JPH06137645A - Control method of air-conditioning system - Google Patents

Control method of air-conditioning system

Info

Publication number
JPH06137645A
JPH06137645A JP4283263A JP28326392A JPH06137645A JP H06137645 A JPH06137645 A JP H06137645A JP 4283263 A JP4283263 A JP 4283263A JP 28326392 A JP28326392 A JP 28326392A JP H06137645 A JPH06137645 A JP H06137645A
Authority
JP
Japan
Prior art keywords
control
temperature
water
value
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4283263A
Other languages
Japanese (ja)
Inventor
Toshihiro Takizawa
敏弘 滝沢
Masaru Koyake
勝 小宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP4283263A priority Critical patent/JPH06137645A/en
Publication of JPH06137645A publication Critical patent/JPH06137645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To reduce the operating sets of air-conditioning machines and effect the feedback control of water temperature smoothly by a method wherein reducing and/or increasing control zones, set respectively so as to reduce and/or increase the operating sets of air-conditioning machines by the minimum number of units of control, are set in accordance with respective temperature changes. CONSTITUTION:An offset (y) is operated by a subtractor 22 based on the objective control data S of an objective temperature setting circuit 21 and the detecting temperature Da of a water temperature detector Sw. When the offset (y) is in a maximum number control zone (N=total number) which has exceeded the muximum setting limit line (yn) of an insufficient control value, the operating sets N of a center unit is set so as to be N. As a result, the insufficient control value is reduced and the offset (y) becomes the muximum number setting limit line (yn), then, the offset (y) is brought into an insufficient control zone and the number N of operating sets is retained. Thereafter, the stationary difference is shifted into a reducing control zone and the number B of operating sets is reduced at every detections of water temperature. As a result, the reducing control zone (N=-1), an increasing control zone (N=+1) and no-change control zone (N=0) are provided across a plurality of inclined lines (b1), (b2).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水回路が互に連結され
たセンタヒ−トポンプユニットと室内用の水熱源ヒ−ト
ポンプユニットとよりなる空調システムの制御方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling an air conditioning system comprising a center heat pump unit having water circuits connected to each other and an indoor water heat source heat pump unit.

【0002】[0002]

【従来の技術】従来、この種の空調システムとして図2
に示すものが知られている。
2. Description of the Related Art Conventionally, as an air conditioning system of this type, FIG.
Those shown in are known.

【0003】同図において、HC1 ,HC2 ,…は互い
に同一の構成のセンタヒ−トポンプユニットよりなるセ
ンタユニット、AC1 ,AC2 ,…は互いに同一の構成
の端末の水熱源ヒ−トポンプユニットよりなる室内ユニ
ット、WA はセンタユニットHC1 ,HC2 ,…と室内
ユニットAC1 ,AC2 ,…間の往きの水回路、WBは
その帰りの水回路、Pは循環ポンプである。
In the figure, HC1, HC2, ... Are center units composed of center heat pump units having the same structure, and AC1, AC2, .. are indoor units composed of water heat source heat pump units having the same structure. , WA is a forward water circuit between the center units HC1, HC2, ... And the indoor units AC1, AC2, ..., WB is a return water circuit, and P is a circulation pump.

【0004】センタユニットHC1 ,HC2 ,…は四方
弁1の第1の冷媒流通口1aが圧縮機2の吐出側に、第
2の冷媒流通口1bがアキュムレ−タ3を介して圧縮機
2の吸込側に、第3の冷媒流通口1cが室外側空気熱交
換器(以下、空気熱交換器という)4の一端に、第4の
冷媒流通口1dが室内側水熱交換器(以下、水熱交換器
という)5の一端にそれぞれ連結され、また、各熱交換
器4,5間に膨脹弁6が設けられたものである。
In the center units HC1, HC2, ..., the first refrigerant flow port 1a of the four-way valve 1 is on the discharge side of the compressor 2, and the second refrigerant flow port 1b is of the compressor 2 via the accumulator 3. On the suction side, the third refrigerant circulation port 1c is on one end of the outdoor air heat exchanger (hereinafter referred to as air heat exchanger) 4, and the fourth refrigerant circulation port 1d is on the indoor side water heat exchanger (hereinafter referred to as water). A heat exchanger 5) is connected to one end of the heat exchanger 5, and an expansion valve 6 is provided between the heat exchangers 4 and 5.

【0005】室内ユニットAC1 ,AC2 ,…は、四方
弁7の第1の冷媒流通口7aが圧縮機8の吐出側に、第
2の冷媒流通口7bがアキュムレ−タ9を介して圧縮機
8の吸込側に、第3の冷媒流通口7cが室外側水熱交換
器(以下、水熱交換器という)10の一端に、第4の冷
媒流通口7dが室内側空気熱交換器(以下、空気熱交換
器という)11の一端に、また各熱交換器10,11の
他端間に膨脹弁12が設けられたものである。13は空
気熱交換器11に通風して室内に空気を循環させるファ
ンである。SR は各室内ユニットAC1 ,AC2 ,…の
空気熱交換器11に対する室内温度を検出する室内温度
検出器、14は各室内温度を制御する端末制御部であ
る。端末制御部14はファン13の運転制御等を行うと
共に、検出された室内温度を参照して、圧縮機8の運転
制御により室内ユニットによる室内温度が指定された制
御目標値に近づくようにフィ−ドバック制御する。
In the indoor units AC1, AC2, ..., The first refrigerant flow port 7a of the four-way valve 7 is on the discharge side of the compressor 8, and the second refrigerant flow port 7b is via the accumulator 9. The third refrigerant circulation port 7c is provided at one end of the outdoor water heat exchanger (hereinafter referred to as water heat exchanger) 10, and the fourth refrigerant circulation port 7d is provided at the indoor side air heat exchanger (hereinafter, referred to as An expansion valve 12 is provided at one end of an air heat exchanger 11) and between the other ends of the heat exchangers 10 and 11. Reference numeral 13 is a fan that circulates the air in the room by ventilating the air heat exchanger 11. SR is an indoor temperature detector that detects the indoor temperature of the air heat exchanger 11 of each indoor unit AC1, AC2, ..., And 14 is a terminal control unit that controls each indoor temperature. The terminal control unit 14 controls the operation of the fan 13 and the like, and refers to the detected indoor temperature to control the operation of the compressor 8 so that the indoor temperature of the indoor unit approaches a designated control target value. Dodge control.

【0006】各センタユニットHC1 ,HC2 ,…の水
熱交換器5の出口5aと各室内ユニットAC1 ,AC2
,…の水熱交換器10の入口10aとは共通の水回路
WA を介して連結され、また、水熱交換器5の入口5b
と水熱交換器10の出口10bとは共通の水回路WB を
介して連結されている。
The outlet 5a of the water heat exchanger 5 of each center unit HC1, HC2, ... And each indoor unit AC1, AC2
, Are connected to the inlet 10a of the water heat exchanger 10 via a common water circuit WA, and the inlet 5b of the water heat exchanger 5 is connected.
And the outlet 10b of the water heat exchanger 10 are connected via a common water circuit WB.

【0007】SW は水回路WA の水温をセンタユニット
HC1 ,HC2 ,…側において検出する水温検出器で、
所定の時間間隔で水温を検出する。15は水回路WA の
水温を制御する集中制御回路で、水温の設定温度Sと当
該検出水温Da との差異よりなる定常偏差y=S−Da
と、前回の検出水温Db と今回の検出水温Da との差異
よりなる温度変化量x=Db −Da とに基づいてセンタ
ユニットHC1 ,HC2 ,…の運転台数を加減して、検
出水温Da が所定の温度範囲の目標値に近づくようにフ
ィ−ドバック制御する。
SW is a water temperature detector for detecting the water temperature of the water circuit WA at the center units HC1, HC2, ...
The water temperature is detected at predetermined time intervals. Reference numeral 15 is a centralized control circuit for controlling the water temperature of the water circuit WA, which is a steady-state deviation y = S-Da due to the difference between the set temperature S of the water temperature and the detected water temperature Da.
, And the detected water temperature Da is adjusted by adjusting the number of operating center units HC1, HC2, ... Based on the temperature variation x = Db−Da which is the difference between the previously detected water temperature Db and the detected water temperature Da this time. Feedback control is performed so as to approach the target value in the temperature range.

【0008】この空調システムにて冷房運転を行なうと
きは、各圧縮機2,8の冷媒は図中実線矢印で示すよう
に循環し、センタユニットHC1 ,HC2 ,…の水熱交
換器5内の水は冷却され、室内ユニットAC1 ,AC2
,…の水熱交換器10内の水は加熱される。また、暖
房運転を行なうときは、該各圧縮機2,8の冷媒は図中
一点鎖線矢印で示すように循環し、水熱交換器5内の水
は加熱され、水熱交換器10内の水は冷却される。また
空調運転において、各水熱交換器5,10内の水は図中
破線矢印で示すように循環ポンプPにより相互に循環す
る。水回路WA の温度は、水温検出器Sw の検出水温D
a が所定の温度範囲に入るように、センタユニットHC
1 ,HC2 ,…の台数Nが制御されて水熱交換器10に
は所定の温度範囲の水が流入することとなる。そして各
室内ユニットAC1 ,AC2 ,…においては、各室内温
度検出器SR の検出温度が、それぞれの指定された温度
になるように圧縮機8が運転制御されて、指定の室内ユ
ニット室内温度に空調される。
When performing the cooling operation in this air conditioning system, the refrigerant in each of the compressors 2 and 8 circulates as shown by the solid arrows in the figure, and the water heat exchanger 5 in the center units HC1, HC2, ... Water is cooled and indoor units AC1, AC2
The water in the water heat exchanger 10 is heated. Further, when performing the heating operation, the refrigerant in each of the compressors 2 and 8 circulates as indicated by the one-dot chain line arrow in the figure, the water in the water heat exchanger 5 is heated, and the water in the water heat exchanger 10 is heated. The water is cooled. In the air conditioning operation, the water in the water heat exchangers 5 and 10 circulate with each other by the circulation pump P as indicated by the broken line arrow in the figure. The temperature of the water circuit WA is the detected water temperature D of the water temperature detector Sw.
Center unit HC so that a is within the specified temperature range.
The number N of 1, HC2, ... Is controlled and water in a predetermined temperature range flows into the water heat exchanger 10. In each of the indoor units AC1, AC2, ..., The compressor 8 is controlled so that the detected temperature of each indoor temperature detector SR becomes the specified temperature, and the air conditioner is conditioned to the specified indoor unit indoor temperature. To be done.

【0009】図3は冷房運転の場合の水温検出器Sw の
検出温度(検出水温)に基づく水温の状態とセンタユニ
ットHC1 ,HC2 ,…の運転台数との関係を示す運転
条件設定図である。
FIG. 3 is an operation condition setting diagram showing the relationship between the state of the water temperature based on the detected temperature (detected water temperature) of the water temperature detector Sw and the number of operating center units HC1, HC2, ... In the cooling operation.

【0010】同図において、横軸は上記の温度変化量x
=Db −Da 、縦軸は定常偏差y=S−Da である。水
温の設定温度Sは例えば25℃であって、冷房運転の場
合、yが−4℃以下の不足制御値のときは全台数運転
(N=全数)指定され、yが0℃以上の過剰制御値のと
きは全台数停止(N=0)指定され、xが0℃以下でy
が−1.5〜−4℃或いはxが−0.5℃以下でyが0
〜−1.5℃のときは+1台(N=+1)指定され、x
が0.5℃以上でyが0〜−4℃のときは−1台(N=
−1)指定され、その他のときは±0台(N=±0)指
定される。
In the figure, the horizontal axis represents the above temperature variation x
= Db-Da, and the vertical axis represents the steady-state deviation y = S-Da. The set temperature S of the water temperature is, for example, 25 ° C., and in the case of the cooling operation, when y is an insufficient control value of −4 ° C. or less, all the units operation (N = total number) is designated, and y is an excessive control of 0 ° C. or more. When it is a value, all units are stopped (N = 0), x is 0 ° C or less, and y
Is -1.5 to -4 ° C or x is -0.5 ° C or less and y is 0.
In the case of ~ -1.5 ° C, +1 unit (N = + 1) is designated and x
Is 0.5 ° C or higher and y is 0 to -4 ° C, -1 unit (N =
-1) Designated, and in other cases, ± 0 units (N = ± 0) are designated.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記の空
調システムにおいては、水温の条件に応じて運転台数N
は図3に矢印で示すように移行するが、Nの変更による
発停頻度を少なくするために、図3に示すようにN=±
0台指定領域を、xが所定の小さい値の範囲(0〜0.
6℃)であってyがそれぞれN=全数指定とN=0指定
との各境界線(−4℃と0℃)との間の領域に設定して
いるので、N=±0領域からN=全数指定或いはN=0
指定に移行すべくyが変化したときには該時点の発停台
数が多くなって水温の変化が大になるという問題点があ
った。
However, in the above-mentioned air conditioning system, the number of operating units N depends on the water temperature condition.
Shifts as indicated by the arrow in FIG. 3, but N = ± as shown in FIG. 3 in order to reduce the frequency of start / stop due to the change of N.
In the 0-unit designated area, x is in a predetermined small value range (0 to 0.
6 ° C.) and y is set in the region between each boundary line between N = total designation and N = 0 designation (−4 ° C. and 0 ° C.), so N = ± 0 to N = Specify all numbers or N = 0
When y changes to move to the designated state, there is a problem that the number of starting and stopping at that time increases and the change in water temperature becomes large.

【0012】本発明の目的は、センタユニットの運転台
数の変化を少なくして、水温が円滑にフィードバック制
御されるようにした空調システムの制御方法を提供する
ことにある。
It is an object of the present invention to provide a control method for an air conditioning system in which the change in the number of operating center units is reduced and the water temperature is smoothly feedback controlled.

【0013】[0013]

【課題を解決するための手段】本発明は前記問題点を解
決するために、水回路の温度を調節するセンタヒ−トポ
ンプユニットをなした複数のセンタユニットと、該水回
路に連結されて水熱交換する水熱源ヒ−トポンプユニッ
トをなした室内ユニットと、センタユニットと室内ユニ
ットとの間の水回路における水を循環させる循環ポンプ
と、所定の時間間隔で水回路の水温を検出する水温検出
器とを備え、水温の設定温度と検出水温との差異よりな
る定常偏差と前回の検出水温と今回の検出水温との差異
よりなる温度変化量とに基づいてセンタユニットの運転
台数を加減して水回路の温度をフィードバック制御する
空調システムの制御方法において、前記制御の特性が、
前記温度変化量に対してほぼ一定であって前記定常偏差
の微小値による最小数設定限界線と、前記温度変化量に
対してほぼ一定であって前記定常偏差の不足制御値によ
る最大数設定限界線と、前記最小数設定限界線と最大数
設定限界線との間の領域に限定された各傾斜線であって
前記温度変化量との比例値と前記定常偏差との和が第1
の定数よりなる第1の傾斜線と該各和が第1の定数より
大の第2の定数よりなる第2の傾斜線とが定義され該各
傾斜線は前記定常偏差の変化に対して前記温度変化量を
ほぼ0となした水温安定線との交点を有してなり、前記
定常偏差が前記最小数設定限界線を越えた過剰制御値の
領域であって運転台数を所定の最小数に設定した最小数
制御領域と、前記最大数設定限界線を越えた不足制御値
の領域であって運転台数を所定の最大数に設定した最大
数制御領域と、前記和の値が第1の定数よりも小の領域
であって運転台数を制御の最小単位数だけ増加すべく設
定した増加制御領域と、前記和の値が第2の定数よりも
大の領域であって運転台数を制御の最小単位数だけ減少
すべく設定した減少制御領域と、前記和の値が第1の定
数と第2の定数との間の値の領域であって運転台数を増
減なしに設定した不変制御領域とを設けた。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a plurality of center units, each of which is a center heat pump unit for adjusting the temperature of a water circuit, and a water heat unit connected to the water circuit. An indoor unit that has a water heat source heat pump unit to be replaced, a circulation pump that circulates water in the water circuit between the center unit and the indoor unit, and a water temperature detector that detects the water temperature of the water circuit at predetermined time intervals. Based on the steady-state deviation that is the difference between the set water temperature and the detected water temperature, and the amount of temperature change that is the difference between the previously detected water temperature and the currently detected water temperature, the number of operating center units is adjusted In a control method of an air conditioning system for feedback controlling the temperature of a circuit, the characteristics of the control are:
A minimum number setting limit line that is substantially constant with respect to the temperature change amount due to a small value of the steady-state deviation, and a maximum number setting limit line that is substantially constant with respect to the temperature change amount due to the insufficient control value of the steady-state deviation. And a slope line limited to a region between the minimum number setting limit line and the maximum number setting limit line, and a sum of a proportional value with the temperature change amount and the steady deviation is first.
A first sloped line consisting of a constant and a second sloped line consisting of a second constant whose sum is greater than the first constant, each sloped line being defined by the change of the steady-state deviation. It has an intersection with a water temperature stability line where the amount of temperature change is almost 0, and the steady-state deviation is in a region of an excessive control value that exceeds the minimum number setting limit line, and the operating number is set to a predetermined minimum number. The set minimum number control area, the shortage control value area that exceeds the maximum number setting limit line and sets the operating number to a predetermined maximum number, and the sum value is the first constant. Is a smaller area than the above, and is an increase control area set to increase the number of operating vehicles by the minimum number of units for control, and an area in which the value of the sum is larger than the second constant A reduction control region set to decrease by the number of units, and the sum value is the first constant and the second constant. A region value between provided and invariant control area set the number of operating without increase or decrease.

【0014】[0014]

【作用】本発明によれば、検出水温に基づいて、起動時
などに定常偏差が不足制御値による最大数設定限界線を
越えた最大数制御領域にあると、センタユニットの運転
台数が最大数に設定される。その結果、不足制御値が減
少して定常偏差が該最大数設定限界線以内になると、こ
のとき温度変化量は順方向制御によるものであるから不
変制御領域となり、該運転台数が保持される。定常偏差
が最大数制御領域側から最小数制御領域側に向かう過程
においては、温度変化量は順方向制御によるものである
から、不変制御領域から最小数制御領域に移行すること
はない。引き続き該過程においては減少制御領域に移行
して水温検出毎に運転台数が低減され、第2の傾斜線を
跨いで減少制御領域と不変制御領域とに交互に移動し、
或いは第1の傾斜線を跨いで増加制御領域と不変制御領
域とに交互に移動しながら、定常偏差0の近傍に制御さ
れる。そして該制御中に過剰制御になって定常偏差が最
小数設定限界線を越えると最小数制御領域に移行して運
転台数が最小数になる。その後、不足制御になって定常
偏差が最小数設定限界線を越えると、このとき温度変化
量は逆方向制御によるものであるから不変制御領域とな
り、停止状態が保持される。停止状態において定常偏差
が最小数制御領域側から最大数制御領域側に向かう過程
においては、温度変化量は逆方向制御によるものである
から、不変制御領域から最大数制御領域に移行すること
はない。以降は、前記同様に制御される。そして該制御
中に不足制御になって定常偏差が最大数設定限界線を越
えると、最大数制御領域に移行して運転台数が最大数に
なる。
According to the present invention, based on the detected water temperature, when the steady deviation exceeds the maximum number setting limit line due to the insufficient control value at the time of start-up, etc. Is set to. As a result, when the shortage control value decreases and the steady-state deviation falls within the maximum number setting limit line, the temperature change amount is in the invariable control region because it is due to the forward control, and the operating number is maintained. In the process in which the steady-state deviation goes from the maximum number control region side to the minimum number control region side, the temperature change amount is due to the forward control, and therefore the invariant control region does not shift to the minimum number control region. Subsequently, in the process, the number of operating vehicles is reduced every time the water temperature is detected by shifting to the decrease control region, and the alternate control region is alternately moved to the decrease control region and the constant control region across the second slope line,
Alternatively, it is controlled in the vicinity of the steady state deviation 0 while alternately moving to the increase control region and the invariant control region across the first slope line. When the steady deviation exceeds the minimum number setting limit line during the control and the steady deviation exceeds the minimum number setting limit line, the operation shifts to the minimum number control region and the operating number becomes the minimum number. After that, when insufficient control is performed and the steady deviation exceeds the minimum number setting limit line, the temperature change amount at this time is due to reverse direction control, and therefore the temperature is in the invariable control region, and the stopped state is maintained. In the process of steady deviation from the minimum number control region side to the maximum number control region side in the stopped state, the temperature change amount is due to the reverse direction control, so there is no transition from the constant control region to the maximum number control region. . After that, the same control as described above is performed. When the control becomes insufficient during the control and the steady deviation exceeds the maximum number setting limit line, the maximum number control region is entered and the number of operating vehicles becomes the maximum number.

【0015】[0015]

【実施例】図1は本発明の一実施例として空調システム
の水温の状態とセンタユニットの運転台数との関係を示
す運転条件設定図、図4は本発明の一構成例を示す空調
システムの制御回路のブロック図である。図1において
は図3におけると同様に冷房運転の例を示し、そして図
4の制御回路は、図2の集中制御回路15に代えて使用
されるものであり、センタユニットに対する制御回路の
要部の構成を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an operating condition setting diagram showing the relationship between the water temperature state of an air conditioning system and the number of operating center units as an embodiment of the present invention. FIG. 4 is an air conditioning system showing an example of the configuration of the present invention. It is a block diagram of a control circuit. FIG. 1 shows an example of the cooling operation as in FIG. 3, and the control circuit of FIG. 4 is used in place of the centralized control circuit 15 of FIG. 2 and is a main part of the control circuit for the center unit. Shows the configuration of.

【0016】図4において、20は運転条件設定回路
で、図1に示す温度変化量xと定常偏差yとの組合わせ
に対する台数指定に従ってセンタユニットの運転台数N
を設定する。21は目標温度設定回路で、所望の温度指
定に基づいて、水温の制御目標デ−タSを出力する。2
2は減算器で、制御目標デ−タSから水温検出器Sw の
当回の検出温度(検出水温)Da を減算して定常偏差y
=S−Da を出力する。23は温度変化量演算回路で、
前回の検出水温Db から今回の検出水温Da を減算して
温度変化量の比例値ax=a(Db −Da )(但しaは
定数であり図4においては1) を出力する。24は定
常偏差判別回路で、定常偏差yが不足制御による限界値
yU をなした最大数設定限界線y=yU を越えたとき運
転台数N=全数を指定し、過剰制御による限界値yL を
なした最小数設定限界線y=yL を越えたとき運転台数
N=0を指定し、そして該各限界線の範囲内にあるとき
は当該定常偏差yを出力する。25は図1の第1と第2
の傾斜線の傾斜設定に関わる加算器で、当該温度変化量
の比例値axと当該定常偏差yとを加算してax+yを
出力する。26は、第1の傾斜線ax+y=b1 と第2
の傾斜線ax+y=b2 とを設定すると共に運転台数N
の増減を設定する比較回路で、各比較基準値(定数)b
1 ,b2 に対して、ax+y≦b1 のときはN=+1
を、ax+y≧b2 のときはN=−1を、そしてb1 <
ax+y<b2 のときはN=±0を出力する。該各定数
b1 ,b2 は第1の定数b1 より第2の定数b2 の方が
大に設定され、そして第1と第2の傾斜線は、定常偏差
yの変化に対して温度変化量xをほぼ0となした水温安
定線SM との交点を、各限界線y=yU ,y=yL 間の
該各限界線の近傍に有するように、定数aと共に、該各
定数b1 ,b2 が設定されている。27は運転台数設定
回路で、定常偏差判別回路24と比較回路26の出力を
受けてセンタユニットの運転台数を設定する。28は圧
縮機駆動回路で、運転台数設定回路27の設定に従って
センタユニットの各圧縮機2を運転する。尚、暖房運転
の場合は、図1における各座標の数字の符号が逆にな
る。
In FIG. 4, reference numeral 20 denotes an operating condition setting circuit, which operates the number N of the center units according to the designation of the number of combinations of the temperature variation x and the steady-state deviation y shown in FIG.
To set. Reference numeral 21 is a target temperature setting circuit, which outputs control target data S of the water temperature based on a desired temperature designation. Two
Reference numeral 2 is a subtracter, which subtracts the temperature (detected water temperature) Da detected at this time by the water temperature detector Sw from the control target data S to obtain a steady-state deviation y.
= S-Da is output. 23 is a temperature change amount calculation circuit,
The detected water temperature Da of this time is subtracted from the previously detected water temperature Db to output a proportional value ax = a (Db-Da) of the temperature change amount (where a is a constant and is 1 in FIG. 4). Reference numeral 24 is a steady-state deviation discriminating circuit, in which when the steady-state deviation y exceeds the maximum number setting limit line y = yU which makes the limit value yU due to insufficient control, the operating number N = total number is specified and the limit value yL due to excess control is set. When the minimum number setting limit line y = yL is exceeded, the operating number N = 0 is designated, and when it is within the range of each limit line, the steady deviation y is output. 25 is the first and second of FIG.
In the adder relating to the inclination setting of the inclination line, the proportional value ax of the temperature change amount and the steady deviation y are added to output ax + y. 26 is the first inclined line ax + y = b1 and the second inclined line ax + y = b1
And set the slope line ax + y = b2 of
Each comparison reference value (constant) b
1 and b2, N = + 1 when ax + y≤b1
, N = −1 when ax + y ≧ b2, and b1 <
When ax + y <b2, N = ± 0 is output. The constants b1 and b2 are set such that the second constant b2 is larger than the first constant b1, and the first and second sloped lines show the temperature variation x with respect to the change of the steady deviation y. The constants a, b1 and b2 are set together with the constant a so that the intersection with the water temperature stability line SM, which is almost 0, is located near the limit lines between the limit lines y = yU and y = yL. ing. Reference numeral 27 is an operating number setting circuit, which receives the outputs of the steady deviation discriminating circuit 24 and the comparing circuit 26 and sets the operating number of the center unit. 28 is a compressor drive circuit, which operates each compressor 2 of the center unit according to the setting of the operating number setting circuit 27. In the heating operation, the signs of the numbers at each coordinate in FIG. 1 are reversed.

【0017】次に以上の構成による動作を冷房運転を例
に説明する。目標温度設定回路21による制御目標デ−
タSと水温検出器Sw の当回の検出温度(検出水温)D
a に基づいて、減算器22により定常偏差y=S−Da
が算出され、起動時などに該定常偏差yが、不足制御値
による最大数設定限界線y=yU を越えた−4℃以下の
最大数制御領域(N=全数)にあると、センタユニット
の運転台数Nが全数に設定される。その結果、不足制御
値が減少して定常偏差y=S−Da が不足制御値による
最大数設定限界線y=yU 以内になると、このとき温度
変化量xは順方向制御によるものであるから、図1に矢
印で示すように不変制御領域(Nを±0)となり、該運
転台数Nが保持される。定常偏差yが最大数制御領域
(N=全数)側から最小数制御領域(N=0)側に向か
う過程においては、温度変化量xは水温可変作動の順方
向制御によるものであるから、不変制御領域(Nを±
0)から最小数制御領域(N=0)に移行することはな
い。引き続く過程においては更に減少制御領域(Nを−
1)に移行して水温検出毎に運転台数Nが低減される。
その結果、第2の傾斜線ax+y=b2 を跨いで減少制
御領域(Nを−1)と不変制御領域(N=0)とに交互
に移動し、或いは第1の傾斜線ax+y=b1 を跨いで
増加制御領域(Nを+1)と不変制御領域(N=0)と
に交互に移動しながら、定常偏差y=0の近傍に制御さ
れる。そして該制御中に過剰制御になって定常偏差yが
最小数設定限界線y=yL を越えると最小数制御領域
(N=0)に移行して運転台数Nが0になる。その後、
不足制御になって定常偏差yが最小数設定限界線y=y
L を越えると、このとき温度変化量xは水温可変作動の
逆方向制御によるものであるから、不変制御領域(Nを
±0)となり、停止状態が保持される。停止状態におい
て定常偏差yが最小数制御領域(N=0)側から最大数
制御領域(N=全数)側に向かう過程においては、温度
変化量xは逆方向制御によるものであるから、不変制御
領域(Nを±0)から最大数制御領域(N=全数)側に
移行することはない。以降は、前記同様に制御される。
そして該制御中に不足制御になって定常偏差yが最大数
設定限界線y=yU を越えると、最大数制御領域(N=
全数)に移行して運転台数Nが最大数になる。
Next, the operation of the above configuration will be described by taking the cooling operation as an example. Control target data by the target temperature setting circuit 21
Temperature S and water temperature detector Sw detection temperature (detection water temperature) D
On the basis of a, the steady-state deviation y = S−Da by the subtractor 22.
Is calculated, and when the steady deviation y is in the maximum number control region (N = total number) of −4 ° C. or less that exceeds the maximum number setting limit line y = yU due to the insufficient control value at the time of start-up, etc. The operating number N is set to the total number. As a result, when the insufficient control value decreases and the steady-state deviation y = S-Da falls within the maximum number setting limit line y = yU due to the insufficient control value, the temperature change amount x is due to the forward control at this time. As shown by the arrow in FIG. 1, the control range becomes invariable (N is ± 0), and the operating number N is held. In the process in which the steady-state deviation y moves from the maximum number control region (N = total number) side to the minimum number control region (N = 0) side, the temperature change amount x is due to the forward control of the water temperature variable operation, and therefore it does not change. Control area (N is ±
There is no transition from 0) to the minimum number control area (N = 0). In the subsequent process, the decrease control region (N
By shifting to 1), the operating number N is reduced each time the water temperature is detected.
As a result, it crosses the second slope line ax + y = b2 and alternately moves to the decrease control region (N to -1) and the invariant control region (N = 0), or crosses the first slope line ax + y = b1. While moving alternately to the increase control region (N is +1) and the invariant control region (N = 0), the control is performed in the vicinity of the steady deviation y = 0. When the steady deviation y exceeds the minimum number setting limit line y = yL during the control and the steady deviation y exceeds the minimum number setting limit line y = yL, the minimum number control region (N = 0) is entered and the operating number N becomes zero. afterwards,
Insufficient control causes steady-state deviation y to be the minimum number setting limit line y = y
When L is exceeded, the temperature change amount x at this time is due to the reverse control of the water temperature variable operation, so that it is in the invariable control region (N is ± 0) and the stopped state is maintained. In the process of the steady deviation y from the minimum number control region (N = 0) side to the maximum number control region (N = total number) side in the stopped state, the temperature change amount x is due to the backward control, and thus the invariant control is performed. There is no transition from the region (N is ± 0) to the maximum number control region (N = total number) side. After that, the same control as described above is performed.
When the control becomes insufficient during the control and the steady deviation y exceeds the maximum number setting limit line y = yU, the maximum number control region (N = N
(The total number) and the number of operating units N becomes the maximum number.

【0018】[0018]

【発明の効果】以上説明したように本発明によれば、セ
ンタユニットの運転台数が最大数運転指定から最小数運
転指定に移行する際には、運転台数を制御の最小単位数
だけ減少すべく設定した減少制御領域を、その場合に起
こり得る検出水温の温度変化に対応させて介在させ、最
小数運転指定から最大数運転指定に移行する際には、運
転台数を制御の最小単位数だけ増加すべく設定した増加
制御領域を同様に介在させたので、センタユニットの運
転台数の変化が少なくなって、水温が円滑にフィードバ
ック制御される。
As described above, according to the present invention, when the number of operating center units shifts from the maximum number operation designation to the minimum number operation designation, the number of operating units should be reduced by the minimum number of control units. By intervening the set decrease control area in correspondence with the temperature change of the detected water temperature that may occur in that case, when shifting from the minimum number operation specification to the maximum number operation specification, the number of operating units is increased by the minimum unit number of control. By similarly interposing the increase control region set as necessary, the change in the number of operating center units is reduced, and the water temperature is smoothly feedback-controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例として空調システムの水温の
状態とセンタユニットの運転台数との関係を示す運転条
件設定図
FIG. 1 is an operation condition setting diagram showing the relationship between the water temperature state of an air conditioning system and the number of operating center units as an embodiment of the present invention.

【図2】従来の空調システムの構成図FIG. 2 is a block diagram of a conventional air conditioning system

【図3】従来の空調システムの水温の状態とセンタユニ
ットの運転台数との関係を示す運転条件設定図
FIG. 3 is an operating condition setting diagram showing the relationship between the water temperature state of the conventional air conditioning system and the number of operating center units.

【図4】本発明の一構成例を示す空調システムの制御回
路のブロック図
FIG. 4 is a block diagram of a control circuit of an air conditioning system showing a configuration example of the present invention.

【符号の説明】 HC1 ,HC2 …センタユニット、AC1 ,AC2 …室
内ユニット、SW …水温検出器、WA ,WB …水回路、
2…圧縮機、20…運転条件設定回路、21…21…目
標温度設定回路、22…減算器、23…温度変化量演算
回路、24…定常偏差判別回路、25…加算器、26…
比較回路、、27…運転台数設定回路、x… 温度変化
量、y…定常偏差、y=yU …最大数設定限界線、y=
yL …最小数設定限界線、ax+y=b1 …第1の傾斜
線、ax+y=b2 …第2の傾斜線。
[Explanation of symbols] HC1, HC2 ... Center unit, AC1, AC2 ... Indoor unit, SW ... Water temperature detector, WA, WB ... Water circuit,
2 ... Compressor, 20 ... Operating condition setting circuit, 21 ... 21 ... Target temperature setting circuit, 22 ... Subtractor, 23 ... Temperature change amount calculating circuit, 24 ... Steady state deviation discriminating circuit, 25 ... Adder, 26 ...
Comparison circuit, 27 ... Operating number setting circuit, x ... Temperature change amount, y ... Steady deviation, y = yU ... Maximum number setting limit line, y =
yL ... Minimum number setting limit line, ax + y = b1 ... First inclined line, ax + y = b2 ... Second inclined line.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水回路の温度を調節するセンタヒ−トポ
ンプユニットをなした複数のセンタユニットと、該水回
路に連結されて水熱交換する水熱源ヒ−トポンプユニッ
トをなした室内ユニットと、センタユニットと室内ユニ
ットとの間の水回路における水を循環させる循環ポンプ
と、所定の時間間隔で水回路の水温を検出する水温検出
器とを備え、水温の設定温度と検出水温との差異よりな
る定常偏差と前回の検出水温と今回の検出水温との差異
よりなる温度変化量とに基づいてセンタユニットの運転
台数を加減して水回路の温度をフィードバック制御する
空調システムの制御方法において、 前記制御の特性が、前記温度変化量に対してほぼ一定で
あって前記定常偏差の微小値による最小数設定限界線
と、前記温度変化量に対してほぼ一定であって前記定常
偏差の不足制御値による最大数設定限界線と、前記最小
数設定限界線と最大数設定限界線との間の領域に限定さ
れた各傾斜線であって前記温度変化量との比例値と前記
定常偏差との和が第1の定数よりなる第1の傾斜線と該
各和が第1の定数より大の第2の定数よりなる第2の傾
斜線とが定義され該各傾斜線は前記定常偏差の変化に対
して前記温度変化量をほぼ0となした水温安定線との交
点を有してなり、 前記定常偏差が前記最小数設定限界線を越えた過剰制御
値の領域であって運転台数を所定の最小数に設定した最
小数制御領域と、前記最大数設定限界線を越えた不足制
御値の領域であって運転台数を所定の最大数に設定した
最大数制御領域と、前記和の値が第1の定数よりも小の
領域であって運転台数を制御の最小単位数だけ増加すべ
く設定した増加制御領域と、前記和の値が第2の定数よ
りも大の領域であって運転台数を制御の最小単位数だけ
減少すべく設定した減少制御領域と、前記和の値が第1
の定数と第2の定数との間の値の領域であって運転台数
を増減なしに設定した不変制御領域とを設けた、 ことを特徴とする空調システムの制御方法。
1. A plurality of center units having a center heat pump unit for adjusting the temperature of a water circuit, an indoor unit having a water heat source heat pump unit connected to the water circuit for exchanging water heat, and a center. A circulation pump that circulates water in the water circuit between the unit and the indoor unit and a water temperature detector that detects the water temperature of the water circuit at predetermined time intervals are provided, and the difference between the set temperature of the water temperature and the detected water temperature is provided. In the control method of the air conditioning system, which controls the temperature of the water circuit by controlling the number of operating center units based on the steady-state deviation and the amount of temperature change consisting of the difference between the previously detected water temperature and the currently detected water temperature, Is almost constant with respect to the temperature change amount and is substantially constant with respect to the temperature change amount and the minimum number setting limit line due to the small value of the steady deviation. Therefore, the maximum number setting limit line due to the insufficient control value of the steady deviation, and each slope line limited to the region between the minimum number setting limit line and the maximum number setting limit line A first sloped line in which the sum of the proportional value and the steady-state deviation is a first constant and a second sloped line in which each sum is a second constant greater than the first constant is defined. The slope line has an intersection with the water temperature stability line where the temperature change amount is almost 0 with respect to the change of the steady deviation, and the steady deviation of the excess control value exceeds the minimum number setting limit line. A minimum number control area in which the number of operating vehicles is set to a predetermined minimum number, and a maximum number control in which the number of operating vehicles is set to a predetermined maximum number in the area of the insufficient control value that exceeds the maximum number setting limit line. Area and the area where the sum value is smaller than the first constant and the operating unit is the minimum unit of control An increase control region set to increase only the above, a decrease control region set to decrease the number of operating vehicles by the minimum unit number of control when the value of the sum is larger than the second constant, Value is first
A control method for an air conditioning system, characterized in that an invariant control area in which the number of operating vehicles is set without increase or decrease is provided, which is an area of a value between the constant and the second constant.
JP4283263A 1992-10-21 1992-10-21 Control method of air-conditioning system Pending JPH06137645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4283263A JPH06137645A (en) 1992-10-21 1992-10-21 Control method of air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4283263A JPH06137645A (en) 1992-10-21 1992-10-21 Control method of air-conditioning system

Publications (1)

Publication Number Publication Date
JPH06137645A true JPH06137645A (en) 1994-05-20

Family

ID=17663193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4283263A Pending JPH06137645A (en) 1992-10-21 1992-10-21 Control method of air-conditioning system

Country Status (1)

Country Link
JP (1) JPH06137645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164684A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Temperature adjusting system, air conditioning system, and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164684A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Temperature adjusting system, air conditioning system, and control method
JP5657110B2 (en) * 2011-05-31 2015-01-21 三菱電機株式会社 Temperature control system and air conditioning system
US9562701B2 (en) 2011-05-31 2017-02-07 Mitsubishi Electric Corporation Temperature control system and air conditioning system

Similar Documents

Publication Publication Date Title
US5025638A (en) Duct type air conditioner and method of controlling the same
KR20030097179A (en) Heat-Pump Air Conditioner&#39;s Operating Method
US20060123810A1 (en) Method for operating air conditioner
CN111795481B (en) Air conditioning system and control method therefor
EP0282772B1 (en) Operating method for an air conditioning system
CN113865059A (en) Heating operation control method for multi-split air conditioner
JP6843941B2 (en) Air conditioning system
JP2006234295A (en) Multiple air conditioner
JPH06137645A (en) Control method of air-conditioning system
JP2003166743A (en) Air conditioner
CN113639409B (en) Method and device for adjusting and controlling opening of electronic expansion valve of air conditioning system and medium
CN110542191B (en) Operation control method, operation control device, air conditioner, and storage medium
JP3596750B2 (en) Multi air conditioner control method
KR20210131237A (en) Air conditioner system and control method
JP3174153B2 (en) Cooling control device for multi-room air conditioner
WO2023013616A1 (en) Refrigeration cycle device
JP3286817B2 (en) Multi-room air conditioner
JP2000186864A (en) Control method for motor-operated expansion valve
JP3097350B2 (en) Multi-room air conditioner
JP2005241070A (en) Method of controlling operation of compressor, and air conditioner having the same
JPH02217737A (en) Air conditioner
JP3801320B2 (en) Current safe control method and apparatus for multi-room air conditioner
JPH11101516A (en) Air conditioner having inverter
JP2531332B2 (en) Dehumidifying operation method of air conditioner
JP2543292B2 (en) Air conditioner