JPH06138935A - Speed control method/device for numerically controlled machine tool - Google Patents

Speed control method/device for numerically controlled machine tool

Info

Publication number
JPH06138935A
JPH06138935A JP30967392A JP30967392A JPH06138935A JP H06138935 A JPH06138935 A JP H06138935A JP 30967392 A JP30967392 A JP 30967392A JP 30967392 A JP30967392 A JP 30967392A JP H06138935 A JPH06138935 A JP H06138935A
Authority
JP
Japan
Prior art keywords
feed
cutting
speed
fast
cutting feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30967392A
Other languages
Japanese (ja)
Other versions
JP2925414B2 (en
Inventor
Makoto Nakamura
村 誠 中
Tadashi Tanuma
沼 匡 史 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP4309673A priority Critical patent/JP2925414B2/en
Publication of JPH06138935A publication Critical patent/JPH06138935A/en
Application granted granted Critical
Publication of JP2925414B2 publication Critical patent/JP2925414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To improve the machining efficiency by instructing continuously both the fast and cutting feed modes and also connecting continuously the feeding speeds of both modes to each other with stopping both modes when they are set in the same direction. CONSTITUTION:A fast feed/cutting feed connection control part 6 checks the decoding result of an NC command program obtained by a program decoding part 1. Then the part 6 decides whether the continuous commands that do not care about the block order of the fast feed and cutting feed modes are set in the same direction or not. That is, the part 6 decides whether the stop processing is needed or not. If not, the part 6 performs no stop processing of the shift between the fast and cutting feed modes and continuously connects both feeding speeds to each other. Thus the part 6 controls motor 5 via an acceleration/ deceleration control part 2, an interpolation part 3, and a servo part 4. Thus, the speed can be smoothly changed and the waste time can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は数値制御工作機械の速度
制御方法及び装置に関し、特に加工能率を向上させる数
値制御工作機械の速度制御方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a speed control method and apparatus for a numerically controlled machine tool, and more particularly to a speed control method and apparatus for a numerically controlled machine tool for improving machining efficiency.

【0002】[0002]

【従来の技術】数値制御工作機械においては、加工能率
の向上は目覚ましいものがあり、早送り速度と切削送り
速度の高速化も進行している。ところで、早送りと切削
送りが連続する加工を行う場合には、図5に示すよう
に、早送りから切削送りに至る移行時には早送り減速、
停止、停止確認を行い、続いて切削送り加速を行ってい
る。このことは、切削送りから早送りへの移行時でも同
様である。
2. Description of the Related Art In numerically controlled machine tools, the machining efficiency is remarkably improved, and the rapid feed rate and the cutting feed rate are being increased. By the way, in the case of performing the machining in which the rapid feed and the cutting feed are continuous, as shown in FIG. 5, during the transition from the rapid feed to the cutting feed, the rapid feed deceleration,
After stopping and confirming the stop, the cutting feed is accelerated. This also applies to the transition from cutting feed to fast feed.

【0003】[0003]

【発明が解決しようとする課題】上述のように従来の数
値制御工作機械では、早送りと切削送りが連続する加工
を行うとき、減速停止、停止確認、加速を必ず行う必要
がある。しかしながら、早送りから切削送りへ同一方向
に連続する加工指令においては、かかる減速停止、加速
は早送り及び切削送りの高速化の阻害要因となる。例え
ば、深穴加工サイクル等の固定サイクルは、Z方向の早
送り、切削送りが頻繁に交互に指令され、同一方向の早
送り、切削送りが多数回繰り返されることになり、前記
問題が顕著に現れる。
As described above, in the conventional numerically controlled machine tool, it is necessary to perform deceleration stop, stop confirmation and acceleration without fail when performing machining in which rapid feed and cutting feed are continuous. However, in a machining command that continues from the fast feed to the cutting feed in the same direction, such deceleration stop and acceleration are obstacles to speeding up the fast feed and the cutting feed. For example, in a fixed cycle such as a deep hole machining cycle, rapid feed in the Z direction and cutting feed are frequently and alternately commanded, and rapid feed in the same direction and cutting feed are repeated many times, and the above-mentioned problem becomes prominent.

【0004】そこで、本発明の目的は、早送りと切削送
りとが順序を問わず連続して指令され、それらが同一方
向の送りである場合、早送りと切削送り間の移行時に軸
送りを停止させることなく、極力むだ時間をなくし、加
工能率を向上した数値制御工作機械の速度制御方法及び
装置を提供することにある。
Therefore, an object of the present invention is to stop the axial feed at the transition between the rapid feed and the cutting feed when the rapid feed and the cutting feed are continuously commanded in any order and they are the feeds in the same direction. It is an object of the present invention to provide a speed control method and device for a numerically controlled machine tool that eliminates dead time as much as possible and improves machining efficiency.

【0005】[0005]

【課題を解決するための手段】前述の課題を解決するた
め、本発明による数値制御工作機械の速度制御方法は、
早送りと切削送りとが順序を問わず連続して指令さ
れ、それらが同一方向の送りであると判定したとき、早
送りと切削送り間の移行時に停止させることなく前記早
送りと切削送りの送り速度を連続的に接続するように構
成される。また、本発明による数値制御工作機械の速度
制御装置は、早送りと切削送りの種別及びその送り方向
を判定する第1の手段と、該1の手段により早送りと切
削送りとが順序を問わず連続して指令され、それらが同
一方向の送りであると判定されたとき、早速送りと切削
送り間の移行時に停止させることなく前記早送りと切削
送りの送り速度を連続的に接続する第2の手段とを備え
る。
In order to solve the above-mentioned problems, a speed control method for a numerically controlled machine tool according to the present invention comprises:
When rapid feed and cutting feed are continuously commanded in any order and it is determined that they are feeds in the same direction, the feed speeds of the rapid feed and cutting feed can be set without stopping at the transition between rapid feed and cutting feed. It is configured to connect continuously. Further, in the speed control device for a numerically controlled machine tool according to the present invention, the first means for determining the type of the fast feed and the cutting feed and the feeding direction thereof, and the fast feed and the cutting feed are continuously performed by the first means in any order. Second command means for continuously connecting the feed rates of the fast feed and the cutting feed without stopping at the transition between the fast feed and the cutting feed when it is determined that they are feeds in the same direction. With.

【0006】[0006]

【作用】本発明では、早送りと切削送りとが連続して指
令される場合に、早送りから切削送りへの移行時または
切削送りから早送りへの移行時のように停止する必要が
ない場合には、現在の処理と続く次の処理間の速度変化
をなめらかに時間的に設定、接続することにより、加工
能率を改善している。
According to the present invention, when the rapid feed and the cutting feed are continuously instructed, it is not necessary to stop as in the transition from the rapid feed to the cutting feed or the transition from the cutting feed to the rapid feed. The processing efficiency is improved by smoothly setting the speed change between the current processing and the next processing, and connecting them.

【0007】[0007]

【実施例】次に、本発明の実施例について図面を参照し
ながら説明する。図1は、本発明による数値制御工作機
械の速度制御方法及び装置の処理手順を示すフローチャ
ートである。先ず、NC指令プログラムを解読した結
果、現ブロックが早送りで、次ブロックが切削送りで、
これらの送り方向が同一であるか否かを判定する(ステ
ップS1)。ステップS1において、YESであると判
定されると、早送り終点位置の速度を次ブロック指令切
削速度とし、所定の減速を行う(ステップS2)。次
に、切削送り開始点位置での速度分配を指令速度で開始
する(ステップS3)。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a flowchart showing a processing procedure of a speed control method and apparatus for a numerically controlled machine tool according to the present invention. First, as a result of decoding the NC command program, the current block is fast-forward, the next block is cutting-feed,
It is determined whether these feed directions are the same (step S1). If YES is determined in step S1, the speed at the fast-forward end point position is set as the next block command cutting speed, and predetermined deceleration is performed (step S2). Next, the speed distribution at the cutting feed start point position is started at the command speed (step S3).

【0008】ステップS1において、NOと判定される
と、現ブロック切削送りで次ブロックが早送り且つ同一
方向であるか否かを判定する(ステップS4)。ここ
で、YESであれば、切削送り終点位置の速度を指令速
度とし(ステップS5)、早送り始点位置での速度分配
を切削送り終点位置速度とし、所定の早送り加速を行う
(ステップS6)。一方、ステップS4において、NO
と判定されると、従来通りに減速、停止、加速を行う
(ステップS7)。
If NO is determined in step S1, it is determined whether or not the next block is fast-forward and in the same direction in the current block cutting feed (step S4). If YES here, the speed at the cutting feed end point position is set as the command speed (step S5), the speed distribution at the rapid feed start point position is set as the cutting feed end point position speed, and predetermined rapid feed acceleration is performed (step S6). On the other hand, in step S4, NO
If it is determined to be, deceleration, stop, and acceleration are performed as usual (step S7).

【0009】図2には、上記実施例の速度制御例が示さ
れている。図2において、N1ブロックで早送り、N2
ブロックで切削送り、N3ブロックで切削送り、N4ブ
ロックで早送り制御が行われる。また、図3には、図2
における各ブロックのNCプログラム例が示されてい
る。
FIG. 2 shows an example of speed control of the above embodiment. In FIG. 2, fast forward with N1 block, N2
Cutting feed is performed by the block, cutting feed is performed by the N3 block, and fast feed control is performed by the N4 block. In addition, in FIG.
An NC program example of each block in FIG.

【0010】図3において、G91で現在位置からの移
動をインクリメンタル指定され、ブロックN1で早送り
(G00)と早送りの目標位置(−100.000)が
指定され、ブロックN2で切削送り(G01)と、切削
送り速度(F4000)が指定され、ブロックN3で逆
方向の切削送り目標位置が指定され、N4で早送り(G
00)と早送り目標位置(100.000)が指定され
る。
In FIG. 3, a movement from the current position is incrementally designated by G91, a fast feed (G00) and a fast feed target position (-100.000) are designated by a block N1, and a cutting feed (G01) is designated by a block N2. , The cutting feed speed (F4000) is specified, the reverse cutting feed target position is specified in the block N3, and the rapid feed (G
00) and the fast-forward target position (100.000) are designated.

【0011】図3の指令プログラムに従って送り速度
(絶対値)が、図2のように制御される。すなわち、早
送りから切削送りへの移行時、切削送り開始位置(早送
り目標位置:−100.000)に至る時点T2で切削
送り速度F4000となるように所定の減速カーブに従
ってブロックN1の早送り減速の開始点T1を決定して
時点T1から早送り減速を開始する。ブロックN3から
ブロックN4の切削送りから早送りへの移行において
は、切削送り終点位置での送り速度をF4000のまま
とし、そこから早送りの加速を指令している。図2と図
5を比較して明らかなように本実施例によれば、早送り
と切削送り間の移行時に2つの送り速度を停止させるこ
となく連続的に接続しているので、加工能率が改善され
る。
The feed rate (absolute value) is controlled as shown in FIG. 2 in accordance with the command program shown in FIG. That is, at the time of transition from the rapid feed to the cutting feed, the rapid feed deceleration of the block N1 is started according to a predetermined deceleration curve so that the cutting feed speed becomes F4000 at the time point T2 when the cutting feed start position (the rapid feed target position: −100.000) is reached. The point T1 is determined, and the fast-forward deceleration is started from the time T1. In the transition from the cutting feed to the rapid feed of the block N3 to the block N4, the feed speed at the cutting feed end position is kept at F4000, and the acceleration of the rapid feed is commanded from there. As is clear from a comparison between FIG. 2 and FIG. 5, according to the present embodiment, the two feed rates are continuously connected without stopping during the transition between the rapid feed and the cutting feed, so that the machining efficiency is improved. To be done.

【0012】早送りから切削送りと同一方向に連続指令
される場合においては、早送りの指令終点位置での速度
を、次のブロックで指令されている切削送り速度とし、
予め設定された早送りの加減速カーブに従って減速す
る。次のブロックの開始点位置での切削送り速度分配を
指令切削速度で行う。
When continuous commands are issued in the same direction as the cutting feed from the rapid feed, the speed at the command end position of the rapid feed is set as the cutting feed speed instructed in the next block,
The vehicle decelerates according to the preset rapid traverse acceleration / deceleration curve. The cutting feed speed distribution at the starting point position of the next block is performed at the command cutting speed.

【0013】また、切削送りから早送りと同一方向に連
続指令される場合においては、切削送りの指令終点位置
での速度を指令された切削送り速度とし、次ブロックの
早送りの開始速度を前記切削送り速度から予め設定され
た早送りの加減速カーブに従って加速し、所定の早送り
速度とする。
When the cutting feed is continuously commanded in the same direction as the rapid feed, the speed at the cutting feed command end position is set as the commanded feed speed, and the rapid feed start speed of the next block is set as the cutting feed. The speed is accelerated according to a preset fast-forward acceleration / deceleration curve to obtain a predetermined fast-forward speed.

【0014】図4は、上記処理を実行する本発明による
数値制御工作機械の速度制御装置の一例を示す構成図で
ある。NC指令プログラムは、プログラム解読部1で解
読され、解読結果に基づいて加減速制御部2から加減速
制御データが出力される。プログラム解読部1で解読さ
れた情報は、早送り、切削送り結合制御部6に送出さ
れ、前述加減速制御部2を制御するに必要な信号を加減
速制御部2に供給する。
FIG. 4 is a block diagram showing an example of a speed control device for a numerically controlled machine tool according to the present invention which executes the above processing. The NC command program is decoded by the program decoding unit 1, and the acceleration / deceleration control unit 2 outputs acceleration / deceleration control data based on the decoding result. The information decoded by the program decoding unit 1 is sent to the fast feed / cut feed combination control unit 6 and supplies the signals necessary for controlling the acceleration / deceleration control unit 2 to the acceleration / deceleration control unit 2.

【0015】早送り、切削送り結合制御部6は、前述の
ように現在のブロックから次のブロックへの処理の移行
時点で停止する必要があるか否かを判断し、停止する必
要がなければ上述処理、例えば次のブロック開始時に所
定の速度となるように減速制御を開始する。すなわち、
早送りから切削送りへの処理移行または切削送りから早
送りへの処理移行時で、それぞれ同一方向の速度変化で
あるときには停止処理は不要であるから前述の如く処理
を行って加工能率を向上する。加減速制御部2からの信
号は補間部3で補間処理が施された後、サーボ部4の動
作を介してモータ5に送出される。
The fast feed / cut feed combination control unit 6 judges whether or not it is necessary to stop at the time of transition of the processing from the current block to the next block as described above, and if there is no need to stop, the above-mentioned operation is performed. Processing, for example, deceleration control is started so that a predetermined speed is reached at the start of the next block. That is,
At the time of the process transition from the fast feed to the cutting feed or the process transition from the cutting feed to the fast feed, when the speed changes in the same direction, the stop process is not necessary. The signal from the acceleration / deceleration control unit 2 is subjected to interpolation processing by the interpolation unit 3 and then sent to the motor 5 via the operation of the servo unit 4.

【0016】[0016]

【発明の効果】以上説明したように、本発明による数値
制御工作機械の速度制御方法及び装置は、早送りと切削
送りが連続して指令される場合に、早送りから切削送り
への移行時または切削送りから早送りへの移行時のよう
に停止する必要がない場合には、現在の処理と続く次の
処理間の速度変化をなめらかに時間的に設定、接続する
ことにより、むだ時間がなくなり、加工能率が改善さ
れ、特に深穴加工サイクル等を行うときには能率の改善
が著しい。
As described above, the method and apparatus for controlling the speed of a numerically controlled machine tool according to the present invention, when the rapid feed and the cutting feed are continuously commanded, at the transition from the rapid feed to the cutting feed or in the cutting feed. If there is no need to stop as in the transition from feed to fast feed, the dead time is eliminated by setting and connecting the speed change between the current process and the next process smoothly in time. Efficiency is improved, especially when performing deep hole machining cycles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による数値制御工作機械の速度制御方法
及び装置の処理手順を示すフローチャートである。
FIG. 1 is a flowchart showing a processing procedure of a speed control method and apparatus for a numerically controlled machine tool according to the present invention.

【図2】図1の実施例の動作を説明するための送り速度
の時間的変化を示す図である。
FIG. 2 is a diagram showing a temporal change of a feed rate for explaining the operation of the embodiment of FIG.

【図3】図2に示す実施例の処理を実行するための指令
プログラムの一例を示す図である。
FIG. 3 is a diagram showing an example of a command program for executing the processing of the embodiment shown in FIG.

【図4】本発明による数値制御工作機械の速度制御装置
の構成例を示す図である。
FIG. 4 is a diagram showing a configuration example of a speed control device for a numerically controlled machine tool according to the present invention.

【図5】従来の送り速度の時間的変化を示す図である。FIG. 5 is a diagram showing a change over time of a conventional feed speed.

【符号の説明】[Explanation of symbols]

1 プログラム解読部 2 加減速制御部 3 補間部 4 サーボ部 5 モータ 6 早送り、切削送り結合制御部 1 Program Decoding Section 2 Acceleration / Deceleration Control Section 3 Interpolation Section 4 Servo Section 5 Motor 6 Fast Feed, Cutting Feed Coupling Control Section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】早送りと切削送りとが順序を問わず連続し
て指令され、それらが同一方向の送りであると判定した
とき、早送りと切削送り間の移行時に停止させることな
く前記早送りと切削送りの送り速度を連続的に接続する
ことを特徴とする数値制御工作機械の速度制御方法。
1. When fast feed and cutting feed are continuously commanded in any order and it is determined that they are feeds in the same direction, the fast feed and cutting are performed without stopping at the transition between the fast feed and the cutting feed. A speed control method for a numerically controlled machine tool, characterized in that the feed speeds of the feeds are continuously connected.
【請求項2】早送りから切削送りに移行する場合に、前
記早送りの指令終点位置での送り速度を指令された切削
送り速度となるように前記早送り速度を所定の減速カー
ブに従って減速し、前記切削送りの開始位置での送り速
度を指令された切削送り速度とする請求項1に記載の数
値制御工作機械の速度制御方法。
2. When changing from rapid feed to cutting feed, the rapid feed speed is decelerated according to a predetermined deceleration curve so that the feed speed at the command end position of the rapid feed becomes the commanded cutting feed speed, and the cutting is performed. The speed control method for a numerically controlled machine tool according to claim 1, wherein a feed speed at a feed start position is set as a commanded cutting feed speed.
【請求項3】切削送りから早送りに移行する場合に、前
記切削送りの指令終点位置での送り速度を指令された切
削送り速度とし、前記早送りの送り速度を前記切削送り
から所定の加速カーブに従って加速する請求項1に記載
の数値制御工作機械の速度制御方法。
3. When transitioning from cutting feed to rapid feed, the feed speed at the command end position of the cutting feed is set as a commanded cutting feed speed, and the rapid feed speed is set according to a predetermined acceleration curve from the cutting feed. The speed control method for a numerically controlled machine tool according to claim 1, wherein the speed is accelerated.
【請求項4】早送りと切削送りの種別及びその送り方向
を判定する第1の手段と、該1の手段により早送りと切
削送りとが順序を問わず連続して指令され、それらが同
一方向の送りであると判定されたとき、早速送りと切削
送り間の移行時に停止させることなく前記早送りと切削
送りの送り速度を連続的に接続する第2の手段と、を備
えることを特徴とする数値制御工作機械の速度制御装
置。
4. A first means for determining the types of fast feed and cutting feed and the feed direction thereof, and the fast feeding and cutting feed are instructed continuously by the means in any order, and they are in the same direction. And a second means for continuously connecting the feed speeds of the fast feed and the cutting feed without stopping at the transition between the fast feed and the cutting feed when it is determined to be the feed. Control machine tool speed control device.
JP4309673A 1992-10-23 1992-10-23 Speed control method and apparatus for numerically controlled machine tool Expired - Lifetime JP2925414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4309673A JP2925414B2 (en) 1992-10-23 1992-10-23 Speed control method and apparatus for numerically controlled machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4309673A JP2925414B2 (en) 1992-10-23 1992-10-23 Speed control method and apparatus for numerically controlled machine tool

Publications (2)

Publication Number Publication Date
JPH06138935A true JPH06138935A (en) 1994-05-20
JP2925414B2 JP2925414B2 (en) 1999-07-28

Family

ID=17995899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4309673A Expired - Lifetime JP2925414B2 (en) 1992-10-23 1992-10-23 Speed control method and apparatus for numerically controlled machine tool

Country Status (1)

Country Link
JP (1) JP2925414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082774A (en) * 2017-10-30 2019-05-30 ブラザー工業株式会社 Numerical controller and speed control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137680A (en) * 2011-12-28 2013-07-11 Brother Ind Ltd Numerical control device, control program, and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276309A (en) * 1988-04-28 1989-11-06 Okuma Mach Works Ltd Numerical control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276309A (en) * 1988-04-28 1989-11-06 Okuma Mach Works Ltd Numerical control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082774A (en) * 2017-10-30 2019-05-30 ブラザー工業株式会社 Numerical controller and speed control method

Also Published As

Publication number Publication date
JP2925414B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
US4728872A (en) Robot path error correction system
EP0801339B1 (en) Method of axis movement numeric control machine tool and apparatus therefor
US5477117A (en) Motion controller and synchronous control process therefor
JPS60198606A (en) Acceleration and deceleration system of numerical controller
US10444728B2 (en) Numerical controller performing positioning for avoiding interference with workpiece
WO1988010171A1 (en) Acceleration/deceleration controller
WO1989006066A1 (en) Method of speed control for servomotor
JPH1027013A (en) Method for controlling superimposition by numerical controller
JP3749222B2 (en) Numerical controller
JPH11231914A (en) Numerical controller
JPH06138935A (en) Speed control method/device for numerically controlled machine tool
JP2782491B2 (en) Method and apparatus for controlling rapid traverse of machine tools
JPH07210225A (en) Numerical controller
JP2001312309A (en) Numerical control working machine and acceleration/ deceleration control method therefor
JPH04169907A (en) Acceleration/deceleration control system
JP2000163114A (en) Intra-interpolation curve acceleration and deceleration processing method
JP3399745B2 (en) Superposition control method and multi-system numerical controller in multi-system numerical controller
JPH06180606A (en) Controller for object to be driven
JP3513840B2 (en) Feed rate control method for numerical controller
JP3188396B2 (en) Feed rate control method and apparatus in numerical control
JP2008158726A (en) Machining control device and program thereof
JP3164512B2 (en) Numerical control unit
JP2001166807A (en) Method for commanding working by numerical controller
JPH0683431A (en) Speed control method for nc controller
JP2000231412A (en) In-position check method and device therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100507

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110507

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110507

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120507

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130507

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130507