JPH06138513A - Camera - Google Patents

Camera

Info

Publication number
JPH06138513A
JPH06138513A JP29037292A JP29037292A JPH06138513A JP H06138513 A JPH06138513 A JP H06138513A JP 29037292 A JP29037292 A JP 29037292A JP 29037292 A JP29037292 A JP 29037292A JP H06138513 A JPH06138513 A JP H06138513A
Authority
JP
Japan
Prior art keywords
camera
brightness
posture
selecting
small area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29037292A
Other languages
Japanese (ja)
Inventor
Yoshiaki Irie
良昭 入江
Akira Yamada
山田  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29037292A priority Critical patent/JPH06138513A/en
Publication of JPH06138513A publication Critical patent/JPH06138513A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate the luminance of a specified background and to obtain an appropriate photometric value by selecting a specified small area based on the output of the posture state of a camera and changing weighting based on luminance information. CONSTITUTION:The image of an object is formed on a photodetector for photometry 6 by an image-formation lens for photometry 5, and divided into 16 small areas so as to perform photometry. A part of the image of the object formed in the vicinity of a visual field mask 10 arranged in the vicinity of the intended image-formation surface of a photographing lens 1 is formed on a photodetector for detecting focus 14 by an image-formation lens for detecting focus 13 so as to detect the focus in the areas corresponding to five focus detecting visual fields. A posture discriminating switch 15 generates three kinds of signals such as normal position, release button upper position, and release button lower position signals in accordance with the posture difference of the camera. Five apertures are provided on the mask 10, and the image of the object formed in the vicinity of the aperture is divided into two images and formed on the photodetector 14 by the lens 13 so as to detect five points in a photographic image plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被写界を複数領域に分
割して測光する測光装置を有するカメラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camera having a photometric device which divides an object field into a plurality of areas for photometry.

【0002】[0002]

【従来の技術】従来より、被写界を複数に分割し、それ
ぞれの領域毎の輝度信号を用いて、撮影画面に適正露出
を与えるようにした測光装置が種々提案されている。こ
の内特に、姿勢検知を行なうことで適正露出を得ようと
した提案が特開昭56−52732でなされている。同
公報ではカメラの撮影画面(被写界)を複数に分割して
測光可能な測光素子群を、カメラ姿勢情報をもとに姿勢
状態に応じて適切なゾーンパターンに変化させることが
でき、そのゾーンパターンは、内部で複数のゾーンに分
類され、さらに各ゾーンに対して重み付けがなされてい
る。これによって、カメラが地面に対し水平に構えられ
ても、縦位置に構えられても、空等の明るい光による露
出不足を防ぐことができる。
2. Description of the Related Art Hitherto, various photometric devices have been proposed in which an object scene is divided into a plurality of areas and a luminance signal for each area is used to provide a proper exposure on a photographing screen. Among them, Japanese Patent Laid-Open No. 56-52732 proposes to obtain proper exposure by performing posture detection. In this publication, a photometric element group capable of performing photometry by dividing a shooting screen (field of view) of a camera into a plurality of parts can be changed into an appropriate zone pattern according to an attitude state based on camera attitude information. The zone pattern is internally classified into a plurality of zones, and each zone is weighted. As a result, regardless of whether the camera is held horizontally or vertically with respect to the ground, it is possible to prevent insufficient exposure due to bright light such as the sky.

【0003】[0003]

【発明が解決しようとする課題】上記従来例の特開昭5
6−52732ではゾーンパターンの形状は、カメラの
姿勢状態によって変化する。しかしながら、ゾーンパタ
ーンは単純にカメラの姿勢によって決定される。したが
って、例えば、カメラを縦位置に構えて人物を撮影する
場合、単純に撮影画面中央より地面側にゾーンの重み付
けを行なっても、天側に何が位置しているかを考慮しな
いと正確な測光値を得ることができない。例えば天側に
態様がある場合には天側の輝度情報は用いない方がよい
が、天側にも山等の比較的低輝度の被写体が位置してい
る場合には、天側の輝度情報は何らかの補正を行って用
いた方がよいことになる。この様に、主被写体の位置と
背景の輝度の評価に対しまだ問題を有していた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In 6-52732, the shape of the zone pattern changes depending on the posture state of the camera. However, the zone pattern is simply determined by the pose of the camera. Therefore, for example, when shooting a person with the camera held in the vertical position, even if the zones are simply weighted from the center of the shooting screen to the ground side, accurate metering is required without considering what is on the top side. You can't get the value. For example, if there is an aspect on the heaven side, it is better not to use the luminosity information on the heaven side, but if there is a relatively low-luminance object such as a mountain on the heaven side, the luminance information on the heaven side is also used. Should be used with some correction. Thus, there was still a problem with the evaluation of the position of the main subject and the brightness of the background.

【0004】[0004]

【課題を解決するための手段】被写界を複数の測光用小
領域に分割し、分割された小領域の輝度を検出する測光
手段と、カメラの姿勢状態を検出し、地面に対しカメラ
の撮影姿勢が水平か、縦位置姿勢かを区別する信号を出
力する姿勢検出手段と、前記姿勢検出手段の出力に基づ
いて、前記複数の小領域の内の特定の小領域を選択する
選択手段と、前記選択手段により選択された特定の小領
域の輝度情報に基づき、該特定の小領域の重み付けを変
化させる輝度補正手段を設けたことにより、主被写体を
重視しつつ、特定の背景の輝度を評価することで、適正
な露出値を得ることができる。
A field of view is divided into a plurality of small areas for photometry, the photometry means for detecting the brightness of the divided small areas, and the attitude state of the camera are detected to detect the posture of the camera relative to the ground. Attitude detecting means for outputting a signal for distinguishing whether the shooting attitude is horizontal or vertical position attitude, and selecting means for selecting a specific small area among the plurality of small areas based on the output of the attitude detecting means. By providing the brightness correction means for changing the weighting of the specific small area based on the brightness information of the specific small area selected by the selecting means, the brightness of the specific background can be adjusted while giving importance to the main subject. By evaluating, an appropriate exposure value can be obtained.

【0005】[0005]

【実施例】図1〜図15は、本発明の第1実施例を示す
図であり、5個の焦点検出領域を具備するカメラの測光
装置を表わしたものである。
1 to 15 are views showing a first embodiment of the present invention, and show a photometric device of a camera having five focus detection areas.

【0006】図1は本発明第1実施例の測光用受光部の
分割形状を示す図であり、被写界に投影した状態を示し
ている。同図において、S0〜S15は16領域に分割さ
れた複数の受光用小領域を表わし、SA,SB,SC,S
D,SEは測光用受光部と同様に被写界に投影された焦点
検出領域を表わしている。
FIG. 1 is a view showing a divided shape of a photometric light receiving portion according to the first embodiment of the present invention, showing a state of being projected on a field. In the figure, S0 to S15 represent a plurality of light receiving small areas divided into 16 areas, and SA, SB, SC, S
D and SE represent the focus detection areas projected on the field like the photometric light receiving section.

【0007】図2は本発明第1実施例の光学配置を示す
図であり、同図において、1は撮影レンズ、2はクイッ
クリターンミラー、3はピント板、4はペンタダハプリ
ズム、5は測光用結像レンズ、6は測光用受光部、7は
接眼レンズ、8は瞳孔位置、9はサブミラー、13は焦
点検出用レンズ、14は焦点検出用受光部、16はフィ
ルム面、15はカメラの姿勢を検出する為の姿勢判別ス
イッチである。本実施例では、撮影レンズ1によりピン
ト板3上に結像する被写体像を、測光用結像レンズ5に
よって測光用受光部6上に結像させて図1に示した16
個の小領域に分割して測光を行なっており、また撮影レ
ンズ1の予定結像面近傍に配置された視野マスク10の
近傍に結像する一部の被写体像を焦点検出用結像レンズ
13によって焦点検出用受光部14上に結像させて、図
1に示した5個の焦点検出視野に相当する領域の焦点検
出を行なっている。また姿勢判別スイッチ15は水銀ス
イッチであり、カメラの姿勢差に応じて、ガラス管に封
入された水銀の位置が変化し、電気的にカメラの姿勢が
正位置、レリーズ釦上位置、レリーズ釦下位置の3種類
の信号を発生するものである。
FIG. 2 is a view showing the optical arrangement of the first embodiment of the present invention. In FIG. 2, 1 is a taking lens, 2 is a quick return mirror, 3 is a focusing plate, 4 is a penta roof prism, and 5 is for photometry. Imaging lens, 6 light receiving portion for photometry, 7 eyepiece lens, 8 pupil position, 9 sub-mirror, 13 focus detecting lens, 14 focus detecting light receiving portion, 16 film surface, 15 camera posture A posture determination switch for detecting the. In the present embodiment, a subject image formed on the focusing plate 3 by the taking lens 1 is formed on the photometric light receiving section 6 by the photometric imaging lens 5 and shown in FIG.
The light is divided into a plurality of small areas for photometry, and a part of the subject image formed near the visual field mask 10 arranged near the planned image forming surface of the photographing lens 1 is used as the focus detecting image forming lens 13. An image is formed on the focus detection light-receiving unit 14 to detect the focus of a region corresponding to the five focus detection fields shown in FIG. The attitude determination switch 15 is a mercury switch, and the position of the mercury enclosed in the glass tube changes according to the attitude difference of the camera, and the attitude of the camera is electrically changed to the normal position, the release button upper position, and the release button lower position. It generates three types of position signals.

【0008】図3は図2の焦点検出光学系を展開した斜
視図であり、同図に示すように撮影レンズ1の予定結像
面近傍に配置された視野マスク10に5つの開口を設
け、この5つの開口の近傍に結像する被写体像を焦点検
出用の結像レンズ13によって、それぞれ2像に分割し
て、焦点検出用受光部14に結像させて撮影画面内の5
点の検出を行なっている。
FIG. 3 is an exploded perspective view of the focus detection optical system shown in FIG. 2. As shown in FIG. 3, five openings are provided in the field mask 10 arranged near the planned image forming surface of the taking lens 1. The subject image formed in the vicinity of the five openings is divided into two images by the focus detection imaging lens 13, and the two images are formed on the focus detection light receiving unit 14 to display 5 images in the photographing screen.
It is detecting points.

【0009】図4は本発明第1実施例の回路構成を示す
ブロック図である。同図において、SPD0〜SPD15
はそれぞれ図1に示したS0〜S15の受光用小領域を測
光するシリコンフォトダイオードであり、各々が演算増
幅器AMPと圧縮ダイオードDIと組み合わされ、測光
回路AECKTにて図1の16個の受光用小領域に対応
した16個の輝度信号を発生している。AESWは測光
モード選択スイッチで、カメラが自動的に撮影画面に好
適な露出を決定するいわゆる評価測光と、被写界の特定
領域のみの信号から、操作者の意志で露出を決定するス
ポット測光のいずれか1つの測光モードを選択するもの
である。14は図3の焦点検出用受光部で、CCDA1と
CCDA2〜CCDE1とCCDE2はそれぞれ図1の5つの
焦点検出視野SA〜SEに対応した1対の受光素子列であ
り、焦点検出回路AFCKTによって、デフォーカス量
の検出、出力を行なっている。AFSWは焦点検出点選
択スイッチであり、図1の5つの焦点検出視野SA〜SE
に対応する被写界のデフォーカス量の分布状態に応じ
て、カメラが自動的に撮影画面に好適な焦点検出位置を
決定する自動選択モードと、操作者の意志で前記の5つ
の焦点検出位置の内1つを決定する任意選択モードのい
ずれかを選択することを可能としている。HVSW32
は前述の姿勢判別スイッチであり、カメラの姿勢を3種
類の状態に大別して信号を発生するものである。
FIG. 4 is a block diagram showing the circuit configuration of the first embodiment of the present invention. In the figure, SPD0 to SPD15
1 are silicon photodiodes for photometrically measuring the light-receiving small areas S0 to S15 shown in FIG. 1, each of which is combined with an operational amplifier AMP and a compression diode DI. 16 luminance signals corresponding to the small area are generated. The AESW is a metering mode selection switch, which is so-called evaluation metering that allows the camera to automatically determine the appropriate exposure for the shooting screen, and spot metering that determines the exposure from the signal of only a specific area of the scene. One of the photometric modes is selected. Reference numeral 14 denotes a light receiving unit for focus detection in FIG. 3, and CCDA1 and CCDA2 to CCDE1 and CCDE2 are a pair of light receiving element rows corresponding to the five focus detection fields SA to SE in FIG. 1, respectively. The defocus amount is detected and output. AFSW is a focus detection point selection switch, and the five focus detection fields SA to SE in FIG.
The automatic selection mode in which the camera automatically determines the focus detection position suitable for the shooting screen according to the distribution state of the defocus amount of the object field, and the above five focus detection positions by the operator's intention. It is possible to select any of the optional modes for determining one of the above. HVSW32
Is a posture determination switch described above, which generates a signal by roughly dividing the posture of the camera into three states.

【0010】図4において、測光回路AECKT17、
測光モード選択スイッチAESW18、焦点検出点選択
スイッチAFSW20、姿勢判別スイッチHVSW32
からの入力信号はマイクロコンピュータの内部データバ
スラインBUS21に接続され、各種制御に用いられて
いる。また、図4において、22は各種メモリーに記憶
されているプログラムを用いて、前述の各種入力信号を
処理し、各種制御機構の作動を指示する中央演算処理装
置CPU、23は各種プログラムを記憶している読みだ
し専用メモリーROM、24は演算のためのワークエリ
アのランダムアクセスメモリーRAM、25は表示制御
機構DPCNTL、26はシャッター秒時制御機構ST
CNTL、27は汎用入力ポートPIOであり、それぞ
れマイクロコンピュータの内部データバスラインBUS
21に接続されている。CPU22は前述の入力信号を
用いてROM23に記憶されているプログラムに従った
演算をRAM24をアクセスすることによって実行し、
演算結果に基づいてDPCNTL25、STCNTL2
6によって表示及びシャッター秒時の制御を行い、PI
O27にレンズの制御のための信号を出力する。
In FIG. 4, a photometric circuit AECKT17,
Photometric mode selection switch AESW18, focus detection point selection switch AFSW20, attitude determination switch HVSW32
Is connected to an internal data bus line BUS21 of the microcomputer and used for various controls. In FIG. 4, reference numeral 22 denotes a central processing unit CPU that processes various input signals described above by using programs stored in various memories and directs the operation of various control mechanisms, and 23 stores various programs. Read-only memory ROM, 24 is a random access memory RAM for a work area for calculation, 25 is a display control mechanism DPCNTL, and 26 is a shutter speed control mechanism ST
CNTL and 27 are general-purpose input ports PIO, respectively, which are internal data bus lines BUS of the microcomputer.
21 is connected. The CPU 22 executes the operation according to the program stored in the ROM 23 by accessing the RAM 24 by using the above-mentioned input signal,
DPCNTL25, STCNTL2 based on the calculation result
Display and control of shutter speed by 6
A signal for controlling the lens is output to O27.

【0011】図4での28はコネクタCNCTであり、
カメラとレンズ間の通信を行なっている。29は撮影レ
ンズ固有の情報を記憶している読みだし専用メモリーL
ROM、30,31はそれぞれ撮影レンズの焦点位置制
御機構AFCNTL、絞り制御機構APCNTLであ
る。撮影レンズ内に具備されるLROM29、AFCN
TL30、APCNTL31は、CNCT28を介して
カメラのPIO27に接続されており、カメラのCPU
の指示に従って読みだし、または制御機構の作動が行な
われるように構成されている。
Reference numeral 28 in FIG. 4 is a connector CNCT,
Communication between the camera and lens. 29 is a read-only memory L that stores information specific to the taking lens.
ROMs 30, 31 are a focus position control mechanism AFCNTL and a diaphragm control mechanism APCNTL for the photographing lens, respectively. LROM 29 and AFCN provided in the taking lens
The TL30 and APCNTL31 are connected to the PIO27 of the camera via the CNCT28, and the CPU of the camera
Is read out or the control mechanism is actuated in accordance with the instructions.

【0012】次に本発明第1実施例の動作を第5図〜第
7図にて説明する。
Next, the operation of the first embodiment of the present invention will be described with reference to FIGS.

【0013】図5〜図7は本発明第1の実施例のフロー
チャートであり、図5はメインルーチン、図6,図7は
各サブルーチンを表わすものである。また図8、図10
は、図7サブルーチンの補足説明図である。
5 to 7 are flowcharts of the first embodiment of the present invention. FIG. 5 shows a main routine, and FIGS. 6 and 7 show each subroutine. In addition, FIG. 8 and FIG.
FIG. 8 is a supplementary explanatory diagram of the subroutine of FIG. 7.

【0014】まず、図5のメインルーチンを説明する。First, the main routine of FIG. 5 will be described.

【0015】カメラにおいて、被写界の輝度に相当する
情報、予め設定された複数の焦点検出点のそれぞれのデ
フォーカス量の情報、撮影者の意志に基づいた測光モー
ド選択情報、及び焦点検出点選択情報を用いて焦点位置
調節の制御とシャッター秒時及び絞り設定による露出の
制御及び表示の制御を取り扱う。クイックリターンミラ
ーの駆動制御等、メインルーチンが取り扱うべき項目は
他にもあるが、ここでは本発明のカメラの測光装置に関
係のある項目のみを取り出しており、簡単のためその他
は省略している。
In the camera, information corresponding to the brightness of the field, information on the defocus amount of each of a plurality of preset focus detection points, photometric mode selection information based on the will of the photographer, and focus detection points. The selection information is used to control the focus position control and the exposure control and display control by the shutter speed and aperture setting. There are other items to be handled by the main routine, such as the drive control of the quick return mirror, but here only the items related to the photometric device of the camera of the present invention are taken out, and other items are omitted for simplicity. .

【0016】STEP01では、5つの一対のラインセ
ンサー14の出力をAFCKT19から5つの焦点検出
のデフォーカス量として算出している。
In STEP 01, the outputs of the five paired line sensors 14 are calculated from the AFCKT 19 as five defocus amounts for focus detection.

【0017】STEP02ではAFSW20からの焦点
検出点選択信号、及びAFCKT19からのデフォーカ
ス信号を取り込み、操作者が自分の意志で5つの焦点検
出点を選択した場合はその検出点に対応する信号を出力
し、操作者がカメラの焦点検出点を自動選択とした場合
には、5つのデフォーカス量の信号から被写体距離の最
も近い焦点検出点を検知し、その焦点検出点に対応した
信号を出力する焦点検出サブルーチンである。ここで
は、焦点検出点信号SELを出力する。
At STEP 02, the focus detection point selection signal from the AFSW 20 and the defocus signal from the AFCKT 19 are fetched, and when the operator arbitrarily selects five focus detection points, a signal corresponding to the detection points is output. If the operator automatically selects the focus detection point of the camera, the focus detection point closest to the object distance is detected from the five defocus amount signals, and the signal corresponding to the focus detection point is output. It is a focus detection subroutine. Here, the focus detection point signal SEL is output.

【0018】STEP03では5つの焦点検出点のデフ
ォーカス量と焦点検出点信号SELから、焦点調節すべ
きデフォーカス量を決定し、AFCNTL30によって
撮影レンズの焦点調節を行なう。
In STEP 03, the defocus amount for focus adjustment is determined from the defocus amounts of the five focus detection points and the focus detection point signal SEL, and the AFCNTL 30 adjusts the focus of the taking lens.

【0019】STEP04では16個の小領域の輝度に
対応する信号をデジタル信号として取り込む。
In STEP 04, signals corresponding to the brightness of 16 small areas are fetched as digital signals.

【0020】STEP05はAECKT17から取り込
んだ信号をLROM29から取り込まれる撮影レンズ固
有の情報に基づき補正を行い、各小領域に対応した被写
界の輝度信号を出力し、さらに焦点検出信号STL、測
光モード信号MODEに基づいて決定される演算を行な
う測光演算サブルーチンであって、測光値Eを出力す
る。
STEP 05 corrects the signal fetched from the AECKT 17 on the basis of the information peculiar to the photographing lens fetched from the LROM 29, and outputs the luminance signal of the field corresponding to each small area, and further the focus detection signal STL and the photometry mode. It is a photometric calculation subroutine that performs a calculation determined based on the signal MODE, and outputs a photometric value E.

【0021】STEP06ではカメラに予め設定された
撮影モード、例えばシャッター優先モード等のプログラ
ムに従って測光値Eから絞り、シャッター秒時が決定さ
れる。
In STEP 06, the aperture and shutter time are determined from the photometric value E according to a program such as a photographing mode preset in the camera, for example, a shutter priority mode.

【0022】STEP07はシャッター秒時、絞り値の
露出情報や測光モード等の情報をDPCNTL25によ
ってカメラの表示装置に表示する。
At STEP 07, when the shutter speed is set, the exposure information of the aperture value and the information of the photometric mode are displayed on the display device of the camera by the DPCNTL 25.

【0023】以上STEP01〜STEP08でカメラ
における一連の撮影動作を終了し、次の撮影動作に備え
るためにSTEP02の状態に戻る。
In STEP01 to STEP08, the series of photographing operations in the camera is completed, and the state returns to STEP02 to prepare for the next photographing operation.

【0024】次に測光値演算サブルーチンについて説明
する。
Next, the photometric value calculation subroutine will be described.

【0025】STEP09ではAECKT17から出力
される測光センサーS0〜S15の16個の小領域の輝度
に対応するデジタル信号D0〜D15を取り込む。
At STEP 09, digital signals D0 to D15 corresponding to the luminances of the 16 small areas of the photometric sensors S0 to S15 output from the AECKT 17 are fetched.

【0026】STEP10ではLROM33から装着さ
れた撮影レンズの開放Fナンバー、焦点距離、射出瞳位
置、絞り開放時の周辺光量落ち等のレンズ固有情報が取
り込まれる。
In STEP 10, lens-specific information such as the open F-number of the photographic lens mounted, the focal length, the exit pupil position, and the peripheral light amount drop when the diaphragm is opened is fetched from the LROM 33.

【0027】STEP11ではSTEP10のレンズ固
有情報に基づいて、AECKTからの測光センサーS0
〜S15の16個の出力信号に対応した補正値δ0〜δ15
を決定し、STEP09で取り込んだD0〜D15に補正
を加えることで輝度信号を決定する。決定された輝度信
号は、小領域S0が輝度信号V0、S1がV1、S2がV2…
…S15がV15に対応している。
In STEP 11, the photometric sensor S0 from AECKT is based on the lens-specific information in STEP 10.
Correction values δ0 to δ15 corresponding to 16 output signals of S15 to S15
Is determined and the luminance signal is determined by correcting the D0 to D15 fetched in STEP09. Regarding the determined luminance signal, the small area S0 has luminance signal V0, S1 has V1, S2 has V2 ...
... S15 corresponds to V15.

【0028】STEP12は姿勢判別スイッチHVSW
からの信号、つまりカメラの姿勢差に応じて、16個の
小領域の輝度信号の一部を重みづけするサブルーチンで
あり、後述する周辺領域の平均輝度Cの一部である輝度
SCを決定するためのものである。詳細は後述する。
STEP 12 is a posture determination switch HVSW
Is a subroutine for weighting a part of the brightness signals of the 16 small areas according to the signal from the camera, that is, the brightness SC which is a part of the average brightness C of the peripheral area described later. It is for. Details will be described later.

【0029】STEP13は焦点検出信号SELが前述
の焦点検出領域SA〜SEに対応する焦点検出点の内いづ
れかを判断する。
In step 13, it is determined whether the focus detection signal SEL is one of the focus detection points corresponding to the above-mentioned focus detection areas SA to SE.

【0030】STEP14は、16個に分割された小領
域を、選択された焦点検出点を含む小領域、その周囲の
領域、及びさらにその周囲の周辺領域の3つの中領域に
分類し、各中領域の平均輝度を算出し、出力している。
各中領域の平均輝度信号は、焦点検出点を含む小領域の
平均輝度信号をA、その周囲の中領域の平均輝度信号を
B、さらにその周囲の中領域としての周辺輝度信号をC
aとして出力するものとする。またSTEP12の姿勢
差測光補正サブルーチンによって決定され、重み付けさ
れた周辺輝度信号をCeとする。
The STEP 14 classifies the 16 small areas into three medium areas, that is, a small area including the selected focus detection point, an area around the small area, and a peripheral area around the small area. The average brightness of the area is calculated and output.
The average luminance signal of each middle area is A, the average luminance signal of the small area including the focus detection point, B is the average luminance signal of the surrounding middle area, and C is the peripheral luminance signal of the surrounding middle area.
It shall be output as a. Further, the weighted peripheral luminance signal determined by the attitude difference photometric correction subroutine in STEP 12 is designated as Ce.

【0031】STEP13によって左端の測距点(S
A)が選択された場合(AFSW=FA)は、各中領域
の平均輝度信号A,B,Ca,Ceを次式に基づいて出
力する。ここでSCは、STEP12で決まる値であ
る。
According to STEP 13, the leftmost distance measuring point (S
When A) is selected (AFSW = FA), the average luminance signals A, B, Ca, Ce of each middle area are output based on the following equation. Here, SC is a value determined in STEP12.

【0032】A=V3 B=(V1+V8+V9)/3 Ca=(V0+V2+V4+V5+V6+V7+V10+V11 +3(V12+V13+V14+V15))/20 Ce=(V0+V2+V4+V5+V6+V7+V10+V11 +SC)/20 STEP13によって左端から2番目の測距点(SB)
が選択された場合(AFSW=FB)は、各中領域の平
均輝度信号A,B,Ca,Ceを次式に基づいて出力す
る。ここでSCは、STEP12で決まる値である。
A = V3 B = (V1 + V8 + V9) / 3 Ca = (V0 + V2 + V4 + V5 + V6 + V7 + V10 + V11 + 3 (V12 + V13 + V14 + V15)) / 20 Ce = (V0 + V2 + V4 + V5 + V6 + V7 + V10 + S10 + V10 + S10 + V10 + V10 + V10 + V20)
When is selected (AFSW = FB), the average luminance signals A, B, Ca, Ce of each middle area are output based on the following equation. Here, SC is a value determined in STEP12.

【0033】A=V1 B=(V0+V3+V6)/3 Ca=(V2+V4+V5+V7+V8+V9+V10+V11 +3(V12+V13+V14+V15))/20 Ce=(V2+V4+V5+V7+V8+V9+V10+V11 +SC)/20 STEP13によって中央の測距点(SC)が選択され
た場合(AFSW=FC)は、各中領域の平均輝度信号
A,B,Ca,Ceを次式に基づいて出力する。ここで
SCは、STEP12で決まる値である。
A = V1 B = (V0 + V3 + V6) / 3 Ca = (V2 + V4 + V5 + V7 + V8 + V9 + V10 + V11 + 3 (V12 + V13 + V14 + V15)) / 20 Ce = (V2 + V4 + V5 + V7 + V8 + V9 + V10 + S10 / V10 + V9 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V20) FC) outputs the average luminance signals A, B, Ca, Ce of each middle area based on the following equation. Here, SC is a value determined in STEP12.

【0034】A=V0 B=(V1+V2+V5)/3 Ca=(V3+V4+V6+V7+V8+V9+V10+V11 +3(V12+V13+V14+V15))/20 Ce=(V3+V4+V6+V7+V8+V9+V10+V11 +SC)/20 STEP13によって右端から2番目の測距点(SD)
が選択された場合(AFSW=FD)は、各中領域の平
均輝度信号A,B,Ca,Ceを次式に基づいて出力す
る。ここでSCは、STEP12で決まる値である。
A = V0 B = (V1 + V2 + V5) / 3 Ca = (V3 + V4 + V6 + V7 + V8 + V9 + V10 + V11 + 3 (V12 + V13 + V14 + V15)) / 20 Ce = (V3 + V4 + V6 + V7 + V8 + V9 + V10 + V10 + V10 + V10 + V10 + V20)
When is selected (AFSW = FD), the average luminance signals A, B, Ca, Ce of each middle area are output based on the following equation. Here, SC is a value determined in STEP12.

【0035】A=V2 B=(V0+V4+V7)/3 Ca=(V1+V3+V5+V6+V8+V9+V10+V11 +3(V12+V13+V14+V15))/20 Ce=(V1+V3+V5+V6+V8+V9+V10+V11 +SC)/20 STEP13によって右端の測距点(SE)が選択され
た場合(AFSW=FE)は、各中領域の平均輝度信号
A,B,Ca,Ceを次式に基づいて出力する。ここで
SCは、STEP12で決まる値である。
A = V2 B = (V0 + V4 + V7) / 3 Ca = (V1 + V3 + V5 + V6 + V8 + V9 + V10 + V11 + 3 (V12 + V13 + V14 + V15)) / 20 Ce = (V1 + V3 + V5 + V6 + V8 + V9 + V10 + C10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V10 + V20 FE) outputs the average luminance signals A, B, Ca, Ce of each middle area based on the following equation. Here, SC is a value determined in STEP12.

【0036】A=V4 B=(V2+V10+V11)/3 Ca=(V0+V1+V3+V5+V6+V7+V8+V9 +3(V12+V13+V14+V15))/20 Ce=(V0+V1+V3+V5+V6+V7+V8+V9 +SC)/20 STEP15は測光モード信号MODEが、評価測光を
表わす信号であるか否かを判断する。MODE=EV
(評価測光)の場合にはSTEP16に進み、MODE
≠EVつまり、MODE=PA(スポット測光)の場合
にはSTEP19へ進む。
A = V4 B = (V2 + V10 + V11) / 3 Ca = (V0 + V1 + V3 + V5 + V6 + V7 + V8 + V9 + 3 (V12 + V13 + V14 + V15)) / 20 Ce = (V0 + V1 + V3 + V5 + V6 + V7 + V5 + V6 + V7 + C9) To judge. MODE = EV
In the case of (evaluative photometry), the process proceeds to STEP16 and MODE.
≠ EV, that is, when MODE = PA (spot photometry), the process proceeds to STEP 19.

【0037】STEP16では測光モードとして評価測
光が選択されているので、評価測光の演算を行なう。S
TEP14で求められた3つの平均輝度信号A,B,C
のすべてを用いて、略全画面の重み付け平均輝度信号E
0を次式により求める。
In STEP 16, since evaluation photometry is selected as the photometry mode, evaluation photometry is performed. S
Three average luminance signals A, B, C obtained by TEP14
By using all of the
0 is calculated by the following formula.

【0038】E0=(2A+3B+5Ce)/10 上式では3つの平均輝度信号A,B,Cを単純平均する
ことなく、A,B,C,各値に係数を乗じて平均値を求
めている。これは、焦点検出点を含む小領域の面積をS
(A)、その周囲の中領域の面積をS(B)、さらにそ
の周囲の周辺領域の面積をS(C)とした時、3つの領
域の面積比が、 S(A):S(B):S(C)=1:3:20 となるため、係数を掛けないと焦点検出付近の領域が、
極端に重視されて評価がなされてしまうのを是正するた
めのものである。なお、以後の説明では、上式のE0を
求める演算を焦点検出点重点平均測光と称する。
E0 = (2A + 3B + 5Ce) / 10 In the above equation, the average value is obtained by multiplying the three average luminance signals A, B and C by a coefficient without simply averaging them. This is the area of the small area including the focus detection point S
(A), the area of the middle region around it is S (B), and the area of the surrounding peripheral region is S (C), the area ratio of the three regions is S (A): S (B ): S (C) = 1: 3: 20, so if the coefficient is not multiplied, the area near the focus detection will be
This is to rectify the fact that the evaluation is made with extreme importance. In the following description, the calculation for obtaining E0 in the above equation is referred to as focus detection point weighted average photometry.

【0039】STEP17はSTEP14で求められた
領域の平均輝度信号A,B,Ca及びそれら平均輝度信
号の差B−A,Ca−B値を用いることによって、被写
界状況を類推し、露出補正値αを選択的に決定する補正
値演算である。
STEP 17 uses the average luminance signals A, B, Ca of the area obtained in STEP 14 and the difference B--A, Ca--B values of the average luminance signals to infer the scene situation and correct the exposure. This is a correction value calculation for selectively determining the value α.

【0040】STEP18では、前述の焦点検出点重点
平均測光E0に、補正値演算から出力される露出補正値
αを加算して自動露出補正を行い、最終的な評価測光値
Eを次式で求める。
In STEP 18, the exposure correction value α output from the correction value calculation is added to the focus detection point weighted average photometry E0 to perform automatic exposure correction, and the final evaluation photometry value E is obtained by the following equation. .

【0041】E=E0+α STEP19はSTEP15で測光モード信号がMOD
E≠EV、つまりMODE=PAの時、測光モードとし
てスポット測光が選択されているので、スポット測光の
演算を行なう。スポット測光ではSTEP14で求めら
れた選択された焦点検出点を含む小領域の平均輝度信号
Aのみを用いて、この値をそのまま測光値Eとして出力
する。即ち、次式である。
E = E0 + α In STEP19, the metering mode signal is MOD in STEP15.
When E ≠ EV, that is, MODE = PA, spot metering is selected as the metering mode, and therefore spot metering is performed. In spot photometry, only the average luminance signal A of the small area including the selected focus detection point obtained in STEP 14 is used, and this value is output as it is as the photometric value E. That is, it is the following formula.

【0042】E=A 本実施例では、焦点検出点を含む領域としては、焦点検
出点の選択に対応して、その焦点検出点を含む1つの受
光用小領域を選択する構成となっており、従って、スポ
ット測光はこの受光用小領域の輝度信号そのものとな
る。
E = A In this embodiment, as the area including the focus detection point, one small light receiving area including the focus detection point is selected in correspondence with the selection of the focus detection point. Therefore, the spot metering becomes the luminance signal itself of this small area for light reception.

【0043】STEP20ではメインルーチンへリター
ンする。
At STEP 20, the process returns to the main routine.

【0044】以上説明したように、測光値演算サブルー
チンでは測光モードとして評価測光が選択された場合に
も、スポット測光が選択された場合にも、焦点検出点の
選択に連動して測光領域に対する重点度、あるいは測光
領域の分類分けを変更して、撮影者の意志を受け入れた
適切な測光値演算を可能としている。
As described above, in the photometric value calculation subroutine, when the evaluation photometry is selected as the photometry mode or the spot photometry is selected, the focus on the photometry area is linked with the selection of the focus detection point. By changing the degree or the classification of the photometric area, it is possible to perform an appropriate photometric value calculation that accepts the will of the photographer.

【0045】図7は姿勢差測光補正サブルーチンであ
り、図8及び図9は姿勢差測光補正サブルーチンの補足
説明図である。ここで図8はカメラの姿勢状態とHVS
W出力との関係を示し、図9は図8のカメラ姿勢状態に
おいて、カメラの被写界画面を16領域に分割した小領
域に対応する測光用受光部を示したものである。
FIG. 7 is a posture difference photometric correction subroutine, and FIGS. 8 and 9 are supplementary explanatory diagrams of the posture difference photometric correction subroutine. Here, FIG. 8 shows the posture state of the camera and the HVS.
FIG. 9 shows the relationship with the W output, and FIG. 9 shows a photometric light receiving section corresponding to a small area obtained by dividing the field image of the camera into 16 areas in the camera posture state of FIG.

【0046】STEP21は姿勢検知スイッチHVSW
からカメラが地面に対し水平状態にあるという信号H、
レリーズ釦17側が天方向の縦位置の状態にあるという
信号VR、もしくはレリーズ釦17側が地面方向の縦位
置の状態にあるという信号VLという3種類の内何れか
の信号を受け取る。図8(a)がHVSW=VL時のカメ
ラ姿勢状態、同図(b)がHVSW=H時のカメラ姿勢状
態、同図(c)がHVSW=VR時のカメラ姿勢状態を表
わした概念図である。
STEP 21 is a posture detection switch HVSW
From the signal H that the camera is horizontal to the ground,
One of three types of signals, namely, a signal VR indicating that the release button 17 side is in the vertical position in the top direction or a signal VL indicating that the release button 17 side is in the vertical position in the ground direction is received. FIG. 8A is a conceptual diagram showing the camera posture state when HVSW = VL, FIG. 8B is a conceptual diagram showing the camera posture state when HVSW = H, and FIG. 8C is a conceptual diagram showing the camera posture state when HVSW = VR. is there.

【0047】STEP22はSTEP21で受け取った
HVSWの信号を判別して信号がVLであればSTEP
23に進み、信号がHであればSTEP24に進み、信
号がVHであればSTEP25に進む。
STEP 22 discriminates the HVSW signal received in STEP 21, and if the signal is VL, STEP 22
23, if the signal is H, proceed to STEP 24, and if the signal is VH, proceed to STEP 25.

【0048】STEP23では図9(a)に示すように、
HVSW=VL時においては16分割の測光用受光部の
被写界画面の地面側に対応する領域S12、S15の輝
度信号V12、V15が選択され、その平均出力VGを演算
する。
In STEP 23, as shown in FIG.
When HVSW = VL, the brightness signals V12 and V15 of the regions S12 and S15 corresponding to the ground side of the field screen of the 16-division photometric light receiving unit are selected, and the average output VG is calculated.

【0049】STEP24では図9(b)に示すように、
HVSW=VH時においては16分割の測光用受光部の
被写界画面の地面側に対応する領域S14、S15の輝
度信号V14、V15が選択され、その平均出力VGを演算
する。
In STEP 24, as shown in FIG.
When HVSW = VH, the luminance signals V14 and V15 of the regions S14 and S15 corresponding to the ground side of the field screen of the 16-division photometric light receiving unit are selected, and the average output VG is calculated.

【0050】STEP25では図9(c)に示すように、
HVSW=VR時においては16分割の測光用受光部の
被写界画面の地面側に対応する領域S13、S14の輝
度信号V13、V14が選択され、その平均出力VGを演算
する。
In STEP 25, as shown in FIG.
When HVSW = VR, the luminance signals V13 and V14 of the regions S13 and S14 corresponding to the ground side of the field screen of the 16-division photometric light receiving unit are selected, and the average output VG is calculated.

【0051】STEP26ではSTEP23で演算され
た平均出力VGとVG演算に用いられなかった領域S1
3、S14の輝度V13、V14との輝度差K1、K2をK1
=V13−VG、K2=V14−VGにて求める。
In STEP 26, the average output VG calculated in STEP 23 and the area S1 not used for VG calculation
3. Brightness difference K1 and K2 from the brightness V13 and V14 of S14 is K1
= V13-VG, K2 = V14-VG.

【0052】STEP27ではSTEP24で演算され
た平均出力VGとVG演算に用いられなかった領域S1
2、S13の輝度V12、V13との輝度差K1、K2をK1
=V12−VG、K2=V13−VGにて求める。
In STEP 27, the average output VG calculated in STEP 24 and the area S1 not used for VG calculation
2. Brightness difference K1 and K2 from brightness V12 and V13 of S13 is K1
= V12-VG, K2 = V13-VG.

【0053】STEP28ではSTEP30で演算され
た平均出力VGとVG演算に用いられなかった領域S1
2、S15の輝度V12、V15との輝度差K1、K2をK1
=V12-VG、K2=V15−VGにて求める。
In STEP 28, the average output VG calculated in STEP 30 and the area S1 not used for VG calculation
2. Brightness difference K1 and K2 from brightness V12 and V15 of S15 is K1
= V12-VG, K2 = V15-VG.

【0054】STEP29ではSTEP26で演算され
た画面天側の2つの受光部の各々の輝度と画面の地面側
2つの受光部の平均輝度との差K1,K2に基づき図7の
TABLE.1から重み付け係数x1,x2 を求める。
In STEP 29, based on the difference K1 and K2 between the brightness of each of the two light-receiving portions on the top of the screen calculated in STEP 26 and the average brightness of the two light-receiving portions on the ground side of the screen, TABLE. The weighting factors x1 and x2 are obtained from 1.

【0055】STEP30ではSTEP27で演算され
た画面天側の2つの受光部の各々の輝度と画面の地面側
2つの受光部の平均輝度との差K1,K2に基づき図7の
TABLE.1から重み付け係数x1,x2 を求める。
In STEP 30, based on the differences K1 and K2 between the luminances of the two light-receiving portions on the screen top side calculated in STEP 27 and the average luminances of the two light-receiving portions on the ground side of the screen, TABLE. The weighting factors x1 and x2 are obtained from 1.

【0056】STEP31ではSTEP28で演算され
た画面天側の2つの受光部の各々の輝度と画面の地面側
2つの受光部の平均輝度との差K1,K2に基づき図7の
TABLE.1から重み付け係数x1,x2 を求める。
In STEP 31, based on the differences K1 and K2 between the brightness of each of the two light-receiving portions on the top of the screen calculated in STEP 28 and the average brightness of the two light-receiving portions on the ground side of the screen, TABLE. The weighting factors x1 and x2 are obtained from 1.

【0057】STEP32ではSTEP29によって求
めた重み付け係数x1,x2を用いて最周辺の中領域の平
均輝度信号Cの一部であるScを次式によって求める。
In STEP 32, Sc, which is a part of the average luminance signal C in the middle region of the outermost periphery, is calculated by the following equation using the weighting coefficients x1 and x2 calculated in STEP 29.

【0058】Sc=3(x1*V13+x2*V14+(4−
x1−x2)*(V12+V15))/2 STEP33ではSTEP35によって求めた重み付け
係数x1,x2を用いて最周辺の中領域の平均輝度信号C
の一部であるScを次式によって求める。
Sc = 3 (x1 * V13 + x2 * V14 + (4-
x1-x2) * (V12 + V15)) / 2 In step 33, the average luminance signal C in the middle area of the outermost periphery is calculated using the weighting factors x1 and x2 obtained in STEP35.
Sc which is a part of is calculated by the following equation.

【0059】Sc=3(x1*V12+x2*V13+(4−
x1−x2)*(V14+V15))/2 STEP34ではSTEP36によって求めた重み付け
係数x1,x2を用いて最周辺の中領域の平均輝度信号C
の一部であるScを次式によって求める。
Sc = 3 (x1 * V12 + x2 * V13 + (4-
x1−x2) * (V14 + V15)) / 2 In step 34, the weighting factors x1 and x2 obtained in step 36 are used to calculate the average luminance signal C in the middle peripheral region.
Sc which is a part of is calculated by the following equation.

【0060】Sc=3(x1*V12+x2*V15+(4−
x1−x2)*(V13+V14))/2 STEP35は測光値演算サブルーチンへリターンす
る。
Sc = 3 (x1 * V12 + x2 * V15 + (4-
x1−x2) * (V13 + V14)) / 2 STEP 35 returns to the photometric value calculation subroutine.

【0061】上述実施例において、天側に位置する周辺
領域の個々の輝度を地面側に位置する周辺領域の平均輝
度と比較したのは、天側に位置する高輝度被写体(例え
ば、空や太陽)の影響を少なくする上で有効な考え方と
なる。ただし、他の考え方として、天側に位置する周辺
領域の輝度を基準値と比較するやり方や、多点の焦点検
出点の内で選択された焦点検出点(主被写体存在領域)
の位置する領域の輝度と比較するやり方も有効となる。
In the above-described embodiment, the individual brightness of the peripheral area located on the heaven side is compared with the average brightness of the peripheral area located on the ground side because the high-brightness object located on the heaven side (for example, the sky or the sun). ) Is effective in reducing the effect of. However, as another way of thinking, a method of comparing the brightness of the peripheral area located on the top side with a reference value, or a focus detection point selected from among a plurality of focus detection points (main subject existing area)
The method of comparing with the brightness of the area where is located is also effective.

【0062】[0062]

【発明の効果】被写界を複数の測光用小領域に分割して
輝度を検出し、カメラの姿勢状態を検出し、前記姿勢検
出の出力に基づいて、前記複数の小領域の内の特定の小
領域を選択し、前記選択手段により選択された小領域の
輝度情報に基づき、該選択された小領域の重み付けを変
化させたことにより、主被写体を重視しつつ、特定の背
景の輝度を評価することで、適正な測光値を得ることが
できる。
According to the present invention, the object scene is divided into a plurality of small areas for photometry, the brightness is detected, the attitude state of the camera is detected, and based on the output of the attitude detection, identification of the plurality of small areas is performed. By selecting the small area and changing the weighting of the selected small area on the basis of the brightness information of the small area selected by the selecting means. By evaluating, an appropriate photometric value can be obtained.

【0063】又、複数の領域を焦点検出可能とする焦点
検出手段での選択された焦点検出領域に基づき複数の測
光用小領域を分類分けし、その分類分けでの重み付け
と、姿勢検出に基づき選択された特定の領域の重み付け
とを加味して測光値を求めたので、正確な主被写体の位
置判別による主被写体重視の反映と、特定の背景の輝度
を評価した適正な測光値を得ることができる。
Further, a plurality of small areas for photometry are classified based on the focus detection areas selected by the focus detection means capable of performing focus detection on a plurality of areas, and based on weighting and posture detection in the classification. Since the photometric value was calculated by taking into consideration the weighting of the selected specific area, it is possible to obtain the proper photometric value that reflects the importance of the main subject by accurately determining the position of the main subject and evaluates the brightness of the specific background. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の測光用受光部の分割形状を表わ
す図
FIG. 1 is a diagram showing a divided shape of a photometric light receiving unit according to an embodiment of the present invention.

【図2】本発明実施例のカメラの光学系を表わす図FIG. 2 is a diagram showing an optical system of a camera according to an embodiment of the present invention.

【図3】本発明実施例の複数点焦点検出光学系の斜視図FIG. 3 is a perspective view of a multi-point focus detection optical system according to an embodiment of the present invention.

【図4】本発明実施例のカメラの回路構成を表わす図FIG. 4 is a diagram showing a circuit configuration of a camera according to an embodiment of the present invention.

【図5】本発明実施例のフローチャートFIG. 5 is a flowchart of an embodiment of the present invention.

【図6】本発明実施例のフローチャートFIG. 6 is a flowchart of an embodiment of the present invention.

【図7】本発明実施例のフローチャートFIG. 7 is a flowchart of an embodiment of the present invention.

【図8】カメラの姿勢の違いを示す説明図FIG. 8 is an explanatory diagram showing a difference in posture of a camera.

【図9】図8のカメラの姿勢に対応させた測光用領域の
状態を示す説明図
9 is an explanatory view showing a state of a photometry area corresponding to the posture of the camera shown in FIG.

【符号の説明】[Explanation of symbols]

6 測光用受光部 S1〜S15 測光用小領域 15 焦点検出用受光部 22 中央演算処理装置CPU 27 姿勢判別スイッチ6 Light receiving part for photometry S 1 to S 15 Small area for photometry 15 Focus detection light receiving part 22 Central processing unit CPU 27 Attitude determination switch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被写界を複数の測光用小領域に分割し、
分割された該小領域の輝度を検出する測光手段と、カメ
ラの姿勢状態を検出し、地面に対しカメラの撮影姿勢が
水平か、縦位置姿勢かを区別する信号を出力する姿勢検
出手段と、前記姿勢検出手段の出力に基づいて、前記複
数の小領域の内で特定の小領域を選択する選択手段と、
前記選択手段により選択された特定の小領域の輝度情報
に基づき、該特定の小領域の重み付けを変化させる輝度
補正手段を設けたことを特徴とするカメラ。
1. The field of view is divided into a plurality of photometric small areas,
A photometric means for detecting the brightness of the divided small areas; a posture detecting means for detecting the posture state of the camera and outputting a signal for discriminating whether the photographing posture of the camera is horizontal or vertical with respect to the ground; Selecting means for selecting a specific small area from among the plurality of small areas based on the output of the posture detecting means;
A camera provided with a brightness correction means for changing weighting of the specific small area based on the brightness information of the specific small area selected by the selecting means.
【請求項2】 被写界内の複数の領域を焦点検出可能に
構成された焦点検出手段と、被写界を複数の測光用小領
域に分割し、分割された該小領域の輝度を検出する測光
手段と、カメラの姿勢状態を検出し、地面に対しカメラ
の撮影姿勢が水平か、縦位置姿勢かを区別する信号を出
力する姿勢検出手段と、前記焦点検出手段での焦点検出
領域を選択する第1の選択手段と、前記姿勢検出手段の
出力に基づいて、前記複数の小領域の内で特定の小領域
を選択する第2の選択手段と、前記第2の選択手段によ
り選択された特定の小領域の輝度情報に基づき、該特定
の小領域の重み付けを変化させる輝度補正手段と、前記
第1の選択手段での選択に基づいて、複数の分類分けを
行う分類決定手段と、前記分類決定手段にて決定された
分類及び輝度補正手段の重み付け情報に基づいて、前記
複数の小領域の輝度の重み付けを変えて測光値を演算す
る演算手段を設けたことを特徴とするカメラ。
2. A focus detection unit configured to detect a focus in a plurality of areas within the object scene, and the object scene is divided into a plurality of small areas for photometry, and the brightness of the divided small areas is detected. A photometric means for detecting a posture state of the camera, and a posture detection means for detecting a posture state of the camera and outputting a signal for discriminating whether the photographing posture of the camera is horizontal or vertical with respect to the ground, and a focus detection area in the focus detection means. First selecting means for selecting, and second selecting means for selecting a specific small area from the plurality of small areas based on the output of the posture detecting means, and for selecting by the second selecting means. A brightness correction means for changing the weighting of the specific small area based on the brightness information of the specific small area; and a classification determining means for performing a plurality of classifications based on the selection by the first selecting means, Classification and brightness correction procedure determined by the classification determination means A camera provided with a calculation means for calculating a photometric value by changing the weighting of the brightness of the plurality of small areas based on the weighting information of the step.
【請求項3】 上記輝度補正手段は上記選択された特定
の小領域の輝度と他の小領域の輝度とを比較し、その差
に基づいて該特定の小領域の重み付けを変化させたこと
を特徴とする請求項1又は2記載のカメラ。
3. The brightness correction means compares the brightness of the selected specific small area with the brightness of another selected small area, and changes the weighting of the specific small area based on the difference. The camera according to claim 1 or 2, which is characterized.
JP29037292A 1992-10-28 1992-10-28 Camera Pending JPH06138513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29037292A JPH06138513A (en) 1992-10-28 1992-10-28 Camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29037292A JPH06138513A (en) 1992-10-28 1992-10-28 Camera

Publications (1)

Publication Number Publication Date
JPH06138513A true JPH06138513A (en) 1994-05-20

Family

ID=17755175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29037292A Pending JPH06138513A (en) 1992-10-28 1992-10-28 Camera

Country Status (1)

Country Link
JP (1) JPH06138513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429858B1 (en) * 1997-05-21 2004-06-16 삼성전자주식회사 Apparatus and method for adjusting focus using adaptive filter
KR20150019357A (en) * 2013-08-13 2015-02-25 삼성테크윈 주식회사 Method and apparatus of detecting posture of the camera for surveillance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429858B1 (en) * 1997-05-21 2004-06-16 삼성전자주식회사 Apparatus and method for adjusting focus using adaptive filter
KR20150019357A (en) * 2013-08-13 2015-02-25 삼성테크윈 주식회사 Method and apparatus of detecting posture of the camera for surveillance

Similar Documents

Publication Publication Date Title
EP1975695B1 (en) Focus detection device, focusing state detection method and imaging apparatus
JP4764090B2 (en) Focus detection apparatus and photographing apparatus
JP4551708B2 (en) Imaging device
JPH10311999A (en) Camera
US20020146247A1 (en) Distance-measuring apparatus and method for camera
JP5641771B2 (en) Focus detection device
US5189460A (en) Camera detecting luminance from a plurality of areas
US20020006281A1 (en) Focus detection device and distance measurement device
US5258803A (en) Camera detecting focus to plural areas and deciding flash elimanation based on the plural areas
US8676051B2 (en) Focus detection device, focus detection method, and camera
JP2001356384A (en) Photometric device
JPH06138513A (en) Camera
US5740481A (en) Exposure calculation device for camera
US8195041B2 (en) Exposure control unit and imaging apparatus
JPH03164727A (en) Focus detecting photometric device
JP4391637B2 (en) camera
JP4560159B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JPH0534757A (en) Camera
JPH04251234A (en) Display device of camera
JP3963535B2 (en) Multi-point distance measuring device
JPS6155620A (en) Automatic focusing device
JPH04251230A (en) Exposure computing device of camera
EP0440171A1 (en) Camera
JP5417032B2 (en) Camera photometric device
JP4495333B2 (en) Photometric device