium is diffracted. Device.
JP2019133A 1990-01-31 1990-01-31 Optical head device Pending JPH03225636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019133A JPH03225636A (en) 1990-01-31 1990-01-31 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019133A JPH03225636A (en) 1990-01-31 1990-01-31 Optical head device

Publications (1)

Publication Number Publication Date
JPH03225636A true JPH03225636A (en) 1991-10-04

Family

ID=11990968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019133A Pending JPH03225636A (en) 1990-01-31 1990-01-31 Optical head device

Country Status (1)

Country Link
JP (1) JPH03225636A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863779A (en) * 1994-05-30 1996-03-08 Daewoo Electron Co Ltd Optical pickup device
JPH08249710A (en) * 1995-01-12 1996-09-27 Ricoh Co Ltd Optical head
JPH08273189A (en) * 1995-02-15 1996-10-18 Daewoo Electron Co Ltd Optical head of optical disk recording/reproducing apparatus
WO1999024852A1 (en) * 1997-10-16 1999-05-20 Matsushita Electric Industrial Co., Ltd. Hologram element polarization separating device, polarization illuminating device, and image display
US6385158B1 (en) 1997-10-29 2002-05-07 Sanyo Electric Co., Ltd. Optical pickup device having compatibility with tracking system, and optical disk recording/reproduction apparatus using the same
US6584060B1 (en) 1998-06-24 2003-06-24 Ricoh Company, Ltd. Optical pick-up device for recording/reading information on optical recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863779A (en) * 1994-05-30 1996-03-08 Daewoo Electron Co Ltd Optical pickup device
JPH08249710A (en) * 1995-01-12 1996-09-27 Ricoh Co Ltd Optical head
JPH08273189A (en) * 1995-02-15 1996-10-18 Daewoo Electron Co Ltd Optical head of optical disk recording/reproducing apparatus
WO1999024852A1 (en) * 1997-10-16 1999-05-20 Matsushita Electric Industrial Co., Ltd. Hologram element polarization separating device, polarization illuminating device, and image display
US6385158B1 (en) 1997-10-29 2002-05-07 Sanyo Electric Co., Ltd. Optical pickup device having compatibility with tracking system, and optical disk recording/reproduction apparatus using the same
US6584060B1 (en) 1998-06-24 2003-06-24 Ricoh Company, Ltd. Optical pick-up device for recording/reading information on optical recording medium
US6845077B2 (en) 1998-06-24 2005-01-18 Ricoh Company, Ltd. Optical pick-up device with convergent light diffraction for recording/reading information on optical recording medium

Similar Documents

Publication Publication Date Title
US4885734A (en) Diffraction grating using birefringence and optical head in which a linearly polarized beam is directed to a diffraction grating
EP0123048B1 (en) Holographic optical head
JPH07130022A (en) Optical head device and optical element
JPH03225636A (en) Optical head device
JPH1139701A (en) Optical disk device
JP2570563B2 (en) Optical head device
JP2616018B2 (en) Optical head device
JP2646782B2 (en) Optical head device
JP2710809B2 (en) Crossed diffraction grating and polarization rotation detector using the same
JPH02178604A (en) Cross diffraction grating and polarized wave rotation detecting device using same
JP2576632B2 (en) Magneto-optical head device
JPH03178064A (en) Optical head device
US5422866A (en) Magneto-optical head with birefringent polarizer
JPH08287511A (en) Optical pickup device and photodetector
JPH04298837A (en) Polarizing beam splitter and magneto-optical head device
JPS6371946A (en) Optical information recording and reproducing device
JPH0792319A (en) Optical element and optical device using the same
JP2993273B2 (en) Magneto-optical head device
JPH03100927A (en) Optical pickup device
JP2724095B2 (en) Optical pickup
JPH03122853A (en) Optical head device
JPS6313134A (en) Optical head device
JPH11353728A (en) Magneto-optical head
JPH0391133A (en) Optical information recording and reproducing device
JPH02101641A (en) Optical head device