JPH06138277A - Controlling-element collecting device for use in high temperature gas-cooled reactor - Google Patents

Controlling-element collecting device for use in high temperature gas-cooled reactor

Info

Publication number
JPH06138277A
JPH06138277A JP4290993A JP29099392A JPH06138277A JP H06138277 A JPH06138277 A JP H06138277A JP 4290993 A JP4290993 A JP 4290993A JP 29099392 A JP29099392 A JP 29099392A JP H06138277 A JPH06138277 A JP H06138277A
Authority
JP
Japan
Prior art keywords
control element
recovery
pipe
diameter
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4290993A
Other languages
Japanese (ja)
Other versions
JP2829204B2 (en
Inventor
Tatsumi Ikeda
達實 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4290993A priority Critical patent/JP2829204B2/en
Publication of JPH06138277A publication Critical patent/JPH06138277A/en
Application granted granted Critical
Publication of JP2829204B2 publication Critical patent/JP2829204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To enhance the reliability of collecting operations for controlling elements by preventing the controlling elements from clogging the inlet of a collecting pipe. CONSTITUTION:A controlling-element collecting device includes a recycling pipe 22b having a recycling portion 24b which sucks helium gas in a core 2 by creating negative pressure using a blower or the like and sucks and collects controlling elements 14 in a controlling-element collecting pipe 19 by means of the flow of the helium gas and a suction nozzle 23b suspended from the lower end of the collecting portion 24b, and a winch 25 installed above the collecting portion 24b to drive the collecting pipe 22b in the vertical direction, the collecting pipe 22b having an optimum bore so that the controlling elements 14 sucked do not clog it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温ガス炉用制御素子
回収装置に係り、特に制御素子が回収管入口部で閉塞す
る確率を極力少なくし、制御素子回収作業の信頼性を向
上するようにした構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control element recovery device for a high temperature gas reactor, and particularly to reduce the probability that the control element will be blocked at the recovery pipe inlet, and to improve the reliability of the control element recovery operation. It is related to the configuration.

【0002】[0002]

【従来の技術】一般に、原子炉の核反応の制御は、制御
棒駆動装置によって制御棒を炉心に対し挿抜することに
よってなされ、原子炉停止時においては制御棒は全挿入
される。この原子炉停止機構は、極めて重要であり、例
えば原子炉異常時においても確実に動作させなければな
らないため、通常の原子炉にあっては制御棒駆動装置に
よる主原子炉停止系のほかに、別系統の原子炉停止系を
併設して2重,3重の安全対策を施している。
2. Description of the Related Art Generally, a nuclear reaction of a nuclear reactor is controlled by inserting a control rod into and out of a core by a control rod driving device, and the control rod is fully inserted when the reactor is stopped. This reactor shutdown mechanism is extremely important, for example, because it must be operated reliably even when the reactor is abnormal, in a normal reactor, in addition to the main reactor shutdown system by the control rod drive device, Double- and triple-layer safety measures are implemented by installing a separate reactor shutdown system.

【0003】図3は、従来の高温ガス炉の概略構成を示
す模式的断面図である。同図において、原子炉容器1内
には炉心2が収容され、この炉心2内には減速材として
作用する黒鉛ブロックが積み重ねられ、これらの黒鉛ブ
ロック内には燃料棒3が装荷されている。さらに、原子
炉容器1内には冷却材として比熱の大きなガス、例えば
ヘリウムガスが循環されている。
FIG. 3 is a schematic sectional view showing a schematic structure of a conventional high temperature gas furnace. In the figure, a reactor core 1 contains a reactor core 2, graphite blocks acting as moderators are stacked in the reactor core 2, and fuel rods 3 are loaded in these graphite blocks. Further, a gas having a large specific heat, for example, helium gas is circulated as a coolant in the reactor vessel 1.

【0004】このヘリウムガスは、原子炉容器1の底部
に連通した入口管4から原子炉容器1内に流入し、炉心
2を通過し加熱されて高温となり、入口管4の内部に同
心的に配置され炉心2の底部に連通する出口管5を通っ
て流出する。出口管5からの高温のヘリウムガスは、熱
交換器6において外部の冷却材と熱交換した後、循環装
置7によって原子炉容器1内に再び戻される。しかし
て、熱交換器6において熱を伝達された外部の冷却材
は、図示しない循環系により所要の場所に送られ、発電
やプロセスヒート用として使用される。
This helium gas flows into the reactor vessel 1 through an inlet pipe 4 communicating with the bottom of the reactor vessel 1, passes through a core 2 and is heated to a high temperature, and concentrically inside the inlet tube 4. It flows out through an outlet pipe 5 which is arranged and communicates with the bottom of the core 2. The high-temperature helium gas from the outlet pipe 5 exchanges heat with the external coolant in the heat exchanger 6, and is then returned to the reactor vessel 1 again by the circulation device 7. Then, the external coolant to which the heat is transferred in the heat exchanger 6 is sent to a required place by a circulation system (not shown) and used for power generation or process heat.

【0005】図中、8は制御棒駆動装置を示し、この制
御棒駆動装置8は制御棒9を吊り下げるワイヤロープ10
と、このワイヤロープ10の巻き込み、繰り出しを行うド
ラム11と、このドラム11を駆動するモータ12とを具えて
おり、このモータ12によるドラム11の正転,逆転によっ
て制御棒9が炉心2に対して挿入,抜去され、炉心2の
出力の制御がなされる。
In the figure, reference numeral 8 denotes a control rod driving device, and this control rod driving device 8 suspends a control rod 9 from a wire rope 10
And a drum 11 for winding and unwinding the wire rope 10 and a motor 12 for driving the drum 11. The control rod 9 is rotated relative to the core 2 by the normal rotation and the reverse rotation of the drum 11 by the motor 12. Is inserted and removed, and the output of the core 2 is controlled.

【0006】また、制御棒駆動装置8が作動不能となっ
た場合に備えて、後備原子炉停止装置13が設置されてい
る。この後備原子炉停止装置13は、中性子吸収材を含む
制御素子14を収容し、底面に所定の圧力で破損するラプ
チャーディスク16を有するホッパ15と、原子炉を停止さ
せる必要がある異常時には図示しないセンサにより発せ
られる緊急信号により開放され、高温ガス源18からの高
温ガスをホッパ15内に送り込む弁17とを備えている。
A backup reactor shutdown device 13 is installed in case the control rod drive device 8 becomes inoperable. This backup reactor stop device 13, which accommodates the control element 14 containing the neutron absorber, has a hopper 15 having a rupture disk 16 that is damaged by a predetermined pressure on the bottom surface, and is not shown in the case of an abnormality in which the reactor needs to be stopped. It is provided with a valve 17 which is opened by an emergency signal emitted by a sensor and sends hot gas from a hot gas source 18 into the hopper 15.

【0007】一方、炉心2内のホッパ15直下の位置には
制御素子収容管19が設置され、高圧ガスの導入によりラ
プチャーディスク16が破壊されると、ホッパ15内の制御
素子14は制御素子収容管19内に落下収容され、炉心の核
反応を停止させる。
On the other hand, a control element accommodating pipe 19 is installed at a position directly below the hopper 15 in the core 2, and when the rupture disk 16 is destroyed by the introduction of high-pressure gas, the control element 14 in the hopper 15 accommodates the control element. It is dropped and stored in the tube 19, and the nuclear reaction of the core is stopped.

【0008】図中、20はスタンドパイプを示し、原子炉
容器1上面から複数本突出している。制御棒駆動装置8
および後備原子炉停止装置13は、このスタンドパイプ20
内に設置される。上記した制御素子14は、例えばボロン
カーバイド(B4 C)等の中性子吸収体を直径13mm、軸
長13mmの円柱状のペレットとしたものが使用される。
In the figure, reference numeral 20 denotes a stand pipe, and a plurality of stand pipes are projected from the upper surface of the reactor vessel 1. Control rod drive device 8
And the backup reactor shutdown device 13 is
It is installed inside. For the control element 14, the neutron absorber such as boron carbide (B 4 C) made into a cylindrical pellet having a diameter of 13 mm and an axial length of 13 mm is used.

【0009】なお、制御棒駆動装置8および後備原子炉
停止装置13は、実際にはそれぞれ複数箇所設置されてい
るが、図2においては簡単化のため1基のみとして図示
してある。
Although the control rod drive device 8 and the backup reactor shutdown device 13 are actually installed at a plurality of locations, only one is shown in FIG. 2 for simplification.

【0010】以上のように構成された高温ガス炉におい
て、後備原子炉停止装置13を作動させた場合には、制御
素子14が制御素子収容管19内に投下収容されているの
で、原子炉を再起動するためにはこれを回収することが
必要となる。
In the high temperature gas reactor constructed as described above, when the backup reactor shutdown device 13 is operated, the control element 14 is dropped and housed in the control element housing pipe 19. It is necessary to collect this in order to restart.

【0011】そこで、その回収操作について図4を参照
して説明する。なお、図3と同一部分には同一符号を付
している。すなわち、図4は、従来の制御素子回収装置
21Aの構成,作動を説明するための模式的断面図であ
る。同図において、制御素子回収装置21Aは、原子炉容
器1のスタンドパイプ20に取付けられ、ブロワー(図示
しない)等によって負圧を形成して炉心2内のヘリウム
ガスを吸引し、その流れに乗せて制御素子収容管19内の
制御素子14を吸引回収する回収部24aと、この回収部24
a下端から垂下され下端に吸込みノズル23aを備えた回
収管22aと、回収部24a上方に設置され回収管22aを上
下方向に駆動する巻揚機25とを備えた構成としている。
Therefore, the recovery operation will be described with reference to FIG. The same parts as those in FIG. 3 are designated by the same reference numerals. That is, FIG. 4 shows a conventional control element recovery device.
It is a typical sectional view for explaining composition and operation of 21A. In the figure, the control element recovery device 21A is attached to the stand pipe 20 of the reactor vessel 1, forms a negative pressure by a blower (not shown) or the like, sucks the helium gas in the core 2, and puts it on the flow. And a collecting section 24a for sucking and collecting the control element 14 in the control element housing tube 19 and the collecting section 24a.
The collecting pipe 22a has a suction nozzle 23a at the lower end and a hoist 25 installed above the collecting portion 24a to drive the collecting pipe 22a in the vertical direction.

【0012】以上のように構成された制御素子回収装置
21Aにおいて、制御素子14の回収が進行すると制御素子
収容管19内の制御素子14の量が減少し、吸込みノズル23
aと制御素子堆積部の上面との距離が大きくなって吸込
みが悪くなるので、巻揚機25を作動させて制御素子堆積
部の上面の低下に応じて回収管22aを下降させ、吸込み
効率の低下を防ぐようにしている。
Control element recovery device configured as described above
In 21A, as the recovery of the control element 14 progresses, the amount of the control element 14 in the control element housing pipe 19 decreases, and the suction nozzle 23
Since the distance between a and the upper surface of the control element deposition portion becomes large and suction becomes poor, the hoisting machine 25 is operated and the recovery pipe 22a is lowered in accordance with the lowering of the upper surface of the control element deposition portion to reduce suction efficiency. I try to prevent the decline.

【0013】次に、回収原理について説明する。ブロワ
ー(図示しない)を起動し、回収部28a内を減圧する
と、制御素子収容管19内の回収用ガスとしてのヘリウム
ガスが回収管22aを介して吸引され、そのヘリウムガス
の流れに伴送された制御素子14が回収管22aを上方へ流
れ、吐出口(図示しない)から吐出され、回収部24a内
に回収される。
Next, the recovery principle will be described. When a blower (not shown) is activated to reduce the pressure in the recovery unit 28a, the helium gas as the recovery gas in the control element housing pipe 19 is sucked through the recovery pipe 22a and is accompanied by the flow of the helium gas. The control element 14 flows upward through the collecting pipe 22a, is discharged from a discharge port (not shown), and is collected in the collecting section 24a.

【0014】このとき制御素子回収装置21Aのブロワー
(図示しない)によって吸引されるヘリウムガスが回収
管22a内を流速uで流れる場合に、制御素子14がヘリウ
ムガスによって受ける抗力Dは、下記(1) 式で表わされ
る。 D=CD ・S・ρ・u2 /2 …(1) ここで、CD は抵抗係数、Sは流路直角断面への制御素
子14の投影面積、ρはヘリウムガスの密度を表わす。
At this time, when the helium gas sucked by the blower (not shown) of the control element recovery device 21A flows in the recovery pipe 22a at the flow rate u, the reaction force D received by the control element 14 by the helium gas is as follows (1) ) Is represented by a formula. D = C D · S · ρ · u 2 / 2 (1) where C D is the resistance coefficient, S is the projected area of the control element 14 on the cross section perpendicular to the flow path, and ρ is the density of helium gas.

【0015】しかして、制御素子14に対する抗力Dが、
制御素子14の自重より大きな値となったときに制御素子
14が回収管22a中に吸引される。 (1)式は、回収用ガス
としてのヘリウムガスの流速を増加させると、抗力Dも
大きくなり、制御素子14の吸引移送も容易になることを
示している。また、単一の制御素子14を浮上させ回収す
るために必要なヘリウムガス流速uは、下記 (2)式で与
えられる。
Therefore, the drag force D on the control element 14 is
When the value becomes larger than the weight of the control element 14, the control element
14 is sucked into the recovery pipe 22a. The equation (1) shows that when the flow velocity of the helium gas as the recovery gas is increased, the drag force D is also increased and the suction transfer of the control element 14 is facilitated. Further, the helium gas flow rate u required for floating and recovering the single control element 14 is given by the following equation (2).

【0016】[0016]

【数1】 ここで、Vは制御素子14の体積、gは重力加速度、ρl
は制御素子14の密度を表わす。
[Equation 1] Here, V is the volume of the control element 14, g is the gravitational acceleration, and ρ l
Represents the density of the control elements 14.

【0017】実際の回収操作を行う場合には、制御素子
14を1個ずつ吸引回収するのではなく、多数の制御素子
14を連続的に、かつ安定した状態で吸引する必要がある
ため、 (2)式で算定される流速よりも大きな流速が必要
とされる。
When the actual recovery operation is performed, the control element
A large number of control elements instead of collecting 14 by suction
Since it is necessary to suck 14 continuously and in a stable state, a flow velocity higher than that calculated by Eq. (2) is required.

【0018】[0018]

【発明が解決しようとする課題】以上説明したような原
理で制御素子は吸引回収される。ところが、場合によっ
ては、図5に示すように複数個の制御素子14が同時に吸
引されて回収管22aの入口(ノズル23a)で閉塞する恐
れがある。閉塞すればブロワーを停止して復帰させなけ
ればならない。そこで、複数個同時に吸引された場合で
も閉塞しないように予め回収管22aの口径dを充分大き
くすることも考えられる。
The control element is sucked and collected by the principle described above. However, in some cases, as shown in FIG. 5, a plurality of control elements 14 may be simultaneously sucked and blocked at the inlet (nozzle 23a) of the recovery pipe 22a. If blocked, the blower must be stopped and restored. Therefore, it is possible to preliminarily increase the diameter d of the recovery pipe 22a sufficiently so that the recovery pipe 22a will not be blocked even when a plurality of suctions are simultaneously performed.

【0019】しかしながら、上述したように制御素子14
を吸引回収するためには、浮遊速度u以上の流速を必要
とするので、回収管22aの口径dが必要以上に大き過ぎ
るとブロワーに要求される流量Qは、(π/4)d2 ×
uで得られる値以上となり、過大能力のブロワーを用い
ることとなり、経済的に不利になるのみでなく無駄なエ
ネルギーを消費することになる。また、ブロワーの外形
も大きくなり、設置するスペースも余分に必要とする等
の不具合がある。
However, as described above, the control element 14
In order to suck and recover the air, a flow velocity of the floating velocity u or more is required. Therefore, if the diameter d of the recovery pipe 22a is too large, the flow rate Q required of the blower is (π / 4) d 2 ×
If the blower is over the value obtained by u and the blower has an excessive capacity, it is not economically disadvantageous but wasteful energy is consumed. Further, there is a problem that the outer shape of the blower becomes large and extra space is required for installation.

【0020】そこで、本発明は、制御素子の閉塞もな
く、経済的に有利で、かつ回収作業の信頼性を向上した
高温ガス炉用制御素子回収装置を提供することを目的と
している。
Therefore, an object of the present invention is to provide a control element recovery device for a high temperature gas reactor, which is economically advantageous without clogging of the control element and which improves recovery operation reliability.

【0021】[0021]

【課題を解決するための手段】本発明は、上記目的を達
成するため、高温ガス炉の炉心内の制御素子収容管に充
填された制御素子の充填層に回収管の吸込口を対向配置
し、回収管に回収用ガスを流通することにより、制御素
子を回収ガスと共に吸引し回収するようにした高温ガス
炉用制御素子回収装置において、円柱形状をなす制御素
子が2個平面部が互いに接触して並び、それぞれの制御
素子の角部2箇所が内接する円の直径または3個の円柱
形状をなす制御素子の円周部が互いに密に接触した状態
の内接する円の直径のうち、何れか大きい方の直径より
も回収管口径を大きくするように構成したものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention has a suction port of a recovery pipe arranged opposite to a packed layer of control elements filled in a control element housing pipe in a core of a high temperature gas reactor. In a control element recovery device for a high temperature gas reactor in which a control gas is sucked and recovered together with the recovery gas by circulating a recovery gas through a recovery pipe, two control elements each having a cylindrical shape are in contact with each other at their plane portions. Whichever of the diameter of the circle in which the two corners of each control element are inscribed or the diameter of the circle inscribed in the state where the circumferential portions of the three cylindrical control elements are in intimate contact with each other, The diameter of the recovery pipe is larger than the larger diameter.

【0022】[0022]

【作用】上記したように回収管口径の最低限界を定めた
のは、実験的結果と理論的閉塞パターンとを比較検討し
てなされたものである。すなわち、回収管口径をパラメ
ータとし、制御素子の寸法形状を実施例に示すように直
径13mm,長さ13mmとしたものを一例として用いて回収実
験を実施した結果と、理論的閉塞パターンを作図で求め
た結果を比較して設定したものである。実験結果によれ
ば、回収管口径28mm以下では閉塞し、30mm以上では回収
可能であった。
The minimum limit of the diameter of the recovery pipe is set as described above by comparing the experimental results with the theoretical closing pattern. That is, using the diameter of the recovery pipe as a parameter, the size and shape of the control element having a diameter of 13 mm and a length of 13 mm as shown in the examples were used as an example, and the results of a recovery experiment were performed and a theoretical blockage pattern was plotted. It is set by comparing the obtained results. According to the experimental results, it was blocked when the diameter of the recovery pipe was 28 mm or less, and was recoverable when the diameter was 30 mm or more.

【0023】理論的閉塞パターンによれば、制御素子が
3個並んだ場合の内接する円の直径は閉塞パターンK
(表2に示す)以外は30mmを越える。4個以上並んだ場
合は全て30mmを越える。2個並んだ場合は、内接する円
の直径は30mmを越える場合もあるが、この条件は不安定
な状態にあり極めて低い確率と言える。実験結果で28mm
以下では閉塞し30mm以上では回収が可能であった実験結
果から28mm以上30mm未満の閉塞パターンは、2個の場合
で閉塞パターンC,3個の場合で閉塞パターンKがあ
る。すなわち、閉塞パターンC(表2に示す)とは、制
御素子2個が平面部が互いに接触して並び、それぞれの
制御素子の角部2箇所が内接する状態であり、閉塞パタ
ーンKは、3個の制御素子の円周部が互いに密に接触し
た状態である。この2つの閉塞パターンの内接する円の
うち大きい方の直径より回収管口径が大きければ閉塞す
る確率は極めて低いと言える。したがって、この条件で
回収管口径を設定すれば、最適な能力のブロワーを選定
することができ、かつ制御素子の閉塞もなく、経済的に
有利で信頼性を向上することができる。
According to the theoretical closing pattern, the diameter of the inscribed circle when three control elements are lined up is the closing pattern K.
Except for those (shown in Table 2), it exceeds 30 mm. When 4 or more are lined up, all exceed 30 mm. When two pieces are lined up, the diameter of the inscribed circle may exceed 30 mm, but this condition is unstable and is extremely low. 28 mm in experimental results
From the experimental results that the blockage occurred below and the recovery was possible at 30 mm or more, the clogging pattern of 28 mm or more and less than 30 mm was the clogging pattern C in the case of 2 and the clogging pattern K in the case of 3. That is, the closing pattern C (shown in Table 2) is a state in which two control elements are arranged such that the plane portions thereof are in contact with each other and the two corner portions of each control element are inscribed, and the closing pattern K is 3 The circumferential portions of the individual control elements are in close contact with each other. If the diameter of the recovery pipe is larger than the larger diameter of the inscribed circles of these two closing patterns, it can be said that the probability of closing is extremely low. Therefore, by setting the diameter of the recovery pipe under these conditions, it is possible to select a blower having an optimum capacity, and it is economically advantageous and reliability can be improved without blocking the control element.

【0024】[0024]

【実施例】以下、本発明の実施例を図面を参照して説明
すると、図1は、本発明の一実施例を高温ガス炉に装着
した状態を示す縦断面図である。なお、図3と同一部分
に同一符号を付し重複した説明は省略する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a state in which an embodiment of the present invention is mounted in a high temperature gas reactor. The same parts as those in FIG. 3 are designated by the same reference numerals, and the duplicated description will be omitted.

【0025】図1において、1は原子炉容器、20はスタ
ンドパイプで、21Bはこのスタンドパイプ20に取付けら
れた制御素子回収装置である。この制御素子回収装置21
Bは、上述した制御素子回収装置21Aと同様にブロワー
(図示しない)等によって負圧を形成して炉心2内のヘ
リウムガスを吸引し、その流れに乗せて制御素子回収管
19内の制御素子14を吸引回収する回収部24bと、この回
収部24bの下端から垂下され下端に吸込みノズル23bを
備えた回収管22bと、回収部24bの上方に設置され回収
管22bを上下方向に駆動する巻揚機25を備えた構成とし
ている。
In FIG. 1, 1 is a reactor vessel, 20 is a stand pipe, and 21B is a control element recovery device attached to this stand pipe 20. This control element recovery device 21
Similarly to the control element recovery device 21A described above, B is a negative pressure formed by a blower (not shown) or the like to suck the helium gas in the core 2, and put it on the flow to control element recovery pipe.
A collecting portion 24b for sucking and collecting the control element 14 in the collecting pipe 19, a collecting pipe 22b having a suction nozzle 23b hanging from the lower end of the collecting portion 24b, and a collecting pipe 22b installed above the collecting portion 24b. It is configured to include a hoisting machine 25 that is driven in the direction.

【0026】しかして、回収管22bは、その口径dを表
1および表2に表す実験結果により選択される。そこ
で、表1および表2について説明する。まず、表1は、
制御素子寸法形状が直径13mm,長さ13mmの制御素子を用
いて回収管口径をパラメータにした回収実験結果を示
す。
Therefore, the recovery pipe 22b is selected based on the experimental results whose diameter d is shown in Tables 1 and 2. Therefore, Table 1 and Table 2 will be described. First, Table 1 shows
The control element dimensions are 13 mm in diameter and 13 mm in length, and the results of recovery experiments using the recovery pipe diameter as a parameter are shown below.

【0027】[0027]

【表1】 これから、回収管口径dが28mm以下では閉塞し、30mm以
上では回収可能であったことが分かる。次に、表2は、
理論的閉塞パターンの一例として、直径13mm,長さ13mm
の制御素子の場合を作図して求めた内接円直径を示す。
[Table 1] From this, it can be seen that when the diameter d of the recovery pipe is 28 mm or less, it is blocked and when the diameter d is 30 mm or more, the recovery is possible. Next, Table 2 shows
As an example of theoretical blockage pattern, diameter 13mm, length 13mm
The inscribed circle diameter obtained by plotting the case of the control element is shown.

【0028】[0028]

【表2】 [Table 2]

【0029】この表2によれば、理論的閉塞パターンの
うち制御素子4個以上は全て内接円直径が30mmを越えて
いる。3個の場合は、閉塞パターンK以外は30mmを越え
ている。2個の場合は、30mm以上もある。そこで、表1
に示す実験結果と比較すると、実験結果によれば回収管
口径が30mm以上では回収可能であったことから4個以上
が同時に吸引される確率は極めて少ないと言える。ま
た、3個の場合も閉塞パターンKを除けば、同時に吸引
される確率も極めて少ないと言える。さらに、2個の場
合は、内接円直径が30mmを越える場合もあるが、表1に
示す実験結果および閉塞パターン図から2個の場合で内
接円が30mmを越える閉塞パターンは不安定な状態でもあ
り極めて少ない確率で存在する閉塞パターンと言える。
According to Table 2, in the theoretical closing pattern, the inscribed circle diameter of all four or more control elements exceeds 30 mm. In the case of three pieces, it exceeds 30 mm except for the closing pattern K. In the case of two, it is 30 mm or more. Therefore, Table 1
Compared with the experimental results shown in (1), according to the experimental results, it was possible to collect four or more pipes at the same time because it was possible to collect when the diameter of the collection pipe was 30 mm or more. Further, even in the case of three, except for the blockage pattern K, it can be said that the probability of simultaneous suction is extremely small. Further, in the case of two pieces, the inscribed circle diameter may exceed 30 mm, but from the experimental results and the closing pattern diagram shown in Table 1, the closing pattern in which the inscribed circle exceeds 30 mm is unstable in the case of two pieces. It can be said that it is a state and is a blockage pattern that exists with an extremely low probability.

【0030】したがって、回収管口径dの最低限界は、
閉塞パターンCおよび閉塞パターンKの状態の内接円直
径のうち大きい方の内接円直径より大きくすれば、制御
素子の閉塞することは無い。すなわち、閉塞パターンC
は、制御素子の2個が平らな面で互いに接触して並び、
それぞれの制御素子の角部2箇所が内接する状態であ
り、閉塞パターンKは、3個の制御素子の円周部が互い
に密に接触した状態である。
Therefore, the minimum limit of the diameter d of the recovery pipe is
If the diameter of the inscribed circle in the states of the obstruction pattern C and the obstruction pattern K is larger than the larger inscribed circle diameter, the control element is not obstructed. That is, the closing pattern C
Is the two control elements lined up in contact with each other on a flat surface,
The two corner portions of each control element are inscribed, and the closing pattern K is a state where the circumferential portions of the three control elements are in close contact with each other.

【0031】例えば直径13mm,長さ13mmの円柱形状の制
御素子の場合は、前者の内接円直径が29.1mm,後者の場
合が28mmとなり、回収管口径dが29.1mmを越えれば閉塞
は無いことになる。逆に、回収管口径dを29mm以下にす
れば、制御素子が閉塞する頻度が著しく高くなり、その
都度ブロワーを停止して回復させねばならず回収作業効
率が著しく低下する。
For example, in the case of a cylindrical control element having a diameter of 13 mm and a length of 13 mm, the former inscribed circle diameter is 29.1 mm and the latter is 28 mm, and there is no blockage if the recovery pipe diameter d exceeds 29.1 mm. It will be. On the other hand, if the diameter d of the recovery pipe is set to 29 mm or less, the frequency of closing the control element becomes extremely high, and the blower must be stopped and recovered each time, and the recovery work efficiency is significantly reduced.

【0032】一方、回収管口径が大きくなり過ぎると、
流量増加になりブロワー能力を超えて回収不可能になる
恐れがある。例えば、高温工学試験研究炉(HTTR)
の場合を例に取り、ブロワーの定格予想運転点を示すと
図2のようになる。同図によれば、回収管口径が49mmを
超えると運転点がブロワー性能の範囲外となり回収不可
能となる。したがって、制御素子寸法に対して的確な回
収管口径を設定することは有意義である。
On the other hand, if the diameter of the recovery pipe becomes too large,
There is a risk that the flow rate will increase and the blower capacity will be exceeded, making recovery impossible. For example, High Temperature Engineering Test Reactor (HTTR)
Taking the above case as an example, the blower rated operating point is shown in Fig. 2. According to this figure, if the diameter of the recovery pipe exceeds 49 mm, the operating point will be outside the range of blower performance and recovery will be impossible. Therefore, it is significant to set an appropriate recovery pipe diameter for the control element size.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、円
柱形状をなす制御素子が2個平面部が互いに接触して並
び、それぞれの制御素子の角部2箇所が内接する円の直
径または3個の円柱形状をなす制御素子の円周部が互い
に密に接触した状態の内接する円の直径のうち、何れか
大きい直径よりも回収管口径を大きくするようにしてい
るので、ブロワーの能力を最適に選定でき、回収管入口
部で制御素子が閉塞する確率がきわめて小さく、回収作
業の信頼性を向上した高温ガス炉用制御素子回収装置を
提供できる。
As described above, according to the present invention, two control elements each having a cylindrical shape are arranged with their plane portions in contact with each other, and the diameter of a circle in which two corners of each control element are inscribed or Since the diameter of the recovery pipe is set to be larger than the larger diameter of the diameters of the inscribed circles in which the circumferential portions of the three cylindrical control elements are in intimate contact with each other, the blower capacity is increased. It is possible to provide a control element recovery device for a high temperature gas reactor in which the probability that the control element is blocked at the inlet of the recovery pipe is extremely small, and the reliability of recovery work is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を適用した高温ガス炉の縦断
面図。
FIG. 1 is a vertical sectional view of a high temperature gas furnace to which an embodiment of the present invention is applied.

【図2】本発明に関連するブロワー定格予想性能と予想
運転点を示す線図。
FIG. 2 is a diagram showing expected blower rating performance and expected operating points related to the present invention.

【図3】従来の高温ガス炉の構造例を示す縦断面図。FIG. 3 is a vertical cross-sectional view showing a structural example of a conventional high temperature gas furnace.

【図4】図3に示す従来の高温ガス炉に装着された制御
素子回収装置を示す縦断面図。
4 is a vertical cross-sectional view showing a control element recovery device mounted on the conventional high temperature gas furnace shown in FIG.

【図5】図3に示す従来の高温ガス炉において制御素子
が回収管入口部を閉塞した状態を示す説明図。
5 is an explanatory view showing a state in which a control element closes an inlet portion of a recovery pipe in the conventional high temperature gas furnace shown in FIG.

【符号の説明】[Explanation of symbols]

1…原子炉容器、2…炉心、3…燃料棒、8…制御棒駆
動装置、9…制御棒、14…制御素子、19…制御素子収容
管、20…スタンドパイプ、21A,21B…制御棒回収装
置、22a,22b…回収管、23a,23b…吸込みノズル、
24a,24b…回収部。
DESCRIPTION OF SYMBOLS 1 ... Reactor vessel, 2 ... Core, 3 ... Fuel rod, 8 ... Control rod drive device, 9 ... Control rod, 14 ... Control element, 19 ... Control element accommodation pipe, 20 ... Stand pipe, 21A, 21B ... Control rod Recovery device, 22a, 22b ... Recovery pipe, 23a, 23b ... Suction nozzle,
24a, 24b ... Collection section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温ガス炉の炉心内の制御素子収容管に
充填された制御素子の充填層に回収管の吸込口を対向配
置し、前記回収管に回収用ガスを流通することにより、
前記制御素子を前記回収用ガスと共に吸引し回収するよ
うにした高温ガス炉用制御素子回収装置において、円柱
形状をなす前記制御素子が2個平面部が互いに接触して
並び、それぞれの前記制御素子の角部2箇所が内接する
円の直径または3個の円柱形状をなす前記制御素子の円
周部が互いに密に接触した状態の内接する円の直径のう
ち、何れか大きい方の直径よりも回収管口径を大きくす
るようにしたことを特徴とする高温ガス炉用制御素子回
収装置。
1. A suction port of a recovery pipe is arranged so as to oppose a packed layer of a control element filled in a control element housing pipe in a core of a high temperature gas reactor, and a recovery gas is circulated through the recovery pipe.
In a control element recovery device for a high temperature gas reactor, wherein the control element is sucked and recovered together with the recovery gas, two control elements each having a columnar shape are arranged so that their plane portions are in contact with each other, and each control element is arranged. Of the diameter of the circle inscribed at two corners of the circle or the diameter of the circle inscribed in the state where the circumferential portions of the three cylindrical control elements are in intimate contact with each other, whichever is larger. A control element recovery device for a high temperature gas reactor, characterized in that the diameter of the recovery pipe is increased.
JP4290993A 1992-10-29 1992-10-29 Control element recovery device for HTGR Expired - Fee Related JP2829204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290993A JP2829204B2 (en) 1992-10-29 1992-10-29 Control element recovery device for HTGR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290993A JP2829204B2 (en) 1992-10-29 1992-10-29 Control element recovery device for HTGR

Publications (2)

Publication Number Publication Date
JPH06138277A true JPH06138277A (en) 1994-05-20
JP2829204B2 JP2829204B2 (en) 1998-11-25

Family

ID=17763074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290993A Expired - Fee Related JP2829204B2 (en) 1992-10-29 1992-10-29 Control element recovery device for HTGR

Country Status (1)

Country Link
JP (1) JP2829204B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768866A (en) * 2012-07-16 2012-11-07 清华大学 Container negative pressure exhaust system
CN110097979A (en) * 2018-01-31 2019-08-06 中国辐射防护研究院 A kind of graphite dust capturing device for pebble bed high temperature reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768866A (en) * 2012-07-16 2012-11-07 清华大学 Container negative pressure exhaust system
CN110097979A (en) * 2018-01-31 2019-08-06 中国辐射防护研究院 A kind of graphite dust capturing device for pebble bed high temperature reactor
CN110097979B (en) * 2018-01-31 2022-11-18 中国辐射防护研究院 Graphite dust collecting device for ball bed high-temperature gas cooled reactor

Also Published As

Publication number Publication date
JP2829204B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US2961393A (en) Power breeder reactor
US4897240A (en) Nuclear reactor
US5106571A (en) Containment heat removal system
JPH0743435B2 (en) Reactor core isolation cooling system
JPS6262308B2 (en)
CN1447342A (en) Second shutdown system of absorption ball applicable to gas-cooled reactor
CN115083642A (en) High-temperature gas cooled reactor fuel element conveying system and high-temperature gas cooled reactor system
JPH06138277A (en) Controlling-element collecting device for use in high temperature gas-cooled reactor
JPS6275375A (en) Nuclear reactor and usage thereof
JPH0762717B2 (en) Liquid injection device for high temperature and high pressure vessels
JP2004502143A5 (en)
JP3151309B2 (en) Combustible gas concentration static reduction device
US4847040A (en) Nuclear power plant with a gas cooled high temperature reactor
JP2848648B2 (en) Control element recovery device for HTGR
JPH01242999A (en) Control element recovery device for high-temperature gas furnace
JPS6120891A (en) Recovery device for control element
JPH03118498A (en) Controlling element recovery device for high temperature gas reactor
JPH0827373B2 (en) Secondary reactor shutdown device for high temperature gas reactor
US6980619B2 (en) Method for automatically scramming a nuclear reactor
JPH067178B2 (en) Fuel control Autonomous safety fast breeder reactor
JPS6138593A (en) Recovery device for control element
JPH01223394A (en) Neutron absorbing element recovery device
JPH04301794A (en) Control rod and control rod guide tube and attaching and detaching method of control rod
JPH04168398A (en) Nuclear reactor monitoring device
JPH0727888A (en) Boiling suppression type reactor stopping device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees