JPH06138244A - Measuring instrument for precursory vibration of earthquake - Google Patents

Measuring instrument for precursory vibration of earthquake

Info

Publication number
JPH06138244A
JPH06138244A JP32983592A JP32983592A JPH06138244A JP H06138244 A JPH06138244 A JP H06138244A JP 32983592 A JP32983592 A JP 32983592A JP 32983592 A JP32983592 A JP 32983592A JP H06138244 A JPH06138244 A JP H06138244A
Authority
JP
Japan
Prior art keywords
earthquake
vibration
computer
precursory
low frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32983592A
Other languages
Japanese (ja)
Inventor
Minoru Fujiwara
實 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP32983592A priority Critical patent/JPH06138244A/en
Publication of JPH06138244A publication Critical patent/JPH06138244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To provide earthquake prediction by measuring and computer- processing the high and low frequency band vibrations of the precursory phenomenon of earthquakes. CONSTITUTION:A water-immersed vibration sensor 1 is installed in a pipe reaching the bedrock of a fault plane where an earthquake is supposed to occur, to detect acoustic emission(AE) from a focal region and low frequency vibration, etc., that takes place just before the earthquake as electric signals. The electric signals are amplified by means of a preamplifier 3 and then separated using a high-pass filter 4 and a low-pass filter 5 into vibration levels of each band, and transmitted through an amplifier 6 and an A/D converter 7 and those data are transferred to an output controller 8 and a computer 9, which then makes calculations for earthquake prediction. A temperature sensor 2 performs remote measurement of the temperature rise of soil, etc., due to ultrasonic heating to supplement information about inland earthquakes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は,地震の前兆現象のう
ち,高周波数帯域振動,低周波数帯域振動を計測し,コ
ンピュータ処理して,地震予知システムのひとつの分野
として情報を提供することにある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides information as one field of an earthquake prediction system by measuring high frequency band vibration and low frequency band vibration of the precursory phenomena of an earthquake and processing them by computer. is there.

【0002】[0002]

【従来の技術】地震の前兆振動,前兆地電流等をなま
ず,みみず等の動きによりとらえる方法があるが,実用
上の信頼性に乏しい。過去の幾多のデータの積み重ねに
より,地表面の観測点の移動量の測量データから,長期
的予知を行う方法があり,有力な方法として実績をあげ
ているが,この方法は短期的予知(発生日時)には,現
在のところ,直接つながって来ない。地電流(地電位)
の変化から地震前兆をとらえる方法は,特に短期的予知
(発生日時)について期待されるところが大きいが,ま
だ実用化されていない。地震前兆の電波受信による地震
予報法(特公昭63−184088)がある。本震の2
週間乃至2時間前に震源域から発する地中電波を地下5
00m〜1Kmに達する地中アンテナでとらえて,予報
する方法であり,地電流(地電位)の変化から予知する
のと類似しているが,空中雑音電波を避けて地中電波を
とらえ,震源域を推定するところがかなり前進したこと
になる。しかしながら,発生日時について,2週間〜2
時間の間では,もう少し精度が欲しい。
2. Description of the Related Art There is a method of catching a precursory vibration of an earthquake, a precursory earth current, etc. by a motion of a worm or the like, but it is not practically reliable. There is a method to make long-term prediction from the measurement data of the amount of movement of the observation points on the ground surface by accumulating many past data, and it has been proven as an effective method, but this method is short-term prediction (occurrence). (Date and time), currently, there is no direct connection. Earth current (earth potential)
The method of catching the precursory sign of an earthquake from the changes in the method is expected to be used particularly for short-term prediction (date and time of occurrence), but it has not been put to practical use yet. There is an earthquake forecasting method (Japanese Patent Publication No. 63-184088) by receiving a radio wave of an earthquake precursor. 2 of the main shock
Underground radio waves from the epicenter 5 weeks to 2 hours before
This is a method of forecasting by capturing with an underground antenna that reaches 00m to 1Km, which is similar to predicting from changes in the earth current (earth potential), but it avoids airborne noise waves and captures underground waves to This means that the estimation of the range has advanced considerably. However, regarding the date and time of occurrence, 2 weeks to 2
I want a little more accuracy during the time.

【0003】[0003]

【発明が解決しようとする課題】なまず,へび,みみ
ず,鼠,鶏等の異常な動きでは,地震前兆と,その他の
原因との区別が難しい。地震雲,所謂椋平虹,特定の樹
木の反応電位差等それぞれそれなりの実績があるが,長
期的地殻変動測定データ,地震断層パラメータ,プレー
ト移動理論等とのかかわりについて,説明がつくように
なるには,もう少し時間がかかると思われる。長期的地
震予知の方法を積み上げて行っても,発生日時の推定は
困難である。地表面において,地電流(地電位),地磁
気の変化をとらえて,予知する方法があるが,震源域,
マグニチュード,発生日時を具体的に述べることは難し
い。
First of all, it is difficult to distinguish an earthquake precursor from other causes by abnormal movements of snakes, worms, mice, chickens, etc. Seismic clouds, so-called Kurabiraiji, reaction potential difference of specific trees, etc. have their own results, but in order to be able to explain the relationship with long-term crustal deformation measurement data, seismic fault parameters, plate migration theory, etc. It will take a little longer. Even if the methods of long-term earthquake prediction are accumulated, it is difficult to estimate the date and time of occurrence. On the ground surface, there is a method of predicting by grasping changes in the earth current (earth potential) and the earth's magnetism.
It is difficult to specify the magnitude and the date and time of occurrence.

【0004】この発明は,このような従来の技術の欠点
を除去して,地震前兆を直接的に振動センサによりとら
え,コンピュータ処理して,地震を予知するための計測
装置を提供することにある。実験室において,岩石の破
壊試験をする時,振動センサを岩石の表面に張りつけ
て,アコースティックエミッション(AE)をとらえ,
破断面の位置をコンピュータにより計算する方法は既に
開発されている。スケールに依存しない破壊法則(SC
ALE INVARIANT LAW)が,地震につい
ても成立し,実験室における岩石の破壊試験の延長線上
に地震予知の方法があるのだが,相手が大きすぎて,振
動センサの取付け方に大きな課題があり,従来幾多のチ
ャレンジを退けてきたものと思われる。
The present invention eliminates the drawbacks of the prior art and provides a measuring device for directly predicting an earthquake by a vibration sensor and processing it by computer to predict an earthquake. . In the laboratory, when performing a rock destructive test, attach a vibration sensor to the surface of the rock to capture acoustic emission (AE),
A method for calculating the position of the fracture surface by a computer has already been developed. Scale-independent destruction law (SC
ALE INVARIANT LAW) was established even for earthquakes, and there is a method of earthquake prediction on the extension line of the rock fracture test in the laboratory, but the other party is too large and there is a big problem in how to install the vibration sensor. It seems that he has rejected many challenges.

【0005】振動センサーの設置に適した地理的,地質
的条件 1.海岸は波の雑音が大きく,新幹線,高速道路の近く
は車両による振動雑音が大きく工業地帯は24時間にわ
たって雑音が大きいので,なるべく避けること。 2.自然雑音,人工雑音をなるべく排除するため,なる
べく地中深くもぐること。 3.過去の大地震の結果として発生し,地表上に現れた
断層は通常複数本あるので,破断面の傾きも考慮して,
パイプ又は深井戸の位置を設定しなければならない。 4.今後大地震の発生が予想される震源域の岩盤破断面
(例えば40Km×20Km)に直接接している岩盤を
ボーリングにより探査し,この岩盤に達するパイプ又は
深井戸を設置する。砂礫層,岩塊混在層では信頼性が低
下する。 5.地下水の超音波振動に対する伝播抵抗は岩盤のそれ
に比較して,桁違いに小さいといわれており,断層部分
が水によって満たされていれば,通常考えるよりもはる
かに遠方まで超音波振動が到達することになる。地下数
十Kmからスタートした超音波振動は,局部的にそのエ
ネルギー密度により水中で,所謂キャビテーションを発
生し,遠隔地において2次的に超音波振動を発生するこ
とも考えられる。従って大きなものでは中央構造線,糸
魚川−静岡線その他各種断層ラインの近傍にパイプ又は
深井戸を設定すれば,振動センサの活躍するケースは多
い。
Geographical and geological conditions suitable for installation of vibration sensors 1. Wave noise is large on the coast, vibration noise from vehicles is large near the Shinkansen and highways, and noise is large in the industrial area for 24 hours, so avoid it if possible. 2. Go as deep as possible in the ground to eliminate natural noise and artificial noise as much as possible. 3. Since there are usually multiple faults that occurred as a result of past large earthquakes and appeared on the surface of the earth, considering the inclination of the fracture surface,
The location of pipes or deep wells must be set. 4. A rock or a deep well that reaches this rock will be installed by boring the rock that is in direct contact with the fractured surface of the rock (40 km x 20 km, for example) in the epicenter where a major earthquake is expected. The reliability decreases in the gravel layer and the rock-mixed layer. 5. It is said that the propagation resistance against ultrasonic vibration of groundwater is orders of magnitude smaller than that of rock mass, and if the fault part is filled with water, the ultrasonic vibration reaches farther than usual. It will be. It is also possible that ultrasonic vibrations starting from several tens of kilometers underground generate so-called cavitation locally in water due to its energy density, and secondarily generate ultrasonic vibrations at remote locations. Therefore, if a pipe or a deep well is set near the Chuo Tectonic Line, Itoigawa-Shizuoka Line and other various fault lines, vibration sensors will often be used in large ones.

【0006】[0006]

【課題を解決するための手段】自然現象,社会活動等に
よるノイズを除去するため,地下数十m〜数百mの深井
戸,パイプ等の内部に水を入れ,水浸式振動センサ群と
水浸式温度センサを設置する。高周波数帯域,低周波数
帯域の少なくとも2種類以上の信号をディジタル変換し
て,入出力制御を通してコンピュータ処理する。局地的
ノイズを除去し,震源域の計算をするため,他に設置し
た同種の計測装置のデータを通信回線にて接続して,利
用する。
[Means for Solving the Problems] In order to remove noise caused by natural phenomena, social activities, etc., water is put inside deep wells, pipes, etc. of several tens of meters to several hundreds of meters underground to form a water immersion type vibration sensor group. Install a water immersion type temperature sensor. At least two types of signals in the high frequency band and low frequency band are digitally converted and processed by computer through input / output control. In order to remove the local noise and calculate the epicenter area, the data of other measuring devices of the same type will be connected to the communication line and used.

【0007】振動センサ群の構成は同一水平面上に3ケ
以上とし,設置位置からの震源域の方位を計算する。更
に垂直方向にも設置して,設置位置からの震源域の俯角
を計算する。他に設置した同種の計測装置のデータと合
わせて,震源域を立体的に計算することが出来る。
The configuration of the vibration sensor group is three or more on the same horizontal plane, and the orientation of the epicenter from the installation position is calculated. Furthermore, it is installed in the vertical direction and the depression angle of the epicenter from the installation position is calculated. The epicenter area can be calculated three-dimensionally by combining with the data of other measuring instruments of the same type.

【0008】振動データはA/D変換後,生データのま
ま一旦記憶装置に保存する。生データは前処理サブシス
テムにて平均化処理をしてから,時系列処理する。地震
前兆の現れる期間を,大きく3つに分けて,加速期,持
続期,移行期とする。加速期;アコースティックエミッ
ション(AE)の発生が次第に増加してくる期間。通
常,地震の数日前から始まる。設定した閾値を越えた時
は,外部に信号を出すと共に,震源域の計算を行う。 持続期;アコースティックエミッション(AE)の発生
レベルの瞬間的ばらつきは大きいが,たとえ山型でも平
均的にはほぼ同程度のレベルを持続する。この高周波数
帯域の振動レベルと震源域の岩質によって決まる計算値
をベースとして地震のマグニチュードを計算する。特に
直下型地震の場合は加速期以降の時間経過と共に,超音
波加熱により土壌等の温度が上昇して来る。この温度は
季節変動と同等以上の大きなものであり,実用上有効な
情報となる。 移行期;通常,地震の数時間前から始まるもので,前兆
現象と言うよりも,むしろ地震の前駆現象とでも言うべ
きものであり,超音波振動の発生は減少に転じて,地鳴
り,海鳴りを含む低周波数帯域振動(低周波振動)に移
行してくる。既に地震は部分的に始まっているのであ
り,設定した閾値を越えた時は,移行期回帰曲線から地
震発生日時を計算し,外部に緊急避難信号を出すことが
可能となる。
After the A / D conversion of the vibration data, the raw data is temporarily stored in the storage device as it is. Raw data is averaged by the preprocessing subsystem and then processed in time series. The period in which the earthquake precursor appears is roughly divided into three, namely, an acceleration period, a sustaining period, and a transition period. Acceleration period: A period in which the occurrence of acoustic emission (AE) gradually increases. It usually starts a few days before the earthquake. When the set threshold is exceeded, a signal is output to the outside and the focal area is calculated. Persistence period: There is a large instantaneous variation in the level of occurrence of acoustic emission (AE), but even in the mountain type, the average level is maintained at about the same level. The magnitude of the earthquake is calculated based on the calculated value determined by the vibration level in this high frequency band and the rock quality of the epicenter. Especially in the case of a direct earthquake, the temperature of soil etc. will rise due to ultrasonic heating with the passage of time after the acceleration period. This temperature is as large as or higher than the seasonal variation, and is useful information for practical use. Transition period: It usually starts several hours before the earthquake, and should be called a precursory phenomenon of the earthquake rather than a precursory phenomenon. It shifts to low frequency vibration including low frequency vibration. Since the earthquake has already started partially, when the set threshold is exceeded, it is possible to calculate the date and time of the earthquake from the transitional regression curve and issue an emergency evacuation signal to the outside.

【0009】アコースティックエミッション(AE)の
超音波振動は地下の震源域から地上に至る間の土壌等を
超音波加熱するため,直下型地震の場合は通常の平均温
度よりも数度C程度,温度上昇するため,気温の変化,
降水量の影響を受けない深さの土壌等を継続的に遠隔自
動温度測定し,直下型地震の前兆をキャッチすることが
可能である。
Since ultrasonic vibration of acoustic emission (AE) ultrasonically heats the soil between the epicenter and the ground, in the case of an inland earthquake, the temperature is about several degrees C higher than the normal average temperature. Changes in temperature due to rising
It is possible to continuously and remotely measure the temperature of soil, etc., which is not affected by precipitation, to catch the precursor of an inland earthquake.

【0010】[0010]

【実施例】【Example】

(具体例)地下25mの岩盤に達する鋼管の内部に水を
入れ,ここに水中型PZT振動センサのセットを設置す
る。震源域から出発した振動は岩盤,地盤から鋼管杭の
綱板に伝わる。鋼板に伝わった振動は鋼管の内部の水を
介して,振動センサに正確に伝えられる。尚 超音波に
よる部品の非破壊検査には,形状,材質により水浸斜角
法,水浸透過法が採用されており,水中超音波センサは
長年の実績もあり,信頼性が高い。高帯域フィルタと低
帯域フィルタとの境界値は50KHzとする。測定デー
タの前処理として時間平均を求めるが,10秒,1分,
15分,1時間の4つの平均値を計算する。測定データ
の保存期間としては,平常の時は,生データは48時
間,平均値は1週間とし,それを超過したデータは自動
的にクリアする。尚 閾値を超えている時はコンピュー
タ用カセットテープにデータを保存し,外部からのアク
セスに答えられるようにしておく。
(Specific example) Water is put inside a steel pipe reaching 25 m underground and a set of underwater PZT vibration sensors is installed here. Vibrations originating from the epicenter are transmitted from the rock and ground to the steel plate of the steel pipe pile. The vibration transmitted to the steel plate is accurately transmitted to the vibration sensor via the water inside the steel pipe. For non-destructive inspection of parts by ultrasonic waves, the water immersion angle method and the water penetration method are adopted depending on the shape and material, and the underwater ultrasonic sensor has a long track record and is highly reliable. The boundary value between the high band filter and the low band filter is 50 KHz. The time average is calculated as the preprocessing of the measurement data, but 10 seconds, 1 minute,
Calculate four average values for 15 minutes and 1 hour. As for the storage period of measurement data, in normal times, raw data is 48 hours, the average value is 1 week, and the data exceeding it is automatically cleared. If the threshold is exceeded, the data is stored on the computer cassette tape so that it can be accessed from the outside.

【0011】[0011]

【発明の効果】この発明は,震源域より数日前から発す
る高周波数帯域振動(超音波振動),地震の直前に発生
する低周波数帯域振動(可聴音波振動,さらに低周波振
動)を直接的に計測し,コンピュータ処理することを特
徴とする。この特徴を活かすことにより,従来困難とさ
れていた地震の短期的予知を可能とし,避難に必要な警
報を高い確率で出すことが可能となり,人々の生命,財
産を守るのに役立つ。
EFFECT OF THE INVENTION The present invention directly applies high frequency band vibration (ultrasonic vibration) that occurs several days before the epicenter and low frequency band vibration (audible sound wave vibration and further low frequency vibration) that occurs immediately before an earthquake. Characterized by measurement and computer processing. By making use of this feature, it becomes possible to predict earthquakes, which were previously considered difficult, in a short period of time, and it is possible to issue a warning necessary for evacuation with a high probability, which is useful for protecting people's lives and property.

【図面の簡単な説明】[Brief description of drawings]

【図1】この図は,振動センサ,フィルタ,A/D変換
器,コンプピュータ等の接続方法を示す。
FIG. 1 shows a connection method of a vibration sensor, a filter, an A / D converter, a computer and the like.

【図2】この図は,振動センサからの信号を処理するシ
ステムを示す。
FIG. 2 shows a system for processing signals from vibration sensors.

【図3】この図は,地震前兆振動の時系列変化の特徴を
示す。
[FIG. 3] This figure shows the characteristics of time-series changes of earthquake precursory vibrations.

【符号の説明】[Explanation of symbols]

1 :振動センサ 2 :温度センサ 3 :プリアンプ 4 :高帯域フィルタ 5 :低帯域フィルタ 6 :アンプ 7 :A/D変換器 8 :入出力制御 9 :コンピュータ 10 :モデム 11 :通信回路 1: Vibration sensor 2: Temperature sensor 3: Preamplifier 4: High band filter 5: Low band filter 6: Amplifier 7: A / D converter 8: Input / output control 9: Computer 10: Modem 11: Communication circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】地震前兆として部分的岩石破壊により発生
するアコースティックエミッション(AE)の超音波振
動,更に地震直前の地鳴り,海鳴りのような可聴音振動
を含む各種振動をとらえ,これらのデータをコンピュー
タ処理して.地震を予知する計測装置
1. An ultrasonic wave of acoustic emission (AE) generated by partial rock destruction as an earthquake precursor, and various vibrations including audible vibrations such as ground noise and sea noise immediately before the earthquake are captured, and these data are recorded by a computer. Process it. Measuring device for predicting earthquakes
JP32983592A 1992-10-27 1992-10-27 Measuring instrument for precursory vibration of earthquake Pending JPH06138244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32983592A JPH06138244A (en) 1992-10-27 1992-10-27 Measuring instrument for precursory vibration of earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32983592A JPH06138244A (en) 1992-10-27 1992-10-27 Measuring instrument for precursory vibration of earthquake

Publications (1)

Publication Number Publication Date
JPH06138244A true JPH06138244A (en) 1994-05-20

Family

ID=18225765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32983592A Pending JPH06138244A (en) 1992-10-27 1992-10-27 Measuring instrument for precursory vibration of earthquake

Country Status (1)

Country Link
JP (1) JPH06138244A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395749B1 (en) * 2000-04-04 2003-08-27 한국가스공사연구개발원 Sensing device of earthquake wave
JP5161387B1 (en) * 2012-06-26 2013-03-13 正廣 嶋田 Short-distance direct earthquake prediction system, short-distance direct earthquake prediction method and short-distance direct earthquake measurement device
JP2015203693A (en) * 2014-04-12 2015-11-16 惠藏 多田 Earthquake prediction method and earthquake prediction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395749B1 (en) * 2000-04-04 2003-08-27 한국가스공사연구개발원 Sensing device of earthquake wave
JP5161387B1 (en) * 2012-06-26 2013-03-13 正廣 嶋田 Short-distance direct earthquake prediction system, short-distance direct earthquake prediction method and short-distance direct earthquake measurement device
JP2015203693A (en) * 2014-04-12 2015-11-16 惠藏 多田 Earthquake prediction method and earthquake prediction device

Similar Documents

Publication Publication Date Title
Rabinovich et al. Deep-ocean measurements of tsunami waves
US4128011A (en) Investigation of the soundness of structures
Dybing et al. Characteristics and spatial variability of wind noise on near‐surface broadband seismometers
WO2010086584A2 (en) Apparatus and method for monitoring soil slope displacement rate by detecting acoustic emissions
Liu et al. Monitoring and recognition of debris flow infrasonic signals
NO341717B1 (en) Stacking of seismic noise data to analyze microseismic events
Kumar et al. Earthquake genesis and earthquake early warning systems: challenges and a way forward
De la Cruz-Reyna et al. Precursory seismicity of the 1994 eruption of Popocatépetl Volcano, Central Mexico
Butcher et al. Evaluating rock mass disturbance within open-pit excavations using seismic methods: A case study from the Hinkley Point C nuclear power station
HU192375B (en) Method for forecasting or detecting earthquakes or artificial earthquakes, as well as for preventive protecting establishments
JPH06138244A (en) Measuring instrument for precursory vibration of earthquake
Voulgaris et al. The in situ passive acoustic measurement of shingle movement under waves and currents: instrument (TOSCA) development and preliminary results
Rabinovich Tsunami observations in the open ocean
EP2965124A1 (en) A system and method for evaluating a dam state
Vassallo et al. A comparison of sea-floor and on-land seismic ambient noise in the Campi Flegrei caldera, southern Italy
Osler et al. Seismo-acoustic determination of the shear-wave speed of surficial clay and silt sediments on the Scotian shelf
Yuk-Iung et al. Assessing seismic response of soft soil sites in Hong Kong using icrotremor records
Rahman et al. Rapid magnitude estimation using τC method for earthquake early warning system (Case study in Sumatra)
CN101825719A (en) Scheme for predicting earthquake by deep sonar diagnosis
Huang et al. Taiwan borehole seismometer application in earthquake early warning
Dikmen et al. Seismic monitoring system of marmaray submerged tube tunnel
KUSUMAWARDANI et al. The analysis of liquefaction phenomenon of the flexible pavement using seismic monitoring equipment
Smith et al. Listening for landslides: method, measurements and the Peace River case study
Ewusi et al. Application of Holisurface technique in MASW and HVSR surveys for site characterisation at Ewoyaa, Ghana
RU2745542C1 (en) Method for express diagnostics of the stability state of gas well columns by the method of standing waves