JPH06137813A - Laser scanning type high speed displacement measuring method and its device - Google Patents

Laser scanning type high speed displacement measuring method and its device

Info

Publication number
JPH06137813A
JPH06137813A JP4291698A JP29169892A JPH06137813A JP H06137813 A JPH06137813 A JP H06137813A JP 4291698 A JP4291698 A JP 4291698A JP 29169892 A JP29169892 A JP 29169892A JP H06137813 A JPH06137813 A JP H06137813A
Authority
JP
Japan
Prior art keywords
displacement
signal
scanning
laser
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4291698A
Other languages
Japanese (ja)
Inventor
Shuji Urabe
占部修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP4291698A priority Critical patent/JPH06137813A/en
Publication of JPH06137813A publication Critical patent/JPH06137813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To determine the change of objective time of a measurement object by exciting a viscous elastic measurement object at a fixed frequency, detecting the displacement of the fixed part of the object from the change of the strength of a scanning laser light, and reconstructing the detected displacement on the exciting signal of the measurement object taken as a time reference. CONSTITUTION:A measurement object 1 has viscous elasticity, and is fixed to a holder 3 at one end, and when its another end is excited by an actuator 2 driven by an exciting signal source 11, follows the excitation with phase lag caused by the viscous elasticity. A scanning laser light issued from an Ar laser 4 detects a detection point 7, and a detection signal issued from a photomultiplier tube 10 enters a controller 12. A synchronous signal issued from a signal source 11 also enters the controller 12 at the same time. The primary scanning of a galvanic mirror is continuously carried out, and the primary image of the object 1 and a signal issued from the signal source 11 are simultaneously taken in the controller 12 at each scanning position to compute a time when the displacement is obtained to the synchronous signal serving as a time reference for computing the dispacement of the object 1 from the laser scanning position. This process is repeated at every scanning action to determine the displacement of the object 1 speedily and precisely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生体細胞等、粘弾性を有
する測定対象に時間的に変化する外力を与えた時の変位
を高速測定できるようにしたレーザ走査型変位測定方法
および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser scanning type displacement measuring method and device capable of measuring a displacement at a high speed when an external force varying with time is applied to a viscoelastic measuring object such as a living cell. Is.

【0002】[0002]

【従来の技術】従来、粘弾性を有する測定対象、例えば
生体細胞等に時間的に変化する外力を与えると細胞内の
各部分は変化する外力に対して位相遅れをもって追従す
る。このような測定対象の変位の測定は、生体細胞等の
挙動を解明する上で重要であり、従来光学顕微鏡を用い
て何枚もの写真撮影を行い、これらを観察して変位の時
間的変化を求めることにより行われていた。
2. Description of the Related Art Conventionally, when a time-varying external force is applied to a viscoelastic measuring object, such as a living cell, each part of the cell follows the changing external force with a phase delay. Such measurement of displacement of the measurement object is important for clarifying the behavior of living cells, etc., and many photographs have been taken using a conventional optical microscope, and these changes are observed to determine the temporal change of displacement. It was done by asking.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法では1枚1枚写真撮影を行いながらの観察であるた
め、測定に非常に時間がかかると共に、連続的に変位量
を求めることは困難であり、測定精度上でも問題があっ
た。
However, in the conventional method, since the observation is performed while taking photographs one by one, it takes a very long time to measure and it is difficult to continuously obtain the displacement amount. There was also a problem in terms of measurement accuracy.

【0004】本発明は上記課題を解決するためもので、
走査レーザ光を用いて粘弾性を有する測定対象の外力に
よる変形または変位を高速、かつ連続的に高精度に測定
することができるレーザ走査型変位測定方法および測定
装置を提供することを目的とする。
The present invention is intended to solve the above problems.
An object of the present invention is to provide a laser scanning type displacement measuring method and a measuring device capable of measuring deformation or displacement of a measuring object having viscoelasticity due to an external force using a scanning laser beam at high speed and continuously with high accuracy. .

【0005】[0005]

【課題を解決するための手段】本発明のレーザ走査型高
速変位測定方法は、粘弾性測定対象を所定周期で機械的
に励振した状態で走査レーザスポットを照射し、測定対
象の所定部分による照射レーザ光の透過光あるいは反射
光の強度変化を検出し、該検出信号が得られた時の照射
レーザ光の変位により前記所定部分の変位を検出し、検
出した変位を測定対象の励振信号を時間基準として再構
築して測定対象の対時間変位を求めることを特徴とす
る。
A laser scanning high-speed displacement measuring method of the present invention irradiates a scanning laser spot in a state where a viscoelasticity measurement target is mechanically excited at a predetermined cycle and irradiates a predetermined portion of the measurement target. The change in the intensity of the transmitted or reflected light of the laser light is detected, the displacement of the predetermined portion is detected by the displacement of the irradiation laser light when the detection signal is obtained, and the detected displacement is the excitation signal of the measurement object over time. It is characterized in that it is reconstructed as a reference to obtain the displacement with time of the measurement target.

【0006】また、本発明のレーザ走査型高速変位測定
装置は、励振信号源により駆動され、粘弾性測定対象を
励振するアクチュエータと、励振信号に同期した周期で
レーザ光を走査し、測定対象にレーザ光を照射する光学
系と、測定対象からの透過光あるいは反射光の変化より
測定対象の変位信号を検出する検出器と、検出器からの
検出信号と励振信号から得られる同期信号とにより、変
位信号に対する時間基準を与えて測定対象の対時間変位
を再構築するコントローラとを備えたことを特徴とす
る。
The laser scanning high-speed displacement measuring device of the present invention is driven by an excitation signal source to scan an actuator for exciting a viscoelasticity measurement target, and a laser beam for scanning at a period synchronized with the excitation signal to measure the measurement target. An optical system for irradiating a laser beam, a detector for detecting a displacement signal of the measurement target from changes in transmitted light or reflected light from the measurement target, and a detection signal from the detector and a synchronization signal obtained from the excitation signal, And a controller for reconstructing the displacement with respect to time of the measuring object by giving a time reference to the displacement signal.

【0007】[0007]

【作用】本発明は粘弾性測定対象を所定周期で励振し、
これに同期して走査されるレーザ光を測定対象に照射
し、測定対象の注目点における走査レーザ光の透過光あ
るいは反射光の強度変化をフォトマルチプライヤで検出
し、検出タイミングにおけるレーザ光走査位置により測
定対象の注目点の変位を求め、この変位信号の対時間特
性を励振信号を時間基準として求めるようにしたもので
あり、純然と電気的処理により励振信号を時間基準とし
て、測定対象の変位を再構築することができるので、高
速かつ高精度に粘弾性測定対象の変位を求めることが可
能となる。
The present invention excites a viscoelasticity measurement object at a predetermined cycle,
The measurement target is irradiated with laser light that is scanned in synchronization with this, and the photomultiplier detects changes in the intensity of the transmitted or reflected light of the scanning laser light at the point of interest of the measurement target, and the laser light scanning position at the detection timing. The displacement of the point of interest of the measurement object is obtained by using the excitation signal as the time reference, and the displacement signal of the measurement object is obtained by purely electrical processing using the excitation signal as the time reference. Since it can be reconstructed, it becomes possible to obtain the displacement of the viscoelasticity measurement target at high speed and with high accuracy.

【0008】[0008]

【実施例】図1は本発明のレーザ走査型高速変位測定装
置の構成を示す図、図2、図3、図4は本発明の変位測
定原理を説明するための図である。図中、1は測定対
象、2はPZTアクチュエータ、3はホルダ、4はAr
レーザ、5はガルバノミラー、6は対物レンズ、7は検
出点、8は結像レンズ、9はミラー、10はフォトマル
チプライヤ、11は励振信号源、12はコントローラで
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the construction of a laser scanning high-speed displacement measuring device of the present invention, and FIGS. 2, 3 and 4 are diagrams for explaining the displacement measuring principle of the present invention. In the figure, 1 is an object to be measured, 2 is a PZT actuator, 3 is a holder, and 4 is Ar.
A laser, 5 is a galvanometer mirror, 6 is an objective lens, 7 is a detection point, 8 is an imaging lens, 9 is a mirror, 10 is a photomultiplier, 11 is an excitation signal source, and 12 is a controller.

【0009】測定対象1は、例えば生体の細胞のように
粘弾性の性質があり、一端をホルダ3で固定し、他端を
励振信号源11で駆動されるPZTアクチュエータ2で
機械的に励振した時に、測定対象1内部の特定の検出点
7はアクチュエータの変位には追従するものの、粘弾性
があるために位相遅れを生ずる。模式的にはこの検出点
の質量をm、ホルダ3とアクチュエータ2との間におい
てバネ定数k1,k2で連結されたモデルとして考える
ことができ、この時の固有振動数fは、 f=(1/2π){(k1+k2)/m}1/2 で表される。このようにアクチュエータ2で励振される
測定対象に対して、Arレーザ4からのレーザ光をガル
バノミラー5で反射させ、対物レンズ6で集光させて検
出点7に集光し、この透過光あるいは反射光を結像レン
ズ8でミラー9を介してフォトマルチプライヤ10に結
像して検出する。
The object 1 to be measured has viscoelasticity like cells of a living body, one end of which is fixed by a holder 3 and the other end of which is mechanically excited by a PZT actuator 2 driven by an excitation signal source 11. Sometimes, a specific detection point 7 inside the measurement target 1 follows the displacement of the actuator, but a phase delay occurs due to viscoelasticity. It can be schematically considered as a model in which the mass of this detection point is m, and the holder 3 and the actuator 2 are connected by the spring constants k1 and k2, and the natural frequency f at this time is f = (1 / 2π) {(k1 + k2) / m} 1/2 . As described above, the laser beam from the Ar laser 4 is reflected by the galvano mirror 5 with respect to the measurement target excited by the actuator 2, and is condensed by the objective lens 6 to be condensed at the detection point 7. The reflected light is imaged on the photomultiplier 10 via the mirror 9 by the imaging lens 8 and detected.

【0010】アクチュエータ2は、例えば鋸波あるいは
正弦波等の信号を発生する励振信号源11により励振さ
れ、Arレーザ4からの光を偏向させるガルバノミラー
5は励振信号源11からの信号と同期させてArレーザ
4からのレーザ光を走査して測定対象1に照射する。
The actuator 2 is excited by an excitation signal source 11 that generates a signal such as a sawtooth wave or a sine wave, and a galvanomirror 5 that deflects the light from the Ar laser 4 is synchronized with the signal from the excitation signal source 11. The laser light from the Ar laser 4 is scanned to irradiate the measuring object 1.

【0011】フォトマルチプライヤ10からは検出点7
によるレーザ光の透過光の変化あるいは反射光の変化と
して特定の検出点が検出され、コントローラ12の一方
の信号として取り込まれる。同時に励振信号源11から
の同期信号が時間基準信号として取り込まれている。
From the photomultiplier 10, a detection point 7
A specific detection point is detected as a change in the transmitted light of the laser light or a change in the reflected light, and is captured as one signal of the controller 12. At the same time, the synchronization signal from the excitation signal source 11 is taken in as a time reference signal.

【0012】いま、図2に示すように、測定対象1の端
点が検出点7であるとし、これに対物レンズ6を通して
レーザ光を集束させたとすると、フォトマルチプライヤ
10で検出される信号は、例えば図3(a)に示すよう
に、測定対象1側では透過光強度は減少し、測定対象1
と反対側では透過光強度は大きくなる。そこで、スレッ
ショールドレベルを設定して検出信号強度がスレッショ
ールドをレベルを横切ったことにより検出点7を検出す
る。なお、測定対象1を励振している信号に対応する同
期信号が図3(b)に示すような波形であるとき、これ
に同期してレーザ光の走査が行われているので、レーザ
スポットの走査位置は時間的に既知である。
Assuming that the end point of the object 1 to be measured is the detection point 7 and the laser light is focused through the objective lens 6 as shown in FIG. 2, the signal detected by the photomultiplier 10 is For example, as shown in FIG. 3A, the transmitted light intensity decreases on the measurement target 1 side,
On the opposite side, the transmitted light intensity increases. Therefore, the threshold level is set, and the detection point 7 is detected when the detection signal strength crosses the threshold level. When the synchronization signal corresponding to the signal exciting the measurement target 1 has a waveform as shown in FIG. 3B, the laser beam is scanned in synchronization with the synchronization signal. The scan position is known in time.

【0013】いま、時間t0において、検出信号強度が
変化し、検出点7がフォトマルチプライヤ10で検出さ
れたとすると、図3(c)に示すように時間t0に対す
る走査レーザ光のスポットの変位dは既知であるので、
これが検出点7の変位として求められる。そこで、図4
(a)、(b)に示すように、ある特定の変位y0を与
えた時、同期信号から得られる時間基準がt0であり、
特定の変位y1を与えた時の時間基準がt1であるとす
ると、図5に示すように、各時間に対応して検出点の変
位を対応させてプロットでき、順次y2、y3………と
走査を行えば、同期信号を時間基準として検出点の変位
が求められることになる。
Now, assuming that the detection signal intensity changes at time t0 and the detection point 7 is detected by the photomultiplier 10, as shown in FIG. 3 (c), the displacement d of the spot of the scanning laser light with respect to time t0. Is known, so
This is obtained as the displacement of the detection point 7. Therefore, FIG.
As shown in (a) and (b), when a specific displacement y0 is given, the time reference obtained from the synchronization signal is t0,
Assuming that the time reference when a specific displacement y1 is given is t1, as shown in FIG. 5, it is possible to plot the displacement of the detection point corresponding to each time, and sequentially plot y2, y3 .... When scanning is performed, the displacement of the detection point is obtained with the synchronization signal as a time reference.

【0014】従って、図1において、励振信号11から
得られる同期信号とフォトマルチプライヤ10から得ら
れる検出信号とをコントローラ12に取り込み、同期信
号を時間基準として測定対象の変位を再構築することが
できる。即ち、ガルバノミラーの1次元走査を連続して
行い、この時各走査位置に対して、測定対象の1次元像
と励振信号源の信号を同時にコントローラ12に取り込
み、時間基準である同期信号に対して変位が求められた
時の時間を計算し、レーザ走査位置より測定対象の変位
を求めればよい。このような演算を全ての走査について
繰り返すことにより、図5に示すような対時間変位カー
ブが得られ、粘弾性測定対象の変位を高速、かつ連続的
に高精度に求めるとこが可能となる。
Therefore, in FIG. 1, the synchronization signal obtained from the excitation signal 11 and the detection signal obtained from the photomultiplier 10 can be taken into the controller 12, and the displacement of the measuring object can be reconstructed with the synchronization signal as a time reference. it can. That is, the one-dimensional scanning of the galvanometer mirror is continuously performed, and at this time, the one-dimensional image of the measuring object and the signal of the excitation signal source are simultaneously taken into the controller 12 for each scanning position, and the synchronization signal which is the time reference The time when the displacement is obtained is calculated, and the displacement of the measurement target may be obtained from the laser scanning position. By repeating such calculation for all the scans, a displacement curve with respect to time as shown in FIG. 5 is obtained, and it becomes possible to obtain the displacement of the viscoelasticity measurement object at high speed and continuously with high accuracy.

【0015】[0015]

【発明の効果】以上のように本発明によれば、純然と電
気的処理により粘弾性測定対象の変位を求めるとこが可
能となるので、高速かつ連続的に高精度な変位測定を行
うことが可能となる。
As described above, according to the present invention, since it is possible to obtain the displacement of the viscoelasticity measurement object by purely electrical processing, it is possible to perform the displacement measurement at high speed and continuously with high accuracy. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のレーザ走査型高速変位測定装置の構
成を説明する図である。
FIG. 1 is a diagram illustrating a configuration of a laser scanning high-speed displacement measuring device of the present invention.

【図2】 本発明の変位測定原理を説明するための図で
ある。
FIG. 2 is a diagram for explaining the displacement measurement principle of the present invention.

【図3】 本発明の変位測定原理を説明するための図で
ある。
FIG. 3 is a diagram for explaining the displacement measurement principle of the present invention.

【図4】 本発明の変位測定原理を説明するための図で
ある。
FIG. 4 is a diagram for explaining the displacement measurement principle of the present invention.

【図5】 測定対象の対時間変位特性を示す図である。FIG. 5 is a diagram showing a displacement characteristic with respect to time of a measurement target.

【符号の説明】[Explanation of symbols]

1…測定対象、2…PZTアクチュエータ、3…ホル
ダ、4…Arレーザ、5…ガルバノミラー、6…対物レ
ンズ、7…検出点、8…結像レンズ、9…ミラー、10
…ホトマルチプライヤ、11…励振信号源、12…コン
トローラ。
1 ... Object to be measured, 2 ... PZT actuator, 3 ... Holder, 4 ... Ar laser, 5 ... Galvano mirror, 6 ... Objective lens, 7 ... Detection point, 8 ... Imaging lens, 9 ... Mirror, 10
... Photomultiplier, 11 ... Excitation signal source, 12 ... Controller.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粘弾性測定対象を所定周期で機械的に励
振した状態で走査レーザスポットを照射し、測定対象の
所定部分による照射レーザ光の透過光あるいは反射光の
強度変化を検出し、該検出信号が得られた時の照射レー
ザ光の変位により前記所定部分の変位を検出し、検出し
た変位を測定対象の励振信号を時間基準として再構築し
て測定対象の対時間変位を求めることを特徴とするレー
ザ走査型高速変位測定方法。
1. A viscoelasticity measurement target is irradiated with a scanning laser spot while being mechanically excited in a predetermined cycle, and a change in intensity of transmitted light or reflected light of the irradiation laser light by a predetermined portion of the measurement target is detected. The displacement of the predetermined portion is detected by the displacement of the irradiation laser light when the detection signal is obtained, and the displacement is detected with respect to time by reconstructing the detected displacement with the excitation signal of the measurement target as the time reference. Characteristic laser scanning high-speed displacement measurement method.
【請求項2】 励振信号源により駆動され、粘弾性測定
対象を励振するアクチュエータと、励振信号に同期した
周期でレーザ光を走査し、測定対象にレーザ光を照射す
る光学系と、測定対象からの透過光あるいは反射光の変
化より測定対象の変位信号を検出する検出器と、検出器
からの検出信号と励振信号から得られる同期信号とによ
り、変位信号に対する時間基準を与えて測定対象の対時
間変位を再構築するコントローラとを備えたレーザ走査
型高速変位測定装置。
2. An actuator driven by an excitation signal source to excite a viscoelasticity measurement target, an optical system for scanning a laser beam with a period synchronized with the excitation signal, and irradiating the measurement target with the laser beam, and The detector that detects the displacement signal of the measurement target from the change in the transmitted light or the reflected light and the synchronization signal obtained from the detection signal and the excitation signal from the detector give a time reference to the displacement signal and A laser scanning high-speed displacement measuring device having a controller for reconstructing temporal displacement.
JP4291698A 1992-10-29 1992-10-29 Laser scanning type high speed displacement measuring method and its device Pending JPH06137813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4291698A JPH06137813A (en) 1992-10-29 1992-10-29 Laser scanning type high speed displacement measuring method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4291698A JPH06137813A (en) 1992-10-29 1992-10-29 Laser scanning type high speed displacement measuring method and its device

Publications (1)

Publication Number Publication Date
JPH06137813A true JPH06137813A (en) 1994-05-20

Family

ID=17772247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4291698A Pending JPH06137813A (en) 1992-10-29 1992-10-29 Laser scanning type high speed displacement measuring method and its device

Country Status (1)

Country Link
JP (1) JPH06137813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248341B2 (en) * 2002-02-01 2007-07-24 Tenix Lads Corporation Pty Ltd Apparatus and method for oscillating a transmitted laser beam of light within the field of view (FOV) of a light receiving system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248341B2 (en) * 2002-02-01 2007-07-24 Tenix Lads Corporation Pty Ltd Apparatus and method for oscillating a transmitted laser beam of light within the field of view (FOV) of a light receiving system

Similar Documents

Publication Publication Date Title
WO2014103106A1 (en) Photoacoustic microscope
JP5104833B2 (en) Structure internal state measurement system and structure internal state measurement method
WO2007072706A1 (en) Scan type probe microscope
JP2000275529A (en) Scanning type laser microscope
JPH0518942A (en) Ultrasonic sound speed measuring device according to v(z) characteristic and ultrasonic microscope using the same
JPH06137813A (en) Laser scanning type high speed displacement measuring method and its device
CN116269218A (en) High-speed handheld non-contact photoelastic imaging probe device
JP3729043B2 (en) Fluorescence image detection method, DNA inspection method and apparatus
JP4104487B2 (en) Grain aspect ratio measuring apparatus and grain aspect ratio measuring method
JPH03175324A (en) Method and apparatus for reproducing and measuring seismic field by laser sonde
JP2000074622A (en) Method and instrument for displacement measurement
JP3271994B2 (en) Dimension measurement method
WO1996031772A1 (en) Method and apparatus for detecting photothermal signals
JP7261448B2 (en) ophthalmic equipment
CN117571828A (en) Multi-point three-dimensional scanning laser defect measuring system and method
JP4471713B2 (en) Method and apparatus for separating and measuring recrystallization rate and grain aspect ratio
JP7477933B2 (en) Method and system for acquiring CARS spectra
JPH0815155A (en) Method and apparatus for optical inspection
JPH056144B2 (en)
JPH1138338A (en) Sampling signal generator and scanning optical microscope
JP2024088777A (en) Method and system for acquiring CARS spectra
JPH0933490A (en) Noncontact nondestructive method and equipment for evaluating material
JPH10293010A (en) Dimension measurement method and device using 2-beam optical scanning
JP2014126400A (en) Photoacoustic microscope
JP2691267B2 (en) Sample measurement device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040130

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20040413

Free format text: JAPANESE INTERMEDIATE CODE: A02